小动物PET在癫痫和脑缺血模型中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
正电子发射断层显像(positron emission tomography,PET)利用正电子核素标记示踪分子进行活体显像,它能够在分子水平无创、动态、定量的对活体生理、生化变化过程进行观察,是研究临床疾病发病机制和评价治疗手段的重要方法。但很多医学研究需要首先在动物模型上实施成功后才能应用于临床,临床PET由于其分辨率的限制,不能用于小动物的实验研究,最近小动物PET(small animal PET,MicroPET)的问世,很好的解决了这一问题。
     最近,随着MicroPET技术的发展迅速,其空间分辨率大大提高,MicroPET已经成为研究大鼠脑代谢的重要工具。此外,MicroPET能应用于脑代谢改变的急性阶段,这在临床PET上由于显像困难是不易实现的。2-[~(18)F]-fluoro-2-deoxy-D-glucose(~(18)F-FDG)是葡萄糖的同分异构体,是目前应用最广泛的葡萄糖代谢示踪剂,研究表明,脑内葡萄糖代谢可反映神经元的活性。癫痫和脑缺血作为神经内科最常见的两类疾病,都伴有脑内葡萄糖代谢的显著改变。本研究的目的是利用MicroPET技术来评价治疗癫痫和脑缺血的新方法。
     PET显像的主要缺点在于PET显像为功能显像,对解剖结构定位比较模糊,这使得结果很难分析,在本研究中,我们将MicroPET图像和MRI图像用软件进行融合,极大地提高了MicroPET图像的分析效果。同时我们对大鼠麻醉方式也做了改进,使其在最大程度上反映大鼠清醒状态时的脑葡萄糖代谢。
     第一部分:电刺激丘脑前核对局部脑葡萄糖代谢的调节作用
     丘脑前核深部脑刺激(Deep brain stimulation,DBS)是治疗难治性癫痫一种新的手段,但其作用机制目前还不明确。高频电刺激某个脑区与损毁这个脑区的效应有相似之处,以往的研究也发现高频电刺激丘脑前核和毁损丘脑前核在一些癫痫模型上有相似的抗癫痫作用。我们通过建立丘脑前核DBS模型和丘脑前核化学毁损模型,用MicroPET观察处理前后局部葡萄糖代谢的变化。结果发现双侧丘脑前核DBS后标准化葡萄糖代谢率在双侧丘脑前核区、丘脑和海马明显增高,而扣带回和额叶皮层(包括运动皮层)标准化葡萄糖代谢率则明显降低,并且双侧丘脑前核DBS引起上述部位葡萄糖代谢的变化是可逆的。而双侧丘脑前核毁损后丘脑前核区标准化葡萄糖代谢率发生不可逆的下降,双侧丘脑前核毁损后再进行DBS却未见有葡萄糖代谢的改变。因此,双侧丘脑前核DBS可引起靶区以及远隔脑区的可逆性葡萄糖代谢变化,而双侧丘脑前核毁损并不出现相同的葡萄糖代谢改变。我们的研究结果表明,双侧丘脑前核DBS对大鼠脑葡萄糖代谢有抑制和兴奋的双重作用,丘脑前核DBS与毁损丘脑前核很可能有着两种完全不同的抗癫痫机制。
     第二部分:重复经颅磁刺激对大鼠局灶性脑缺血的作用及机制研究
     重复经颅磁刺激(repetitive transcranial magnetic stimulation,rTMS)的作用具有频率依赖性,高频率刺激(大于1Hz)能兴奋皮层,因此高频rTMS治疗在急性脑缺血中的作用日益受到国内外学者的重视。我们通过建立大鼠局灶性脑缺血模型,1h后应用高频rTMS(20Hz)治疗,以后每隔24h治疗1次,连续治疗7天。结果发现20Hz rTMS早期治疗显著改善了局灶性脑缺血大鼠的神经功能并减少脑梗死体积;MicroPET结果显示,大鼠局灶性脑缺血后7天,梗死半球的葡萄糖代谢明显下降,而经过20Hz rTMS治疗能显著提高梗死半球的葡萄糖代谢。免疫组化结果提示20Hz rTMS治疗能抑制大鼠脑缺血梗死周边区的细胞凋亡,并且使葡萄糖转运蛋白1、3的表达明显增高。我们的研究结果提示在脑缺血早期给予20Hz rTMS治疗对局灶性脑缺血具有神经保护作用,其机制可能与抑制梗死周边区的细胞凋亡和提高梗死半球的葡萄糖代谢有关。
     总的来说,我们的研究发现MicroPET能够对大鼠脑葡萄糖代谢改变进行长期的随访观察,已经成为研究癫痫和脑梗塞的重要工具。更为重要的是,由于MicroPET和临床PET研究可以使用相同的示踪药物,使得临床前期研究可以很快应用于临床实践,因而,在不久的将来,MicroPET必将在开发和评估癫痫和脑缺血新的治疗方法上起到十分重要的作用。
Positron emission tomography(PET)is a noninvasive imaging technique thatallows quantitative in vivo determinations of the rates of various physiologic andbiochemical processes with minimal invasiveness.However,PET has not been suitablefor small animal models because of resolution limitations.
     Until recently,improvement in scanner resolution has allowed PET to become apotential method to monitor cerebral metabolic pattems in rat brain using small animalpositron emission tomography(MicroPET).Moreover,MicroPET can also be used inthe early stage of acute brain lesions,which cannot be accomplished in the clinical PETstudies because tracer kinetics is unwarranted and image acquisition is difficult in theearly phase of acute stage.The tracer 2-[18F]-fluoro-2-deoxy-D-glucose(~(18)F-FDG)isthe well-known radiotracer that frequently has been used as a marker of metabolicactivity for glucose.The level of glucose metabolism correlates with the degree ofneuronal activity.Epilepsy and cerebral ischemia are common neurological diseaseswhich show significant change of brain glucose metabolism.Ourstudy is aim toevaluation of new treatments for epilepsy and cerebral ischemia using MicroPET.
     Although PET images are not always simple to interpret because of the pooranatomical detail that they contain,in this study,we have co-registered a single MRItemplate with PET images,which greatly improves the interpretation of the PET images.
     At the same time,we improve the method of anesthesia and ensure the MicroPETimages reflect glucose metabolism of the conscious state.
     Part 1:Anterior thalamic nucleus stimulation modulates regional cerebralmetabolism:an FDG-MicroPET study in rats
     The mechanism underlying the antiepileptic function of deep brain stimulation(DBS)of the anterior thalamic nucleus(ATN)remains unknown.Experimental studiesrevealed that DBS of the ATN has a similar anticonvulsant action with ATN lesions.We measured the regional normalized cerebral metabolic rate of glucose(nCMRglc)with MicroPET in animals receiving either ATN stimulation or lesioning.Bilateral ATNstimulation reversibly increased nCMRglc in the target region,the thalamus andhippocampus,and decreased nCMRglc in the cingulate cortex and frontal cortex(including motor cortex).However,bilateral ATN lesioning decreased nCMRglc onlyin the target region.Animals with bilateral ATN lesions showed no metabolic changesafter ATN stimulation.Thus,bilateral DBS of the ATN reversibly induces metabolicactivation of the target area and modulates energy metabolism in remote brain regionsvia efferent or afferent fibers in rats.DBS of the ATN may work by a differentmechanism than ATN lesioning.
     Part 2:A study on the mechanism of repetitive transcranial magnetic stimulationtreatment after cerebral ischemia in rats
     The effect of repetitive transcranial magnetic stimulation(rTMS)hasfrequency-dependent.It is generally assumed that higher frequencies(>1 Hz)induce anincrease of cortical excitability.Therefore,rTMS may be useful tool to modulate brainactivity for enhance recovery in acute cerebral ischemia.We applied an intraluminalmiddle cerebral artery occlusion model in rats under controlled conditions.20Hz rTMSwere delivered 1 hour after ischemia and interval 24h for 7 days.The resultsdemonstrated that 20Hz rTMS therapy significantly improved the neurological deficitsand reduced infarct volume of brain.Moreover,glucose metabolism in the ischemic area underwent a severe decrease during 7 days after ischemia,while 20Hz rTMStreatment significantly attenuated the decrease in cerebral metabolic rate of glucose inthe ischemic hemisphere.The results of immunohistochemistry demonstrated that20Hz rTMS therapy inhibited neuronal apoptosis and increased the expression ofGLUT-1 and GLUT-3 in the infarct margin.Our results demonstrate that 20Hz rTMStherapy inhibited neuronal apoptosis and maintenance of glucose metabolism in theischemic hemisphere,which might contribute to the the understanding neuroprotectioneffects of 20Hz rTMS therapy on transient cerebral ischemia in rats.
     In conclusion,we showed that MicroPET is a useful and provide the possibility toperform serial follow-up studies to investigate the development of functional changes inthe rat brain over time,will become important tools for epilepsy and cerebral ischemiaresearch.More important,an advantage of MicroPET is that the same molecularradiotracers can be used for both animal research and clinical applications facilitating amore rapid progression from preclinical research to clinical practice.In the future,MicroPET may also play a role in the development and evaluation of new treatments forepilepsy and cerebral ischemia.
引文
[1]Ding D,Hong Z,Wang WZ,et al.Assessing the disease burden due to epilepsy by disability adjusted life year in rural China.Epilepsia,2006,47:2032-2037.
    [2]Schmidt D,Loscher W.Drug resistance in epilepsy:putative neurobiologic and clinical mechanisms.Epilepsia,2005,46:858-877.
    [3]McIntosh AM,Kalnins RM,Mitchell LA,et al.Temporal lobectomy:long-term seizure outcome,late recurrence and risks for seizure recurrence.Brain,2004,27(Pt 9):2018-2030.
    [4]Upton AR,Cooper IS,Springman M,et al.Suppression of seizures and psychosis of limbic system origin by chronic stimulation of anterior nucleus of the thalamus.Int.J Neurol,1985,19-20:223-230.
    [5]Hamani C,Ewerton FI,Bonilha SM,et al.Bilateral anterior thalamic nucleus lesions and high-frequency stimulation are protective against pilocarpine-induced seizures and status epilepticus.Neurosurgery,2004,54:191-195.
    [6]Hamani C,Hodaie M,Chiang J,et al.Deep brain stimulation of the anterior nucleus of the thalamus:effects of electrical stimulation on pilocarpine-induced seizures and status epilepticus.Epilepsy Res,2008,78:117-123.
    [7]Mirski MA,Rossell LA,Terry JB,et al.Anticonvulsant effect of anterior thalamic high frequency electrical stimulation in the rat.Epilepsy Res,1997,28:89-100.
    [8]Takebayashi S,Hashizume K,Tanaka T,et al.The effect of electrical stimulation and lesioning of the anterior thalamic nucleus on kainic acid-induced focal cortical seizure status in rats.Epilepsia,2007,48:348-358.
    [9]Hodaie M,Wennberg RA,Dostrovsky JO,et al.Chronic anterior thalamus stimulation for intractable epilepsy.Epilepsia,2002,43:603-608.
    [10]Kerrigan JF,Litt B,Fisher RS,et al.Electrical stimulation of the anterior nucleus of the thalamus for the treatment of intractable epilepsy.Epilepsia,2004,45:346-354.
    [11]Lim SN,Lee ST,Tsai YT,et al.Long-term anterior thalamus stimulation for intractable epilepsy.Chang Gung Med J,2008,31:287-296.
    [12]Benazzouz A,Gao DM,Ni ZG,et al.Effect of high-frequency stimulation of the subthalamic nucleus on the neuronal activities of the substantia nigra pars reticulata and ventrolateral nucleus of the thalamus in the rat.Neuroscience,2000,99:289-295.
    [13]Burbaud P,Gross C,Bioulac B.Effect of subthalamic high frequency stimulation on substantia nigra pars reticulata and globus pallidus neurons in normal rats.J Physiol Paris,1994,88:359-361.
    [14]Grill WM,Snyder AN,Miocinovic S.Deep brain stimulation creates an informational lesion of the stimulated nucleus.Neuroreport,2004,15:1137-1140.
    [15]McIntyre CC,Grill WM,Sherman DL,et al.Cellular effects of deep brain stimulation:model-based analysis of activation and inhibition.J Neurophysiol,2004,91:1457-1469.
    [16]Lim SN,Lee ST,Tsai YT,et al.Electrical stimulation of the anterior nucleus of the thalamus for intractable epilepsy:a long-term follow-up study.Epilepsia,2007,48:342-347.
    [17]Vitek JL.Mechanisms of deep brain stimulation:excitation or inhibition.Mov Disord,2002,17:S69-72.
    [18]Brown P,Mazzone P,Oliviero A,et al.Effects of stimulation of the subthalamic area on oscillatory pallidal activity in Parkinson's disease.Exp Neurol,2004,188:480-490.
    [19]Hashimoto T,Elder CM,Okun MS,et al.Stimulation of the subthalamic nucleus changes the firing pattern of pallidal neurons.J Neurosci,2003,23:1916-1923.
    [20]Hilker R,Voges J,Weber T,et al.STN-DBS activates the target area in Parkinson disease:an FDG-PET study.Neurology,2008,71:708-713.
    [21]Molnar GF,Sailer A,Gunraj CA,et al.Changes in motor cortex excitability with stimulation of anterior thalamus in epilepsy.Neurology,2006,66:566-571.
    [22]Fukuda M,Mentis MJ,Ma Y,et al.Networks mediating the clinical effects of pallidal brain stimulation for Parkinson's disease:a PET study of resting-state glucose metabolism.Brain,2001,124:1601-1609.
    [23]Su PC,Ma Y,Fukuda M,et al.Metabolic changes following subthalamotomy for advanced Parkinson's disease.Ann Neurol,2001,50:514-520.
    [24]Lou M,Zhang H,Wang J,et al.Hyperbaric oxygen treatment attenuated the decrease in regional glucose metabolism of rats subjected to focal cerebral ischemia:a high resolution positron emission tomography study.Neuroscience,2007,46:555-561.
    [25]Zhang H,Zheng XS,Yang XF,et al.~(11)C-NMSP/~(18)F-FDG microPET to monitor neural stem cell transplantation in a rat model of traumatic brain injury.Eur J Nucl Med Mol Imaging,2008,35:1699-1708.
    [26]Matsumura A,Mizokawa S,Tanaka M,et al.Assessment of microPET performance in analyzing the rat brain under different types of anesthesia:comparison between quantitative data obtained with microPET and ex vivo autoradiography.Neuroimage 2003,20:2040-2050.
    [27]Chassagnon S,de Vasconcelos AP,Ferrandon A,et al.Time course and mapping of cerebral perfusion during amygdala secondarily generalized seizures.Epilepsia,2005,46:178-1187.
    [28]Mirrione MM,Schiffer WK,Siddiq M,et al.PET imaging of glucose metabolism in a mouse model of temporal lobe epilepsy.Synapse,2006,59:119-121.
    [29]Hilker R,Voges J,Weisenbach S,et al.Subthalamic nucleus stimulation restores glucose metabolism in associative and limbic cortices and in cerebellum:evidence from a FDG-PET study in advanced Parkinson's disease.J Cereb Blood Flow Metab,2004,24:7-16.
    [30]Gjedde A,Marrett S,Vafaee M.Oxidative and nonoxidative metabolism of excited neurons and astrocytes.J Cereb Blood Flow Metab,2002,22:1-14.
    [31]Nehlig A,Coles JA.Cellular pathways of energy metabolism in the brain:is glucose used by neurons or astrocytes? Glia,2007,55:1238-1250.
    [32]Dostrovsky JO,Levy R,Wu JP,et al.Microstimulation-induced inhibition of neuronal firing in human globus pallidus.J Neurophysiol,2000,84:570-574.
    [33]Filali M,Hutchison WD,Palter VN,et al.Stimulation-induced inhibition of neuronal firing in human subthalamic nucleus.Exp Brain Res,2004,156:274-281.
    [34]Ranck JB Jr.Which elements are excited in electrical stimulation of mammalian central nervous system:a review.Brain Res,1975,98:417-4140.
    [35]Morecraft RJ,Van Hoesen GW.Cingulate input to the primary and supplementary motor cortices in the rhesus monkey:evidence for somatotopy in areas 24c and 23c.J Comp Neurol,1992,322:471-489.
    [36]Shibata H.Efferent projections from the anterior thalamic nuclei to the cingulate cortex in the rat.J Comp Neurol,1993,330:533-542.
    [37]Ziai WC,Sherman DL,Bhardwaj A,et al.Target-specific catecholamine elevation induced by anticonvulsant thalamic deep brain stimulation.Epilepsia,2005,46:878-888.
    [38]Zumsteg D,Lozano AM,Wieser HG,et al.Cortical activation with deep brain stimulation of the anterior thalamus for epilepsy.Clin.Neurophysiol,2006,117:192-207.
    [39]Huguenard JR,McCormick DA.Thalamic synchrony and dynamic regulation of global forebrain oscillations.Trends Neurosci,2007,30:350-356.
    [40]Ludwig E,Klingler J.Atlas cerebri humani:the inner structure of the brain demonstrated on the basis of macroscopical preparations.Brown and Co Karger,Boston.1956.
    [41]Witter MP,Groenewegen HJ.The subiculum:cytoarchitectonically a simple structure,but hodologically complex.Prog.Brain Res,1990,83:47-58.
    [42]Avoli M,Louvel J,Pumain R,et al.Cellular and molecular mechanisms of epilepsy in the human brain.Prog Neurobiol,2005,77:166-200.
    [43]Cipolotti L,Husain M,Crinion J,et al.The role of the thalamus in amnesia:a tractography,high-resolution MRI and neuropsychological study.Neuropsychologia.2008,46:2745-2758.
    [44|Cherry SR,Shao Y,Silverman RW,et al.MicroPET:a high resolution PET scanner for imaging small animals.IEEE Trans Nucl Sci,1997,44:1161-1166.
    [45]Benedek K,Juhasz C,Muzik O,et al.Metabolic changes of subcortical structures in intractable focal epilepsy.Epilepsia,2004,45:1100-1105.
    [46]Henry TR,Mazziotta JC,Engel J Jr,et al.Quantifying interictal metabolic activity in human temporal lobe epilepsy.J Cereb Blood Flow Metab,1990,10:748-757.
    [47]Diehl B,LaPresto E,Najm I,et al.Neocortical temporal FDG-PET hypometabolism correlates with temporal lobe atrophy in hippocampalsclerosis associated with microscopic cortical dysplasia.Epilepsia,2003,44:559-564.
    [48]Theodore WH.Recent advances and trends in epilepsy imaging:pathogenesis and pathophysiology.Rev Neurol Dis,2004,1:53-59.
    [49]Joo EY,Hong SB,Han HJ,et al.Postoperative alteration of cerebral glucose metabolism in mesial temporal lobe epilepsy.Brain,2005,128:1802-1810.
    [50]Dedeurwaerdere S,Jupp B,O'Brien TJ.Positron Emission Tomography in basic epilepsy research:a view of the epileptic brain.Epilepsia,2007:48S:56-64.
    [1]Kim YH,You SH,Ko MH,et al.Repetitive transcranial magnetic stimulation-induced corticomotor excitability and associated motor skill acquisition in chronic stroke.Stroke,2006,37:1471-1476.
    [2]Mansur CG,Fregni F,Bossio PS,et al.A sham stimulation-controlled trial of rTMS of the unaffected hemisphere in stroke patients.Neurology,2005,64:1802-1804.
    [3]Takeuchi N,Chuma T,Matsuo Y,et al.Repetitive transcranial magnetic stimulation of contrahsional primary motor cortex improves hand function after stroke.Stroke,2005,36:2681-2686.
    [4]Fregni F,Boggio PS,Valle AC,et al.A Sham-Controlled Trial of a 5-Day Course of Repetitive Transcranial Magnetic Stimulation of the Unaffected Hemisphere in Stroke Patients.Stroke,2006,37:2115-2122.
    [5]Khedr EM,Ahmed MA,Fathy N,et al.Therapeutic trial of repetitive transcranial magnetic stimulation after acute ischemic stroke.Neurology,2005,65:466-468.
    [6]Fujiki M,Kobayashi H,Abe T,et al.Repetitive transcranial magnetic stimulation for protection against delayed neuronal death induced by transient ischemia.J Neurosurg,2003,99:1063-1069.
    [7]Ouyang YB,Giffard RG.Cellular neuroprotective mechanisms in cerebral ischemia:Bcl-2 family proteins and protection of mitochondrial function.Cell Calcium,2004,36:303-311.
    [8]Plesni N.Role of mitochondrial proteins for neuronal cell death after focal cerebral schemia.Acta Neurochir Suppl,2004,89:15-19.
    [9]Shimazaki K,Ishida A,Kawai N.Increase in bcl-2 oncoprotein and the tolerance to ischemia-induced neuronal death in the gerbil hippocampus.Neurosci Res,1994,20:95-99.
    [10]Hara A,Iwai T,Niwa M,et al.Immunohistochemical detection of Bax and Bcl-2 proteins in gerbil hippocampus following transient forebrain ischemia.Brain Res,1996, 711:249-253.
    [ 11 ]Nakagomi T, Asai A, Kanemitsu H, et al.Up-regulation of c-myc gene expression following focal ischemia in the rat brain.Neurol Res, 1996, 18: 559-563.
    [12]Ferrer I, Planas AM.Signaling of cell death and cell survival following focal cerebral ischemia: life and death struggle in the penumbra.J Neuropathol Exp Neurol.2003, 62: 329-339.
    [13]Chugani HT, Hovda DA, Villablanca JR, ET al.Metabolic maturation of the brain: a study of local cerebral glucose utilization in the developing cat.J Cereb Blood Flow Metab, 1991,11:35-47.
    [14]Bruehl C, Witte OW.Cellular activity underlying altered brain metabolism during focal epileptic activity.Ann Neurol, 1995, 38: 414-420.
    [15]Kimbrell TA, Little JT, Dunn RT, et al.Frequency dependence of antidepressant response to left prefrontal repetitive transcranial magnetic stimulation (rTMS) as a function of baseline cerebral glucose metabolism.Biol Psychiatry, 1999, 46: 1603- 1613.
    [16]Kimbrell TA, Dunn RZ, George MS, et al.Left prefrontal-repetitive transcranial magnetic stimulation (rTMS) and regional cerebral glucose metabolism in normal volunteers.Psychiatry Re, 2002, 115: 101-103.
    [17]Speer AM, Kimbrell TA, Wassermann EM, et al.Opposite effects of high and low frequency rTMS on regional brain activity in depressed patients.Biologicall Psychiatry, 2000,48:1133-1141.
    [18]李相元,李宪章.葡萄糖转运蛋白与缺血性脑血管病.国外医学脑血管疾病分册,2004, 12: 442-444.
    [19]李方成,陶宗玉,刘安民,等.大鼠脑缺血/再灌注过程中葡萄糖转运体I在缺血半影区的表达.中围病理生理杂志,2004, 20: 1878-1881.
    [20]李方成,陶宗玉,刘安民,等.葡萄糖转运体3在脑缺血/再灌注后半影区表达的变化及意义.中围病理生理杂志,2004, 20: 2276-2279.
    [21]Koizumi J, Yoshid Y, Nakazawa T.et al.Experimental studies of ischemic brain edema, A new experimental model of cerebral embolism in rats in which recirculation can be introduced in the ischemic area.Jpn J Stroke, 1986, 8:18.
    [22]Luft AR, Kaelin-Lang A, Hauser TK, et al.Transcranial magnetic stimulation in the rat.Exp Brain Res, 2001,140: 112-121.
    [23]Garcia JH, Wagner S, Liu KF, et al.Neurological deficit and extent of neuronal necrosis attributable to middle cerebral artery occlusion in rats: statistical validation.Stroke, 1995, 26: 627-634.
    [24]Lou M, Zhang H, Wang J, et al.Hyperbaric oxygen treatment attenuated the decrease in regional glucose metabolism of rats subjected to focal cerebral ischemia: a high resolution positron emission tomography study.Neuroscience, 2007, 46: 555-561.
    [25]Xu J, Culman J, Blume A, et al.Chronic treatment with a low dose of lithium protects the brain against ischemic injury by reducing apoptotic death.Stroke, 2003, 34:1287-1292
    [26]Longa EZ, Weinstein PR, Carlson S, ET al.Reversible middle cerebral artery occlusion without craniectomy in rats.Stroke, 1989, 20: 84-91.
    [27]Schmid-Elsaesser RZS, Hungerhuber E, Baethmann A, et al.Critical reevaluation of the intraluminal thread model of focal cerebral ischemia: evidence of inadvertent premature reperfusion and subarachnoid hemorrhage in rats by laser-Doppler flowmetry Stroke, 1998, 29: 2162-2170.
    [28]Maeda F, Keenan JP, Tormos JM, et al.Modulation of corticospinal excitability by repetitive transcranial magnetic stimulation.Clin Neurophysiol, 2000, 111:800-805.
    [29]Peinemann A, Reimer B, Loer C, et al.Long-lasting increase in corticospinal excitability after 1800 pulses of subthreshold 5Hz repetitive tims to the primary motor cortex.Clin Neurophysiol, 2004, 115:1519-1526.
    [30]严莉,丰宏林,崔丽英.经颅重频磁刺激对大鼠脑缺血再灌流损伤早期运动皮层兴奋性和神经功能的影响.中国神经免疫学和神经病学杂志,2005, 12: 368-372.
    [31]Fujiki M, Steward O.High frequency transcranial magnetic stimulation mimics the effects of ECS in upregulating astroglial gene expression in the murine CNS.Brain Res Mol.Brain Res, 1997, 44: 301-308.
    [32]Hausmann A, Weis C, Marksteiner J, et al.Chronic repetitive transcranial magnetic stimulation enhances c-fos in the parietal cortex and hippocampus.Brain Res Mol Brain Res 2000, 76: 355-362.
    [33]Aydin-Abidin S,Trippe J, Funke K, et al.High- and low-frequency repetitive transcranial magnetic stimulation differentially activates c-Fos and zif268 protein expression in the rat brain.Exp Brain Res, 2008, 188: 249-261.
    [34]Ogiue-Ikeda M, Kawato S, Ueno S.Acquisition of ischemic tolerance by repetitive transcranial magnetic stimulation in the rat hippocampus.Brain Research, 2005, 1037:7-11.
    [35]Kerr-JF, Wyllie-AH, Currie-AR.Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics.Br-J-Cancer, 1972, 26: 239-257.
    [36]Charriaut-Marlangue C, Margaill I, Plotkine M, et al.Early endonuclease activation following reversible focal ischemia in the rat brain.J Cereb Blood Flow Metab, 1995.15: 385-388.
    [37]章军建,阮旭中,张苏明,等.大鼠局灶性脑缺血再灌流半暗带神经细胞坏死与凋亡的动态变化.中华老年医学杂志,1999, 18: 178-181.
    [38]Cohen GM.Caspases: the executioners of apoptosis.Biochem J, 1997, 326(Ptl):1-16.
    [39]Plesnila N.Role of mitochondrial proteins for neuronal cell death after focal cerebral ischemia.Acta Neurochir Suppl, 2004, 89: 15-19.
    [40]Armstrong RC, Aja TJ, Hoang KD, et al.Activation of the CED3/ICE-related protease CPP32 in cerebellar granule neurons undergoing apoptosis but not necrosis.J Neurosci, 1997, 17: 553-562.
    [41]Vaux D, Cory S, Adams J, et al.Bcl-2 gene promotes haemopoitic cell survival and cooperates with c-myc to immotalize pre-B cell.Nature, 1988, 335: 440-442.
    [42]Orrenius S.Mitochondrial regulation of apoptotic cell death.Toxicol Lett, 2004, 149 19-23.
    [43]Cherry SR, Gambhir SS.Use of positron emission tomography in animal research.ILAR J.2001,42: 219-232.
    [44]Lomarev MP, Kim DY, Richardson SP, et al.Safety study of high-frequency transcranial magnetic stimulation in patients with chronic stroke.Clinical Neurophysiology, 2007, 118: 2072-2075.
    [45]王晓明,龙存国,吴碧华,等.经颅磁刺激安全性的实验研究.临床神经电生理学杂志,2002, 11: 227-229.
    [1]Mehzer CC,Adelson PD,Brenner BP,et al.Planned ictal FDG PET imaging for localization of extratemporal epileptic foci.Epilepsia,2000,41:193-200.
    [2]Kornblum HI,AraujoDM,Annala AJ,et al.In vivo imaging of neuronal activation and plasticity in the rat brain by high resolution positron emission tomography (microPET).Nat Biotechnol,2000,18:655-660.
    [3]Mirrione MM,Schiffer WK,Siddiq M,et al.PET imaging of glucose metabolism in a mouse model of temporal lobe epilepsy.Synapse,2006,59:119-121.
    [4]Collins RC,McLean M,Olney J.Cerebral metabolic response to systemic kainic acid:14-C-deoxyglucose studies.Life Sci,1980,27:855-862.
    [5]Scorza FA,Arida RM,Priel MR,et al.Glucose utilisation during status epilepticus in an epilepsy model induced by pilocarpine:a qualitative study.Arq Neuropsiquiatr,2002,60:198-203.
    [6]Wang D,Pascual JM,Yang H,et al.A mouse model for Glut-1 haploinsufficiency.Hum Mol Genet,2006,15:1169-1179.
    [7]Hong SB,Han HJ,Roh SY,et al.Hypometabolism and interictal spikes during positron emission tomography scanning in temporal lobe epilepsy.Eur Neuro,2002,48:65-70.
    [8]Choi JY,Kim SJ,Hong SB,et al.Extratemporal hypometabolism on FDGPET in temporal lobe epilepsy as a predictor of seizure outcome after temporal lobectomy.Eur J Nucl Med Mol Imaging,2003,30:581-587.
    [9]Carne RP,O'Brien TJ,Kilpatrick CJ,et al.MRI-negative PET-positive temporal lobe epilepsy:a distinct surgically remediable syndrome.Brain,2004,127:2276-2285.
    [10]Diehl B,LaPresto E,Najm I,et al.Neocortical temporal FDG-PET hypometabolism correlates with temporal lobe atrophy in hippocampal sclerosis associated with microscopic cortical dysplasia.Epilepsia,2003,44:559-564.
    [11]Theodore WH.Recent advances and trends in epilepsy imaging:pathogenesis and pathophysiology.Rev Neurol Dis,2004,1:53-59.
    [12]Henry TR,Babb TL,Engel J Jr,et al.Hippocampal neuronal loss and regional hypometabolism in temporal lobe epilepsy.Ann Neurol,1994,36:925-927.
    [13]Semah F,Baulac M,Hasboun D,et al.Isinterictal temporal hypometabolism related to mesial temporal sclerosis? Apositron emission tomography/magnetic resonance imaging confrontation.Epilepsia,1995,36:447-456.
    [14]O'Brien TJ,Newton MR,Cook MJ,et al.Hippocampal atrophy is not a major determinant of regional hypometabolism in temporal lobe epilepsy.Epilepsia,1997,38:74-80.
    [15]Knowlton RC,Laxer KD,Klein G,et al.In vivo hippocampal glucose metabolism in mesial temporal lobe epilepsy.Neurology,2001,57:1184-1190.
    [16]Jupp B,Williams J,Binns D,et al.Imaging small animal models of epileptogenesis.Neurol Asia,2007,12(Supplement 1):51-54.
    [17]Gronlund KM,Gerhart DZ,Leino RL,et al.Chronic seizures increase glucose transporter abundance in rat brain.J Neuropathol Exp Neurol,1996,55:832-840.
    [18]Juhasz C,Chugani DC,Muzik O,et al.Electroclinical Correlates of flumazenil and fluorodeoxyglucose PET abnormalities in lesional epilepsy.Neurology,2000,55:825-835.
    [19]Hammers A,Koepp MJ,Hurlemann R,et al.Abnormalities of grey and white matter [~(11)C]flumazenil binding in temporal lobe epilepsy with normal MRI.Brain,2002,125:2257-2271.
    [20]Juhasz C,Muzik O,Chugani DC,et al.Prolonged vigabatrin treatment modifies developmental changes of GABA(A)-receptor binding in young children with epilepsy.Epilepsia,2001,42:1320-1326.
    [21]Ingvar M,Eriksson L,Rogers GA,et al.Rapid feasibility studies of tracers for positron emission tomography:high-resolution PET in small animals with kinetic analysis.J Cereb Blood Flow Metab,1991,11:926-931.
    [22]Liefaard L,Ploeger B,Molthoff C,et al.Population pharmacokinetic analysis for simultaneous determination of Bmax and KD in vivo by positron emission tomography.Mol Imaging Biol,2005,7:411-421.
    [23]Liefaard L,Ploeger B,Lammerstma A,et al.Changes in GABA_A-receptor kinetics in amygdala kindled rats studied in vivo with positron emission tomography.Epilepsia,2006,47:328.
    [24]Dedeurwaerdere S,Gregoire M,Roselt P,et al.Evaluation of [~(18)F]fluoroflumazenil for in-vivo PET imaging of GABA_A/cBZR density in small animal models of epilepsy.Epilepsia,2006,47:301.
    [25]Merlet I,OstrowskyK,Costes N,et al.5-HTi_A receptor binding and intracerebral activity in temporal lobe epilepsy:an [~(18)F]MPPF-PET study.Brain,2004,127:900-913.
    [26]Van Bogaert P,De Tiege X,Vanderwinden JM,et al.Comparative study of hippocampal neuronal loss and in vivo binding of 5-HT1a receptors in the KA model of limbic epilepsy in the rat.Epilepsy Res,2001,47:127-139.
    [27]Dedeurwaerdere S,Cornelissen B,Van Laere K,et al.Small animal positron emission tomography during vagus nerve stimulation in rats:A pilot study.Epilepsy Res,2005,67:133-141.
    [28]Hodaie M,Wennberg RA,Dostrovsky JO,et al.Chronic anterior thalamus stimulation for intractable epilepsy.Epilepsia,2002,43:603-608.
    [29]Kerrigan JF,Litt B,Fisher RS,et al.Electrical stimulation of the anterior nucleus of the thalamus for the treatment of intractable epilepsy.Epilepsia,2004,45:346-354.
    [30]Lim SN,Lee ST,Tsai YT,et al.Long-term anterior thalamus stimulation for intractable epilepsy.Chang Gung Med,2008,31:287-296.
    [31]Astrup J,Siesjo BK,Symon L.Thresholds in cerebral ischemia:the ischemic penumbra.Stroke,1981,12:723-725.
    [32]Mies G,Ishimaru S,Xie Y,et al.Ischemic thresholds of cerebral protein synthesis and energy state following middle cerebral artery occlusion in rat.J Cereb Blood Flow Metab,1991,11:753-761.
    [33]Hakim IS.The cerebral ischemic penumbra.Can J Neurol Sci,1987,14:557-559.
    [34]Markus R,Reutens DC,Kazui S,et al.Topography and temporal evolution of hypoxic viable tissue identified by ~(18)F-fluoromisonidazole positron emission tomography in humans after ischemic stroke.Stroke,2003,34:2646-2652.
    [35]Read SJ,Hirano T,Abbott DF,et al.Identifying hypoxic tissue after acute ischemic stroke using PET and ~(18)F-fluoromisonidazole.Neurology,1998,51:1617-1621.
    [36]Read SJ,Hirano T,Abbott DF,et al.The fate of hypoxic tissue on ~(18)F-fluoromisonidazole positron emission tomography after ischemic stroke.Ann Neurol,2000,48:228-235.
    [37]Saita K,Chen M,Spratt NJ,et al.Imaging the ischemic penumbra with ~(18)F-fluoromisonidazole in a rat model of ischemic stroke.Stroke,2004,35:975-980.
    [38]Takasawa M,Beech JS,Fryer TD,et al.Imaging of brain hypoxia in permanent and temporary middle cerebral artery occlusion in the rat using ~(18)F-fluoromisonidazole and positron emission tomography:a pilot study.J Cereb Blood Flow Metab,2007,27:679-689
    [39]Lou M,Zhang H,Wang J,et al.Hyperbaric oxygen treatment attenuated the decrease in regional glucose metabolism of rats subjected to focal cerebral ischemia:a high resolution positron emission tomography study.Neuroscience,2007,46:555-561.
    [40]Wan H,Zhu H,Tian M,et al.Protective effect of chuanxiongzine-puerarin in a rat model of transient middle cerebral artery occlusion-induced focal cerebral ischemia.Nuclear Medicine Communications,2008,29:1113-1122.
    [41]Thanos PK,Taintor NB,Alexof D,et al.In vivo comparative imaging of dopamine D_2 knockout and wild-type mice with ~(11)Craclopride and microPET.J Nucl Med,2002,43:1570-1577.
    [42]Zhang H,Zheng XS,Yang XF,et al.~(11)C-NMSP/~(18)F-FDG microPET to monitor neural stem cell transplantation in a rat model of traumatic brain injury.Eur J Nucl Med Mol Imaging, 2008, 35:1699-1708.
    [43]Chatziioannou AF.Molecular imaging of small animals with dedicated PET Tomography.Eur J Nucl Med, 2002, 29: 98-114.
    [44]Jacobs RE, Cherry SR.Complementary emerging techniques: high-resolution PET and MRI.Curt Opin Neurobiol, 2001,11:621-629.