内蒙古长山壕金矿床地质特征与成因研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
华北陆台北缘元古宙浅变质碎屑岩分布广泛,其主要分布在两条东西向大致平行分布的裂谷带上,其中北部的一条被称为白云鄂博裂谷带,南部的一条被称为渣尔泰裂谷带。裂谷带上以浅变质岩为容矿围岩的金矿床(点)星罗棋布,并且具有重要经济价值。长山壕金矿床是近年来在白云鄂博裂谷带上发现的一处具有代表性的特大型金矿床。前人对长山壕金矿做了较多地质勘探工作,但科研工作相对滞后,这或多或少影响了对该矿床的认识以及其深部与外围找矿工作。本次研究在收集、整理前人成果的基础上,结合系统的野外地质调查和详细的室内研究工作,深入剖析了长山壕金矿床的产出环境、地质特征,探讨了岩浆活动与金成矿的关系,总结了矿床成因,建立了成矿模式并确定找矿方向,并对国内外产于浅变质碎屑岩中的同类型金矿床进行了对比分析,主要取得了如下认识:
     1、长山壕金矿床的金矿化在中元古界白云鄂博群砂岩、粉砂岩、碳质板岩、千枚岩和片岩中呈层状、似层状和网脉状产出,并且与花岗质侵入岩(脉)具有密切空间分布关系。
     2、长山壕金矿区及邻区花岗质侵入岩主要形成于海西期,可以分为两期:第一期属早二叠世早期(293-286Ma),以岩脉、岩墙或岩枝形式产出,岩浆活动持续约7Ma,推测该期岩浆岩可能是富集地幔部分熔融的产物;第二期岩浆活动属中二叠世(274-268Ma),为A型花岗岩类(A1型),可能形成于地壳伸展减薄的低压高温环境下。整体上,第二期岩浆活动规模较大,早阶段花岗岩体呈岩基出露,晚阶段则以规模较小的岩株为主,持续约6Ma。两期花岗岩类侵入体的形成时代相差17Ma,指示了由挤压环境向伸展环境的转变。
     3、含金黄铁矿化石英脉的Ar-Ar同位素测年结果显示与长山壕金矿区成矿作用有关的最晚一期热液活动的年龄为246-256Ma。
     4、长山壕金矿床的初始成矿时代为中元古代,并且遭受到海西期构造-岩浆活动的叠加改造,其成矿作用可划分为两个主要阶段,即中元古代初始成矿阶段和海西期改造成矿阶段,金矿化作用可能与海西期构造-岩浆活动及相关流体活动有关。
     5、长山壕金矿床与朱拉扎嘎、赛音乌苏金矿床的产出环境、地质特征基本相似,都在中元古界渣尔泰群和白云鄂博群板岩、碳质板岩、千枚岩和片岩中,矿体呈层状、似层状和网脉状产出,各个矿床的主要矿体与海西期富碱性中基性或中酸性侵入岩脉群具有密切时空分布关系,均属于浅变质岩为容矿围岩的中-低温热液型金矿床,并且可以与乌兹别克斯塔坦穆龙套超大型金矿床进行对比。
     6、长山壕、朱拉扎嘎和赛音乌苏金矿床的成矿作用分别发生在中元古代和海西期,并且与古陆块裂解和洋壳-古陆块俯冲造山作用事件发生的时限大体一致。中元古代古陆块张裂构造作用所诱发的海水沉积作用和海相火山活动可导致金及其它成矿组分发生初步富集,并且在局部地段形成矿胚或矿源层。海西期构造-岩浆活动可通过以下两条途径形成具有工业价值的金矿床:一是对早期矿源层进行叠加改造;二是有关含矿流体直接贯入容矿围岩形成金矿床。
     7、华北陆台北缘中元古代火山-沉积岩地层分布广泛,个别地层单元中金、砷和汞元素异常点(带)密集,其产出环境、岩性组合和结构构造特征与长山壕、朱拉扎嘎和赛音乌苏金矿化区完全一致;此外,这些地层单元中各类褶皱和断裂构造十分发育,且为一系列富碱质中基性侵入岩脉(群)所切割,是进行隐伏金矿床找矿勘查的有利场所。
The western section of the northern margin of the north China craton, is one of the most important gold metallogenic provinces in North China. The gold deposits and prospects hosted by the low-grade metamorphic detrital rocks are widely distributed in two parallel east-west-trending Proterozoic rift belts:the Bayan Obo belt in the north, and the Chaiertaishan belt in the south. The Changshanhao gold deposit is a super large gold deposit found in the Bayan Obo belt in recent years. Predecessors have done many geological exploration works on the Changshanhao gold deposit. However, the scientific research work remains relative lag, which more or less has influence on the understanding of the deposit and its periphery and deep prospecting work. Based on collecting, restuding the results of previous studies and combined with field geological survey and detailed indoor research work, this research has analyzed the environment and the geological characteristics of the Changshanhao gold deposit, discussed the relationship between the magmatic action and the gold mineralization, summed up the genesis of the deposit, proposed a metallogenic model and prospecting directions. At last, the same types of gold deposits of the domestic and foreign occurs in epimetamorphic clastic rocks were analyzed. The understanding made by the paper is as follows:
     1. The gold mineralization of the Changshanhao gold deposit occurs in the low-grade metamorphic clastic rocks of the Proterozoic Bayan Obo group as stratoid layer, stratiform and lenticular, the gold mineralization have a close spatial relationship with various types of granitoid intrusions.
     2. The granitoid intrusions of the Chanshanhao gold mining area and its adjacent region are mainly formed in the Hercynian period, can be divided into two phases:the first stage is the early period of Early Permian (293-286Ma), the granitoid intrusions occurs as stocks, dyke swarms or apophysis, and the magmatic action lasted about7Ma, speculated that the magmatic rocks may be the product of the partial melting of the enriched mantle; the second stage is the Middle Permian (274-268Ma), the granitoid intrusions are A-type granitoids (Al), which probably formed in the extensional tectonics environment with low pressure and high temperature. On the whole, the late magmatic action in large scale, the early stage granite batholith is exposed, late order to smaller rock strains, lasted about6Ma. Two granite intrusive age difference of17Ma body, indicating the environment by extrusion to extensional environment.
     3. The Ar-Ar isotopic dating results of the pyrite quartz veins in the Changshanhao gold deposit show that the age of the late stage hydrothermal activity related to the gold mineralization is246-256Ma.
     4. The initial mineralization age of the Changshanhao gold deposit is the Middle Proterozoic, and subjected to the superimposition of Hercynian tectonic and magmatic activities, the mineralization can be divided into two main stages, namely the initial mineralization stage of the Middle Proterozoic and the superimposition stage of Hercynian tectonic and magmatic activities. The Changshanhao gold deposit is a product of Hercynian tectonic-magmatic and fluid-related activities, and which played an important role during the ore-forming processes of the Changshanhao gold deposit.
     5. The Changshanhao, Zhulazaga and Saiyinwusu gold deposits are the largest ones occurs in two parallel east-west-trending Proterozoic rift belts. The geological features and environment of these gold deposits are very similar, the gold mineralization of which occurs in the Proterozoic carbonous sandstone, siltstone, carbonous phyllite, phyllite, slate and schist as stratoid layer, stratiform, stockwork and vein. Systematic geological investigations indicate that the wall rocks of these deposits and prospects vary from place to place, but most of them show an intimate spatial-temporal relation with the Caledonian ductile-brittle fractures zone and Hercynian intrusive dyke swarm. These gold deposits are similar to the Muruntau gold deposit, Uzbekistan, and belong to mesothermal vein-type gold deposit related to intrusive rocks.
     6. The Mineralization of the Changshanhao, Zhulazaga and Saiyinwusu gold deposit occurs in the Middle Proterozoic and Hercynian respectively, and the time of which are consistent with the occurrence of ancient continent block cracking, oceanic crust and continental block subduction, orogenesis event. The seawater sedimentation and marine volcano activities of the Middle Proterozoic caused by the intensive rifting occurring within the Early Precambrian continent or along its margin resulted in the ground preparation of gold and other ore-forming materials, and formed a number of gold source beds and protore along a certain strata. The gold deposits can be formed by Hercynian tectonic-magmatic activities through the following two ways:one is the early ore source layer superimposed reformation; the other is the formation of the gold deposits directly by the penetration of host rock of ore-bearing fluid.
     7. The volcano-sedimentary rock strata are widely distributed in the north margin of the North China craton, and among which some stratigraphic units have many anomaly occurrences of the gold, arsenic and mercury elements. The Geological environment, lithology and structure characteristics of these stratigraphic units are very similar to the Changshanhao, Zhulazaga and Saiyinwusu gold mineralization area. In addition, the variouss types of folds and faults are well developed in the stratigraphic units, and which cut by a series of alkaline-rich intrusive dyke swarms, are favorable for the exploration of concealed gold deposit.
引文
3内蒙古自治区乌拉特中旗浩尧尔忽洞金矿东、西矿段详查报告
    1. 白鸽,袁忠信,吴澄宇,张宗清,郑立媗.白云鄂博矿床地质特征和成因论证[J].地质出版社,1996.99-104.
    2. 白立兵,李玉玺,刘俊杰.内蒙古满都拉泥盆纪基性火山岩特征及其形成环境[J].华南地质与矿产,2004,3:50-54.
    3. 包志伟,陈森煌,张桢堂.内蒙古贺根山地区蛇绿岩稀土元素和Sm-Nd同位素研究[J].地球化学,1994,23(4):339-349.
    4. 鲍庆中,沙德铭,王宏.也谈南天山古生代造山带内穆龙套型金矿床的控矿因素和找矿方向[J].地质与资源,2003,12(3):159-165.
    5. 鲍庆中,张长捷,吴之理等.内蒙古西乌珠穆沁旗地区石炭二叠纪岩石地层[J].地层学杂志,2005,29(B11):512-519.
    6. 鲍庆中,张长捷,吴之理等.内蒙古东南部西乌珠穆沁旗地区石炭纪-二叠纪岩石地层和层序地层[J].地质通报,2006,25(5):572-579.
    7. 陈文,张彦,张岳桥,金贵善,王清利.青藏高原东南缘晚新生代幕式抬升作用的Ar-Ar热年代学证据[J].岩石学报,2006,22(4):867-872.
    8. 陈文,李华芹,张彦,孙敬博,纪宏伟,李洁,刘新宇.低硫型浅成低温热液型金矿床成矿时代研究方法—以新疆石英滩金矿为例[J].矿物学报,2011(增刊):561-562.
    9. 陈岳龙,杨忠芳,张宏飞等.北秦岭晚古生代-中生代花岗岩类的Nd-Sr-Pb同位素地球化学特征及Nd-Sr同位素演化[J].地球科学-中国地质大学学报,1996,21(5):481-485.
    10.陈跃军,彭玉鲸,路孝平.华北板块北缘活动带元古宙构造岩片[J].吉林大学学报(地球科学版),2002,32(2):134-239.
    11.陈志勇.内蒙古色尔腾山地区寒武系岩石地层单位的划分[J].中国区域地质,1994,4:319-324.
    12.陈志勇,温长顺,张维杰.内蒙古色尔腾山的推覆构造[J].地球科学,2000,25(3):237-242.
    13.程立人,彭向东,刘正宏等.内蒙古大青山地区早古生代三叶虫的发现[J].长春科技大学学报,2001a,31(2):105-109.
    14.程立人,彭向东,刘正宏等.内蒙古大青山地区早古生代生物化石的发现及意义[J].世界地质,2001b,20(3):219-223.
    15.高德臻,蒋干清.内蒙古苏尼特左旗二叠系的重新厘定及大地构造演化分析[J].中国区域地质,1998,17(4):403-411.
    16.高德臻.内蒙古中部交其尔复杂构造带构造研究[J].地质与勘探,1998,34(5):18-22.
    17.高德臻,徐有华.内蒙古苏尼特左旗韧性剪切带研究[J].地质与勘探,2000,36(5):31-35.
    18.高德臻,李龙,张维杰.内蒙古临河—集宁断裂带中段构造特征及其演化[J].中国区域地质,2001,20(4):337-343.
    19.龚瑞君.华北地台北缘中西段前寒武系重大成矿地质事件[D].成都理工大学硕士学位论文,成都,2010.
    20.侯可军,李延河,田有荣LA-MC-ICP-MS锆石微区原位U-Pb定年技术[J].矿床地质,2009,28(4):481-492.
    21.胡辅佑,王凯怡,孟庆昌.白云鄂博辉长岩[J].地质科学,1988,3:259-271.
    22.胡鸿飞.华北板块北缘西段中元古代裂谷带金矿床成因探讨[J].兰州大学学报,2006,42:189-193.
    23.胡玲,宋鸿林,颜丹平等.尚义-赤城断裂带中糜棱岩40Ar/39Ar年龄记录及地质意义[J].中国科学(D辑),2002,32(11):908-913.
    24.胡骁,许传诗,牛树银.华北地台北缘早古生代大陆边缘演化[M].北京:北京大学出版社,1990.
    25.黄占起,沈存利,王守光.内蒙古狼山—渣尔泰山地区与黑色岩系有关的铂族元素矿床找矿前景[J].地质通报,2002,10:663-667.
    26.李洪喜,杜松金,张庆龙等.内蒙古大青山地区构造特征与成矿关系[J].地质与勘探,2004,40(2):46-50.
    27.李江海,牛向龙,程素华等.大陆克拉通早期构造演化历史探讨:以华北为例[J].地球科学—中国地质大学学报,2006,31(3):285-293.
    28.李龙,张维杰,高德臻等.内蒙古临河-集宁深断裂中段韧性剪切带及其构造演化[J].地球科学-中国地质大学学报,2000,25(3):227-231.
    29.李述靖,高德臻.内蒙古苏尼特左旗地区若干地质构造新发现及其构造属性的初步探讨[J].现代地质,1995a,9(2):130-141.
    30.李述靖,张维杰.内蒙古苏尼特左旗纬向推覆构造的发现及地质意义[J].地质力学学报,1995b,1(1):44-53.
    31.李伍平,李献华.辽西晚古生代长茂河子辉绿岩墙群的地球化学特征[J].地球科学(中国地质大学学报),2005,30(6):761-770.
    32.李小伟,莫宣学,赵志丹,朱弟成.关于A型花岗岩判别过程中若干问题的讨论[J].地质通报,2010.2:278-285.
    33.李兆鼐,权恒,李之彤等.中国东部中、新生代火成岩及其深部过程[M].北京:地质出版社,1998.116,201-210.
    34.刘春涌.乌兹别克斯坦穆龙套特大型金矿床[J].中亚信息,2004,(9):22-24.
    35.刘德权,唐延龄,周汝洪.新疆古生代地壳发展的五阶段模式[J].地质学报(英文版),1998,72(4):339-349.
    36.刘敦一,简平,张旗等.内蒙古图林凯蛇绿岩中埃达克岩SHRIMP测年:早古生代洋壳消减的证据[J].2003,地质学报,77(3):317-327.
    37.刘建忠,张福勤,欧阳自远等.内蒙古色尔腾山绿岩的地球化学、年代学研究[J].长春科技大学学报,2001,31(3):236-241.
    38.刘军.内蒙古太平金矿床地质特征与找矿分析[D].昆明理工大学硕士学位论文,昆明,2012.
    39.刘树文,张臣,刘超辉等.中条山—吕梁山前寒武纪变质杂岩的独居石电子探针定年研究[J].地学前缘(中国地质大学(北京);北京大学),2007,14(1):64-74.
    40.刘英俊,曹励明,李兆麟,等.元素地球化学[M].北京:科学出版,1984.
    41.刘正宏,徐仲元,杨振升.论内蒙古大青山地区逆冲推覆构造[J].中国区域地质,1999,8(4):366-372.
    42.刘正宏,徐仲元,杨振升.内蒙古大青山印支运动厘定[J].地质论评,2003a,49(5):457-463
    43.刘正宏,徐仲元,杨振升.大青山逆冲推覆构造形成时代的40Ar/39Ar年龄证据[J].科学通报,2003b,48(20):2193-2197.
    44.罗红玲.华北板块北缘中段二叠纪的岩浆作用及构造意义[D].北京大学博士学位论文,北京,2007.
    45.马鸿文.花岗岩成因类型的判别分析[J].岩石学报,1992,8(4):341-350.
    46.内蒙古自治区地质矿产局.内蒙古区域地质志[M].中华人民共和国地质矿产部专报,(一)区域地质,第25号[M].北京:地质出版社,1991,1-725.
    47.内蒙古自治区地质矿产局.内蒙古自治区区域地质志[M].北京:地质出版社,1991.
    48.内蒙古自治区地质矿产局.内蒙古自治区岩石地层[M].武汉:中国地质大学出版社,1996.
    49.聂凤军,裴荣富,吴良士等.内蒙古白乃庙地区岩浆活动与金属成矿作用[J].北京:科学技术出版社,1993.85-106.
    50.聂凤军,裴荣富,吴良士等.内蒙古白银都西群变质火山岩的钕、锶同位素研究等[J].地质评论,1994a,40(5):476-481.
    51.聂凤军,裴荣富,吴良士等.内蒙古温都尔庙群变质火山—沉积岩钐-钕同位素研究[J].科学通报,1994b,39(13):1211-1214.
    52.聂凤军,裴荣富,吴良士等.内蒙古白乃庙地区绿片岩和花岗闪长斑岩的钕和锶同位素研究[J].地球学报,1995,1:36-44.
    53.聂凤军,江思宏,张建华.华北地台沉积岩型金矿床的找矿勘查意义[J].黄金地质,2000,6(1):15-21.
    54.聂凤军,江思宏,赵省民,白大明,刘妍,赵月明,王新亮,苏新旭.内蒙古流沙山金(钼)矿床地质特征及矿床类型的划分[J].地质地球化学,2002,30(1):1-7.
    55.聂凤军,江思宏,刘妍,胡朋.2005.再论内蒙古哈达门沟金矿床的成矿时限问题[J].岩石学报,21(6):1719-1728.
    56.聂凤军,江思宏,侯万荣,刘翼飞,肖伟.内蒙古中西部浅变质岩为容矿围岩的金矿床地质特特征及形成过程[J].矿床地质,2010,29(1):58-70.
    57.彭向东,程立人,徐仲元等.内蒙古大青山地区寒武系与奥陶系之间的一个重要的层序界面[J].地质论评,2002,48(1):54-58.
    58.彭向东,徐仲元,刘正宏.内蒙古大青山地区中、上侏罗统大青山组的修订[J].地层学杂志,2003,27(1):66-70.
    59.彭向东.内蒙古大青山—色尔滕山地区什那干群的质疑[J].地层学杂志,2005,29(增刊):454-457.
    60.邵济安,张履桥,李大明.2002.华北克拉通元古代的三次伸展事件[J].岩石学报,18(2):152-160.
    61.邵济安.中朝板块北缘中段地壳演化[M].北京:北京大学出版社,1991.
    62.邵济安,牟保磊,何国琦等.华北北部在古亚洲洋域构造叠加过程中的地质作用[J].中国科学(D辑),1997,27(5):390-394.
    63.沈存利,陈志勇,常忠耀.内蒙古“宝音图隆起”的归属讨论[J].地质调查与研究,2004,27(1):18-23.
    64.苏新旭,孟二根,张永清.内蒙古达茂旗满都拉地区晚古生代板块活动探讨[J].内蒙古地质,2000,1:17-34.
    65.苏养正.内蒙古草原地层区的古生代地层[J].吉林地质,1996,15(3-4):42-54.
    66.谭娟娟,朱永峰.穆龙套金矿地质和地球化学[J].矿物岩石地球化学通报,2008,27(4):391-398.
    67.唐克东,张允平.内蒙古缝合带的构造演化[J].肖序常,汤耀庆主编.古中亚复合巨型缝合带南缘构造演化[M].北京:科学技术出版社,1991.30-54.
    68.唐克东.中朝板块北侧褶皱带构造演化及成矿规律[M].北京:北京大学出版社,1992,112-243.
    69.陶继雄,苏茂荣,宝音乌力吉等.内蒙古达尔罕茂明安联合旗满都拉地区索伦山蛇绿混杂岩的特征及构造意义[J].地质通报,2004,23(12):1238-1242.
    70.涂光炽.中国超大型矿床[M].北京:科学出版社.2000.
    71.王东方.内蒙古中南段前寒武纪地质的基本问题[J].河北地质学院学报,1993,16(2):115-253.
    72.王惠初,修群业.呼和浩特北部二道洼群的单颗粒锆石年龄[J].内蒙古地质,1996,Z1:13-17.
    73.王惠初,修群业,袁桂邦.内蒙古呼和浩特北部古元古代二道洼群的变质演化[J].前寒武纪研究进展,1999,22(4):39-49.
    74.王惠初,袁桂邦,辛后田.内蒙古固阳村空山地区麻粒岩的锆石U-Pb年龄及其对年龄解释的启示[J].前寒武纪研究进展,2001,24(1):28-34.
    75.王楫,李双庆,王保良,等.狼山-白云鄂博裂谷系-中国北方板块构造丛书[M].北京:北京大学出版社,1989,1-132.
    76.王楫,李双庆,王保良等.狼山-白云鄂博裂谷系[M].北京:北京大学出版社,1992.60-69.
    77.王楫,孙玉芳.阴山地区前寒武纪变质岩石地层序列[J].华北地质矿产杂志,1996,11(3):437-442.
    78.王启超,牛树银,肖文暹等.阴山东段(冀北及冀晋内蒙古接壤地带)的太古宙地层问题讨论[J].地层学杂志,2002,26(1):55-62.
    79.王荃,刘雪亚,李锦轶.中国华夏与安拉古陆间的板块构造[J].北京:北京大学出版社,1991.80-87.
    80.王挽琼,刘正宏,王兴安,张超,范志伟,时溢,朱凯.内蒙古乌拉特中旗海西期黑云母二长花岗岩锆石SHRIMP U-Pb年龄及其地质意义[J].中国科技论文在线,http://www.paper.edu.cn,2011.
    81.王瑜.中国东部内蒙古—燕山造山带晚古生代晚期—中生代的造山作用过程[M].北京:地质出版社,1996.
    82.吴昌华,孙敏,李惠民等.乌拉山-集宁孔兹岩锆石激光探针等离子质谱(LA-ICP-MS)年龄—孔兹岩沉积时限的年代学研究[J].岩石学报,2006,22(11):2639-2654.
    83.吴福元,李献华,郑永飞等Lu-Hf同位素体系及其岩石学应用[J].岩石学报,2007,23(2):185-216.
    84.吴锁平,王梅英,戚开静.A型花岗岩研究现状及其述评[J].岩石矿物学杂志,2007.1:57-66.
    85.吴泰然,张臣,万基虎.内蒙古温都尔庙地区温都尔庙群的形成环境和构造意义[J].高校地质学报,1998,4(2):168-176.
    86.辛后田,牛绍武.内蒙古固阳地区下白垩统研究新进展[J].中国区域地质,2000,19(4):361-366.
    87.徐备,陈斌,张臣等.华北板块北缘中段含铁变质岩系的时代和构造环境初探[J].地质论评,1994,40(4):307-311.
    88.徐备,刘树文,王长秋等.内蒙古西北部宝音图群Sm-Nd和Rb-Sr地质年代学研究[J].地质论评,2000,43(1):86-90.
    89.徐备.内蒙古北部温都尔庙群北带沉积环境及构造意义[J].地质科学,1998,33(4):406-411.
    90.徐九华,谢玉玲,丁汝福,等CO2-CH4流体与金成矿作用:以阿尔泰山南缘和穆龙套金矿为例[J].岩石学报,2007,23(8):2026-2032.
    91.徐仲元,刘正宏,杨振升.内蒙古大青山地区中生代造山运动及构造演化[J].长春科技大学学报,2001b,31(4):317-322.
    92.许立权,贾和义,张玉清等.白云鄂博地区碱性正长岩特征及其意义[J].地质调查与研究,2004,27(1):43-47.
    93.许立权,邓晋福.内蒙古达茂旗哈尔陶勒盖地区蛇绿岩形成环境探讨[J].中国地质,2006,33(5):1038-1043.
    94.杨喜安,田飞,李大鹏,等.穆龙套金矿构造、岩浆控矿作用[J].新疆地质,2010,28(3):285-289.
    95.杨振升,徐仲元,刘正宏等.内蒙古中部大青山-乌拉山地区早前寒武系研究的重要进展及对高级变质区开展地层工作的几点建议[J].地质通报,2006,25(4):427-433.
    96.张臣,吴泰然.内蒙古温都尔庙群变质基性火山岩Sm-Nd、Rb-Sr同位素年代研究[J].地质科学,1998,33(1):25-30.
    97.张臣,吴泰然.内蒙古白乃庙白银都西群的形成环境及其构造意义[J].高校地质学报,1999,5(2):175-182.
    98.张臣,吴泰然.内蒙古苏左旗南部早古生代蛇绿混杂岩特征及其构造意义[J].地质科学,1999a,34(3):381-389.
    99.张臣,吴泰然.内蒙古苏左旗南部华北板块北缘中新元古代—古生代裂解—汇聚事件的地质记录[J].岩石学报,2001,17(2):199-205.
    100.张春雷.内蒙古赛乌素金矿成矿地质特征及其找矿方向[J].黄金,1999,20(10):8-12.
    101.张季生,洪大卫,王涛.内蒙古中部重、磁场特征与地壳密度结构[J].地质通报,2005,24(2):118-123.
    102.张旗,冉皞,李承东.A型花岗岩的实质是什么[J]?岩石矿物学杂志,2012,31(4):621-626.
    103.张青伟.华北极块北缘中段晚古生代花岗岩类特征及其地质意义[D].吉林大学博士学位论文,长春,2011.
    104.张维杰,李述靖.内蒙古苏尼特左旗交其尔推覆构造带的发现及其地质意义[J].现代地质,1995,9(2):220-225.
    105.张晓晖,翟明国.华北北部古生代大陆地壳增生过程中的岩浆作用与成矿效应[J].岩石学报,2010,26(5):1329-1341.
    106.张玉清,苏宏伟.内蒙古宝音图岩群变质基性火山岩锆石U-Pb年龄及地质意义[J].前寒武纪研究进展,2002,25(3-4):199-204.
    107.张玉清.内蒙古白云鄂博北部宝音图岩群变质基性火山岩的年龄,构造背景及地质意义[J].地质通报,2004,23(2):177-183.
    108.张宗清,袁忠信,唐索寒等.白云鄂博矿床年龄和地球化学[M].北京:地质出版社, 2003.
    109.赵国春,刘刚.内蒙古苏尼特左旗巴润萨拉北东向强变形带的发现及其意义[J].现代地质,1995,9(2):226-233.
    110.赵磊.华北板块北缘中段晚古生代镁铁-超镁铁岩的岩石地球化学特征及其构造意义[D].北京大学博士研究生学位论文,北京:2008.
    111.郑亚东,Davis GA,王琮等.内蒙古大青山大型逆冲推覆构造[J].内蒙古地质,1998,4:13-19.
    112.中国科学院地球化学研究所.白云鄂博矿床地球化学[M].科学出版社,1998,1-234.
    113.中国矿床发现史-内蒙古卷编委会.中国矿床发现史—内蒙古卷[M].北京:地质出版社,1996,1-279.
    114.周建波,郑永飞,杨晓勇,舒勇,魏春生,谢智.白云鄂博地区构造格局与古板块构造演化[J].高校地质学报,2002,8(1):46-61.
    115.朱炳泉,李献华,戴檀谟等.地球科学中同位素体系理论与应用-兼论中国大陆壳幔演化[M].北京:科学出版社,1998,216-230.
    116.朱绅玉.内蒙古色尔腾山--大青山地区推覆构造[J].内蒙古地质,1997,1:41-48.
    117.朱绅玉,杨继贤.阴山带燕山运动特征[J].内蒙古地质,1998,2:29-38.
    118. Ahyoshin A P. Evolution of mineralizing solutions and physicochemical characteristics of gold precipitation at the Muruntau deposit (Central Kyzylkum, Uzbekistan).In:The 9th Symposium of IAGOD Abstracts,Vol.2,Beijing,China,1994,444-445.
    119. Boynton W.V.1984.Geochemistry of the rare-earth elements:meteorite Studies.In:Henderson P.ed.Rare Earth Element Geochemistry,pp.63-114. Elevier,Amsterdam.
    120. Chao ECT, Back JM, Minkin JA, et al. Sedimentary carbonate-hosted giant Bayan Obo REE-Fe-Nb ore deposit of Inner Mongolia, China:a cornerstone example for giant polymetallic ore deposits of hydrothermal origin. United States Geological Survey Bulletin, 1997,2143 (http://pubs.usgs.gov/bul/b2143/).
    121. Drew L J, Berger B R and Kurbanov N K. Geology and structural evolution of the Muruntau gold deposit,Kyzulkum desert,Uzbekistan[J]. Ore Geology Review,1996,11:175-196.
    122. Eby G Nelson. Chemical subdivision of the A-type granitoids:Petrogenetic and tectonic implications[J].Geology,1992,20(7):641-644.
    123. Frimmel H E. Earth's continental crustal gold endowment[J].Earth and Planetary Science Letters,2008,267(1-2):45-55.
    124. Graupner T, Kempe UIF, Spooner ETC, et al. Microthermometric,laser raman spectroscope, and volatile-ion chromatographic analysis of hydrothermal fluids in the Paleozoic muruntau Au-bearing quartz vein ore field,Uzbekistan[J].Economy Geology,2001,96:1-23.
    125. Graupner T, Niedermann S, Kempe U, et al. Origin of ore fluids in the Muruntau gold system: Constraints from noble gas,carbon isotope and halogen data[J]. Geochimica et Cosmochimica Acta,2006,70:5356-5370.
    126. Groves D I, Goldfarb R J, Gebre-Mariam M, et al., Orogenic gold deposits:A proposed classification in the context of their crustal distribution and relationship to other gold deposit types [J]. Ore Geology Review,1998,13:7-27
    127. Groves D I and Bierlein F P. Geodynamic settings of mineral deposit systems[J]. Journal of the Geological Society,2007,164(1):19-30.
    128. He Li, Ming-xing Ling, Cong-ying Li, Hong Zhang, Xing Ding, Xiao-yong Yang, Wei-ming Fan, Yi-liang Li, Wei-dong Sun. A-type granite belts of two chemical subgroups in central eastern China:Indication of ridge subduction[J]. Lithos,2012,150:26~36.
    129. Ionov D A, Hofmanna A W. Nb、Ta-rich mantle amphiboles and micas:Implications for subduction-related metasomatic trace element fractionations[J]. Earth and Planetary Science Letters,1995,131(3-4):341-356.
    130. Jian P, Liu D Y, Kroner A, Windley B F, Shi Y R, Zhang F Q, Shi G H, Miao L C, Zhang W, Zhang Q, Zhang L Q, Ren J S. Time scale of an early to mid-Paleozoic orogenic cycle of the long-lived Central Asian Orogenic Belt, Inner Mongolia of China:Implications for continental growth[J]. Lithos,2008,101:233-259.
    131. Jiang Si-Hong and Nie Feng-Jun.Geological and geochemical characteristics of Zhulazhaga gold deposit in Inner Mongolia,China [J]. Acta Geologica Sinica,2005,79 (1):87-97.
    132. Kempe U, Belyatsky B V, Kremenetsky A A, et al. Mantle influence on the genesis of the super-large Au deposit Muruntau (Uzbekistan):constraints from geochemistry and isotope composition of scheelites. In:Hatton, C J (Ed.), Plumes, Plates and Mineralization. University of Pretoria, Pretoria,1997:51~52.
    133. Kempe U, Belyatsky B V, Krymsky R S, Kremenetsky A A and Ivanov P A. Sm-Nd and Sr isotope systematics of scheelite from the giant Au (-W) deposit Muruntau (Uzbekistan): implications for the age and source of Au mineralization [J]. Mineralium Deposits, 2001,36:379-392.
    134. Khamrabaev I Kh. Ore formations and basin principles of the metallogeny of gold in Uzbekistan[J].FAN,Tashkent,1969,396.
    135. Kostitsyn YA. Rb-Sr isotopic study of the Muruntau deposit:Magmatism, metamorphism and mineralization [J].Geochemistry International,1996,34:1009-1023.
    136. Kusky T, Li J H, Tucker RD.The Archean Dongwanzi Ophiolite Complex, North China Craton:2.505-Billion-Year-Old Oceanic Crust and Mantle[J]. Science,2001,292:1142-1146
    137. Kusky T, Li J H. Paleoproterozoic tectonic evolution of the North China Craton[J]. Journal of Asian Earth Sciences,2003,22:383-387
    138. Kusky T. et al. The Paleoproterozoic North Hebei Orogen:North China craton's collisional suture with the Columbia supercontinent[J].Gondwana Research (2007), doi:10.1016/j.gr.2006.11.012
    139. Li J H, et al. A Late Archean foreland fold and thrust belt in the North China Craton: Implications for early collisional tectonics[J]. Gondwana Research (2007), doi:10.1016/j.gr.2006.10.020.
    140. Liu Y S, Hu Z C, Gao S, Gunther D, Xu J, Gao C and Chen H. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an integral standard[J]. Chemical Geology,2008,257:34-43.
    141. Ludwig K R. Squid 1.02:A user manual. Berkeley Geochronological Center Special Publication,2001,2:1-19.
    142. Matthias G. Barth, William F. McDonough, Roberta L. Rudnick. Tracking the budget of Nb and Ta in the continental crust. Chemical Geology,2000,165(3-4):197-213.
    143. Morelli R, Creaser R A, Seltmann R, Stuart F M, Selby D and Graupner T. Age and source constraints for the giant Muruntau gold deposit, Uzbekistan, from coupled Re-Os-He isotopes in arsenopyrite[J]. Geology,2007,35(9):795-798.
    144. Nasdala L, Hofmeister W, Norberg N, et al. Zircon M257-a homogeneous natural reference material for the ion microprobe U-Pb analysis of zircon[J]. Geostandards and Geoanalytical Research,2008,32:247-265.
    145. Nie F J, Pei R F, Wu L S. Sm-Nd Isotopic Study on Metavolcano-sedimentary Rocks of Wenduermiao Group, Inner Mongolia, People's Republic of China[J]. Chinese Science Bulletin,1994,39(16):1367~1371
    146. Nie F J, Bj(?)rlykke A. Nd and Sr isotope constraints on the age and origin of Proterozoic meta-mafic volcanic rocks in the Bainaimiao-Wenduermiao district, south-central Inner Mongolia, China[J]. Continental Dynamics,1999,4:1-14.
    147. Nie F J, Jiang S H, Su X X, et al. Geological features and origin of gold deposits occurring in the Baotou-Bayan Obo district, south-central Inner Mongolia, People's Republic of China[J]. Ore Geology Reviews,2002,20:139~169.
    148. Pearce J A, Harris N BW, Tindle A G. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks[J]. Journal of Petrology,1984,25:956~983.
    149. Peccerillo A, Taylor D R. Geochemistry of Eocene Calc-alkaline Volcanic Rocks from Kastamonu Area, Northern Turkey[J]. Contrib Mineral Petrol,1976,58:63~91.
    150. Pitcher WS. Anatomy of a batholith[J]. Journal of Geological Society of London,1978, 135:157~182.
    151. Ren Jishun, Wang Zuoxun, Chen Binwei, et al.1999. The tectonics of China from a global view-a guide to the tectonic map of China and adjacent regions[M]. Beijing Geological Publishing House,1-32.
    152. Roberta L. Rudnick, Matthias Barth, Ingo Horn, William F. McDonough.Rutile-Bearing Refractory Eclogites:Missing Link Between Continents and Depleted Mantle[J]. Science, 2000,287(5451):278-278.
    153. Santosh M, Sajeev K, Li JH. Extreme crustal metamorphism during Columbia supercontinent assembly:Evidence from North China Craton[J]. Gondwana Research,2006,10:256~266.
    154. Santosh M, Tsunogae T, Li JH, et al. Discovery of sapphirine-bearing Mg-Al granulites in the North China Craton:Implications for Paleoproterozoic ultrahigh temperature metamorphism[J]. Gondwana Research,2007,263~285.
    155. Santosh M, Zhao D, Kusky T. Mantle Dynamic of The Paleoproterozoic North China Craton: A Perspective Based On Seismic Tomography[J]Journal Of Dynamic,2010,49(1):39~53.
    156. Sengor A M C, Natalin B A, Burtman V S. Evolution of the Altaid tectonic collage and Paleozoic crustal growth in Eurasia[J]. Nature,1993,364:299-307.
    157. Slama J, Kosler J, Condon DJ, Crowley JL, Gerdes A, Hanchar JM, Horsrwood MSA, Morris GA, Nasdala L, Norberg N, Schaltegger U, Schoene B, Tubrett MN and Whitehouse M J. Plesovicezircon—A new natural reference material for U-Pb and Hf isotopic microanalysis[J].Chemical Geology,2008,249:1-35.
    158. Sun S S, McDonough W F. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. In:Saunders AD, Norry MJ (eds.). Magmatism in the Ocean Basins.Geological Society, Special Publication,1989,42:313~345.
    159. Taylor, S R, McLennan, S M. The continental crust:its composition and evolution[M]. Blackwell, Oxford,1985,312.
    160. Wan Y S, Wilde S A, Liu D Y, et al. Further evidence for~1.85Ga metamorphism in the Central zone of North China Craton:SHRIMP U-Pb dating of zircon from metamorphic rocks in the Lushan area, Henan Province[J]. Gondwana Research,2006,9:189-197.
    161. White A J R. Sources of granite magmas. Abstracts with programs, Geological Society of America,1979,11:539
    162. Wilde A R, Layer P, Mernagh T and Foster J. The giant Muruntau gold deposit: Geologic,geochronologic and fluid inclusion constraints on ore genesis[J].Economic Geology,2001,96:633-644.
    163. Wilde S A, Zhao G C, Sun M. Development of the North China Craton during the Late Archean and its final amalgamation at 1.8 Ga:some speculations on its position within a global Palaeoproterozoic Supercontinent[J]. Gondwana Research,2002,5(1):85~94.
    164. Xia X P, Sun M, Zhao G C, et al. U-Pb and Hf isotopic study of detrital zircons from the Wulashan Khondalites:Constraints on the evolution of Ordos Terrane, Western Block of the North China Craton[J]. Earth and Planetary Science Letters,2006,241:581~593.
    165. Zartman R E, Doe B R. Plumbotectonics-the model[J]. Tectonophysics,1981,75:135-162.
    166. Zhang S H, et al. Zircon SHRIMP U-Pb and in-situ Lu-Hf isotope analyses of a tuff from Western Beijing:Evidence for missing Late Paleozoic arc volcano eruptions at the northern margin of the North China block[J]. Gondwana Research,2006a, doi:10.1016/j.gr.2006.08.001.
    167. Zhao G C. Palaeoproterozoic assembly of the North China Craton [J]. Geological Magazine, 2001,138(1):89~91.
    168. Zhao G C, Sun M, Wilde SA, et al. Composite nature of the North China Granulite-Facies Belt:Tectonothermal and geochronological constraints[J]. Gondwana Research,2006a,9(3): 337-348
    169. Zhao G C, Wilde S A, Li S Z, et al. U-Pb zircon age constraints on the Dongwanzi Ultramafic-mafic body, North China, confirm it is not an Archean ophiolite[J]. Earth and Planetary Science Letters,2007,255:85~93