促肾上腺皮质激素释放激素/MAPKs信号途径在银屑病发病中的作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分促肾上腺皮质激素释放激素及其受体在慢性斑块型银屑病皮损中表达的研究
     背景
     银屑病是一种常见的由多基因遗传决定的、多环境因素刺激诱导的慢性炎症性皮肤病,以表皮角质形成细胞(keratinocyte,KC)过度增殖和异常分化为主要特征。在银屑病的发生发展过程中,剧烈的精神刺激或应激反应被证实是银屑病发生和加重的重要诱因。银屑病的许多临床表现,如皮损对称分布、应激触发或加重皮损都提示神经系统在银屑病发病过程中具有重要作用,但是这种临床现象的发生机制有待阐明。
     促肾上腺皮质激素释放激素(corticotropin-releasing hormone,CRH)由41个氨基酸组成,是下丘脑-垂体-肾上腺轴(hypothalamic-pituitary-adrenal axis,HPA axis)的重要组成成份。机体在应激状态下由下丘脑产生并释放CRH,刺激垂体后叶特定CRH受体(CRH receptors,CRH-Rs)来调节HPA轴。活化的CRH-Rs通过一系列信号途径引起阿黑皮素(proopiomelanocortin,POMC)来源的神经肽的产生和释放,包括促肾上腺皮质激素(adrenocorticotropic hormone,ACTH)、α-黑素细胞刺激素(α-melallocyte stimulating hormone,α-MSH)和β-内啡肽(β-endorphin,β-END)等。近年来研究发现,人的皮肤中也存在并表达HPA轴的组成成份,包括CRH、CRH受体1(CRH receptor1,CRH-R1)、POMC及随后产生的ACTH、α-MSH、β-END和相关的受体,并且能够进行功能性及细胞特异性调节。研究发现,中枢应激反应和外周应激反应之间存在交互通话,在局部神经免疫性应激反应中,皮肤占据中心地位。因此,学者们提出了皮肤应激系统(skin stress response system,SSRS)、皮肤HPA轴的概念。
     在皮肤应激反应时,CRH作为生长因子/多效细胞因子,调节多种细胞的增殖、分化、免疫反应。皮肤中CRH和CRH-R1可以调节皮肤的多种功能,特别是在局部内环境稳定中起到重要作用。这些研究提示:外周CRH和CRH-R1可能在皮肤疾病,特别是以KC异常增殖和分化为病理特征的银屑病中,具有重要作用。
     目前,对于CRH和CRH-R1在银屑病皮损中的表达研究较少。本研究拟通过免疫组织化学和蛋白印迹方法观察慢性斑块型银屑病患者皮损、非皮损和正常对照皮肤组织中CRH和CRH-R1的表达情况,探讨皮肤中CRH和CRH-R1在银屑病发病机制中的作用。
     目的
     用免疫组织化学和蛋白印迹法检测慢性斑块型银屑病患者皮损、非皮损和正常对照皮肤组织中CRH和CRH-R1的表达情况,初步探讨皮肤中CRH和CRH-R1与银屑病的关系。
     方法
     1.标本来源
     26例银屑病患者均来自山东大学齐鲁医院皮肤科门诊就诊或者住院病人,所有病例均经临床确诊为慢性斑块型银屑病。所有患者近4周内未外用糖皮质激素、未接受糖皮质激素及其它免疫抑制剂系统治疗。取材部位:躯干部或四肢部位局麻下切取1.0 cm×0.5 cm大小皮损组织块,距皮损大于5 cm的未受累的部位切取1.0 cm×0.5 cm大小非皮损组织块。26例正常对照皮肤来自本院门诊手术和美容整形手术病例。
     2.免疫组织化学检测
     取银屑病患者皮损、非皮损以及正常对照皮肤组织进行CRH和CRH-R1免疫组织化学检测。用Image-Pro Plus 6图像分析软件(Media Cybemetics,USA)分析图像。抗CRH抗体(1:500;Chemicon International,Inc.,CA,USA),抗CRH-R1抗体(1:40;R&D Systems,Inc.,MN,USA)。
     3.蛋白印迹检测
     分别取银屑病患者皮损、非皮损以及正常对照皮肤组织提取总蛋白,经过SDS-聚丙烯酰胺凝胶电泳(SDS-PAGE)分离、转膜、蛋白印迹、显影、凝胶成像系统成像、Quantity One成像分析软件进行半定量分析等步骤,检测CRH和CRH-R1的表达。抗CRH抗体(1:2000;Chemicon International,Inc.,CA,USA),抗CRH-R1抗体(1:300;R&D Systems,Inc.,MN,USA)。
     结果
     1.银屑病患者皮损、非皮损及正常对照皮肤CRH表达的检测
     免疫组织化学染色分析:阳性表达为棕色颗粒。银屑病患者皮损、非皮损及正常对照皮肤标本均有CRH的阳性表达,主要集中在表皮层。Image-Pro Plus 6图像分析软件分析图像:CRH在银屑病皮损的表达明显低于非皮损和正常对照皮肤(P<0.01),CRH在银屑病非皮损和正常对照皮肤中的表达差别无统计学意义(P>0.05)。
     蛋白印迹检测结果表明:银屑病患者皮损、非皮损及正常对照皮肤均有CRH蛋白的表达。Quantity One成像分析软件进行半定量分析:银屑病患者皮损CRH水平较非皮损和正常对照皮肤显著降低(P<0.01),非皮损和正常对照皮肤中的表达差别无统计学意义(P>0.05)。
     2.银屑病患者皮损、非皮损及正常对照皮肤CRH-R1表达的检测结果
     免疫组织化学染色分析:阳性表达为棕色颗粒。银屑病患者皮损、非皮损及正常对照皮肤标本均有CRH-R1的阳性表达,主要集中在表皮层。Image-Pro Plus6图像分析软件分析图像:CRH-R1在银屑病皮损的表达明显低于非皮损和正常对照皮肤(P<0.01),CRH-R1在银屑病非皮损和正常对照皮肤中的表达差别无统计学意义(P>0.05)。
     蛋白印迹检测结果表明:银屑病患者皮损、非皮损及正常对照皮肤均有CRH-R1蛋白的表达。Quantity One成像分析软件进行半定量分析:银屑病患者皮损部位CRH-R1水平较非皮损部位和正常对照皮肤显著降低(P<0.01),非皮损部位皮肤和正常对照皮肤CRH-R1表达差别无统计学意义(P>0.05)。
     结论
     1.免疫组织化学和蛋白印迹检测发现银屑病患者皮损、非皮损及正常对照皮肤均有CRH和CRH-R1蛋白的表达;
     2.银屑病患者皮损中存在CRH和CRH-R1的异常表达:CRH和CRH-R1在银屑病患者皮损中的表达明显低于非皮损及正常对照皮肤,CRH和CRH-R1的表达在非皮损和正常对照组织中表达差别无统计学意义。
     第二部分促肾上腺皮质激素释放激素及其受体/MAPKs信号传导途径对角质形成细胞表达VEGF和IL-18的影响
     背景
     促肾上腺皮质激素释放激素(corticotropin-releasing hormone,CRH)由41个氨基酸组成,是下丘脑-垂体-肾上腺轴(hypothalamic-pituitary-adrenal axis,HPA axis)的重要组成成份。CRH通过其特定的CRH受体(CRH receptors,CRH-Rs)发挥作用。最近研究发现,CRH和CRH-Rs在皮肤中均有表达,在人的表皮和真皮中主要表达CRH受体1(CRH receptor1,CRH-R1)。
     我们在第一部分的研究中发现,慢性斑块型银屑病患者皮损中CRH和CRH-R1的表达均明显低于银屑病非皮损和正常对照皮肤,提示CRH和CRH-R1在银屑病患者皮损中存在异常表达。因此,我们设想CRH和CRH-R1在银屑病发病,特别是皮损形成过程中可能发挥了一定的作用。鉴于银屑病病理的主要特征是角质形成细胞(keratinocyte,KC)过度增殖、炎症细胞浸润、真皮浅层新血管形成,我们选择了血管内皮生长因子(vascular endothelial growth factor,VEGF)和白细胞介素-18(interleukin-18,IL-18)作为研究对象,观察CRH对人角质形成细胞株HaCaT细胞表达VEGF和IL-18的影响。
     VEGF是一组功能强大且能产生多种效应的细胞因子,在生理和病理状态下均具有刺激内皮细胞增殖,诱导新血管形成、增加血管通透性的作用。在正常皮肤中,VEGF主要由KC表达和分泌。研究发现,在慢性斑块型银屑病患者皮损和非皮损组织中KC过表达VEGF,而且转基因动物模型研究进一步表明VEGF可能在银屑病发病过程中起到重要作用。IL-18是白细胞介素-1(interleukin-1,IL-1)超家族的成员,在神经系统、内分泌系统和免疫系统间是一种重要的介质,是慢性炎症和自身免疫性疾病中自身免疫和获得性免疫的重要调节因子。近年来研究发现,KC来源的IL-18参与了银屑病皮损局部的T辅助细胞1(T Helper 1,Th1)免疫反应的发生,其活性受到皮肤炎症反应的调节,在炎症反应中具有重要作用。
     目前,CRH对KC表达VEGF的影响尚未见报道。因此,我们选择HaCaT细胞作为体外研究对象,探讨CRH对其分泌VEGF和IL-18的影响,并且选择了普遍存在于真核细胞中的丝裂原活化蛋白激酶(mitogen-activated proteinkinases,MAPKs)信号途径来研究其的可能作用机制。MAPKs是一类高度保守的丝氨酸(Ser)/苏氨酸(Thr)蛋白激酶,能将多种细胞外刺激产生的信号通过级联反应从细胞膜传递到细胞核内,在细胞增殖、分化、凋亡、应激、炎症以及免疫反应等多种生理和病理过程发挥着极其重要的作用。MAPKs主要包括3个经典的亚家族途径,即细胞外调节激酶1/2(extracellular signal-regulated kinase1/2,ERK1/2),p38 MAPK(p38 mitogen-activated protein kinase,p38 MAPK)和c-Jun氨基末端激酶(c-Jun amino-terminal kinases,JNK)。
     本研究拟在体外培养的HaCaT细胞中,以主要由KC细胞分泌的VEGF和IL-18为主要指标,观察CRH对KC表达VEGF和IL-18的影响及其可能的细胞内信号传导机制。
     目的
     1.观察CRH对HaCaT细胞表达VEGF和IL-18的影响;
     2.探讨MAPKs信号传导途径在CRH对HaCaT细胞表达VEGF和IL-18调控中的作用。
     方法
     1.HaCaT细胞的培养
     永生化的角质形成细胞株HaCaT细胞用含10%FBS的DMEM置于37℃、5%CO_2培养箱中进行培养。
     2.实验设计
     (1)根据参考文献选择100 nM CRH孵育HaCaT细胞,不同时间点收集细胞,测定VEGF和IL-18 mRNA及蛋白的表达;
     (2)HaCaT细胞给予不同浓度CRH孵育,测定VEGF和IL-18 mRNA及蛋白的表达;
     (3)HaCaT细胞分别经CRH-R1拮抗剂antalarmin、ERK1/2阻断剂PD98059、p38 MAPK阻断剂SB203580、JNK1/2阻断剂SP6001259预处理1 h后,给予100 nM CRH孵育,测定HaCaT细胞VEGF和IL-18 mRNA及蛋白的表达;
     (4)HaCaT细胞给予100 nM CRH孵育,检测ERK1/2、p38 MAPK和JNK1/2的磷酸化;
     (5)HaCaT细胞经CRH-R1拮抗剂antalarmin、ERK1/2阻断剂PD98059、p38 MAPK阻断剂SB203580、JNK1/2阻断剂SP6001259预处理1 h后,给予CRH孵育,测定ERK1/2、p38 MAPK、JNK1/2磷酸化改变。
     3.实验方法
     3.1.实时荧光定量聚合酶链式反应(real-time RT-PCR)检测VEGF和IL-18 mRNA的表达
     将所收集的细胞提取总RNA,经逆转录反应得到cDNA,以管家基因β-actin作为参照,通过real-time RT-PCR技术检测VEGF和IL-18 mRNA的表达。
     3.2.双抗体夹心ELISA法检测VEGF和IL-18蛋白表达
     将所收集的细胞培养上清进行孵育、酶反应、显色等步骤,酶联免疫检测仪450nm处测量各孔吸光值,根据标准曲线计算出相应浓度。
     3.3.Western blot检测ERK1/2、p38 MAPK、JNK1/2蛋白表达
     将所收集的细胞提取总蛋白,经过SDS-聚丙烯酰胺凝胶电泳(SDS-PAGE)分离、转膜、蛋白印迹、显色、凝胶成像系统成像、Quantity One成像分析软件进行半定量分析,检测ERK1/2、p38 MAPK、JNK1/2蛋白的表达。
     结果
     1.CRH对HaCaT细胞表达VEGF的影响
     1.1.不同时间点100 nM CRH对HaCaT细胞VEGF mRNA表达的影响
     100 nM CRH在一定范围内时间依赖性降低VEGF mRNA表达,与正常对照组比较差异有统计学意义(P<0.05),其中100 nM CRH孵育4 h时VEGF mRNA表达量最低。
     1.2.不同浓度的CRH对HaCaT细胞VEGF mRNA表达和VEGF蛋白分泌的影响
     CRH浓度依赖性降低VEGF mRNA和蛋白表达,与正常对照组比较差异有统计学意义(P<0.05),其中CRH浓度为100 nM时VEGF mRNA和蛋白表达量最低。
     1.3.CRH-R1拮抗剂antalarmin、ERK1/2阻断剂PD98059、p38 MAPK阻断剂SB203580、JNK1/2阻断剂SP6001259对CRH刺激的HaCaT细胞VEGFmRNA表达和VEGF蛋白的分泌影响
     CRH-R1拮抗剂antalarmin预处理后,CRH诱导的HaCaT细胞VEGF mRNA及蛋白表达均明显高于单纯CRH孵育组(P<0.01)。p38 MAPK阻断剂SB203580预处理组或JNK1/2阻断剂SP600125预处理组CRH诱导的HaCaT细胞VEGFmRNA及蛋白的表达均明显高于单纯CRH孵育组(P<0.01);ERK1/2阻断剂PD98059预处理组VEGF mRNA及蛋白表达与单纯CRH孵育组无明显差别(P>0.05)。
     1.4.MAPKs信号途径在CRH降低HaCaT细胞表达VEGF中的作用
     1.4.1.CRH对HaCaT细胞p38 MAPK、JNK1/2磷酸化的影响
     100 nM CRH能促进p38 MAPK和JNK1/2磷酸化。p-p38 MAPK和p-JNK1/2蛋白表达于5min达到高峰后逐渐减弱(P<0.05);T-p38 MAPK、T-JNK1/2蛋白表达各组之间差异无统计学意义(P>0.05)。
     1.4.2.CRH-R1拮抗剂antalarmin、p38 MAPK阻断剂SB203580、JNK1/2阻断剂SP600125对CRH诱导HaCaT细胞p38 MAPK、JNK1/2磷酸化的影响
     CRH-R1拮抗剂antalarmin预处理组p-p38 MAPK和p-JNK1/2表达均明显低于单纯CRH孵育组(P<0.05);p38 MAPK阻断剂SB203580预处理组p-p38MAPK明显低于单纯CRH孵育组(P<0.05);JNK1/2阻断剂SP600125预处理组p-JNK1/2表达也明显低于单纯CRH孵育组(P<0.05)。
     2.CRH对HaCaT细胞表达IL-18的影响
     2.1.不同时间点100 nM CRH对HaCaT细胞IL-18 mRNA表达的影响
     100 nM CRH在一定范围内呈时间依赖性降低IL-18 mRNA表达,与正常对照组比较差异有统计学意义(P<0.05),其中100nM CRH孵育4h时IL-18 mRNA表达量最低。
     2.2.不同浓度CRH对HaCaT细胞IL-18 mRNA表达和IL-18蛋白分泌的影响
     CRH浓度依赖性降低IL-18 mRNA和蛋白表达,与正常对照组比较差异有统计学意义(P<0.05),其中CRH浓度为100 nM时IL-18的表达最低。
     2.3.CRH-R1拮抗剂antalarmin、ERK1/2阻断剂PD98059、p38 MAPK阻断剂SB203580、JNK1/2阻断剂SP600125对CRH刺激的HaCaT细胞IL-18mRNA表达和IL-18蛋白的分泌影响
     CRH-R1拮抗剂antalarmin预处理后,CRH诱导的HaCaT细胞IL-18 mRNA及蛋白表达均明显高于单纯CRH孵育组(P<0.05)。ERK1/2阻断剂PD98059预处理、p38 MAPK阻断剂SB203580预处理、JNK1/2阻断剂SP600125预处理后CRH诱导的HaCaT细胞IL-18 mRNA及蛋白的表达均明显高于单纯CRH孵育组(P均<0.05)。
     2.4.MAPKs信号途径在CRH降低HaCaT细胞表达IL-18中的作用
     2.4.1.CRH对HaCaT细胞ERK1/2、p38 MAPK、JNK1/2磷酸化的影响
     100 nM CRH能够促进ERK1/2、p38 MAPK和JNK1/2磷酸化。p-ERK1/2蛋白5min开始逐渐增强,10min达高峰后逐渐减弱(P<0.05);p-p38 MAPK和p-JNK1/2蛋白表达于5min达到高峰后逐渐减弱(P均<0.05)。T-ERK1/2、T-p38MAPK、T-JNK1/2蛋白表达各组之间差异无统计学意义(P>0.05)。
     2.4.2.CRH-R1拮抗剂antalarmin、ERK1/2阻断剂PD98059、p38 MAPK阻断剂SB203580和JNK1/2阻断剂SP600125对CRH诱导HaCaT细胞ERK1/2、p38 MAPK、JNK1/2磷酸化的影响
     CRH-R1拮抗剂antalarmin预处理组p-ERK1/2、p-p38 MAPK和p-JNK1/2表达均明显低于单纯CRH孵育组(P均<0.05);ERK1/2阻断剂PD98059预处理组p-ERK1/2表达明显低于单纯CRH孵育组(P<0.05);p38 MAPK阻断剂SB203580预处理组p-p38 MAPK明显低于单纯CRH孵育组(P<0.05);JNK1/2阻断剂SP600125预处理组p-JNK1/2表达明显低于单纯CRH孵育组(P<0.05)。
     结论
     1.CRH抑制HaCaT细胞VEGF和IL-18 mRNA和蛋白的表达;
     2.CRH能够活化HaCaT细胞ERK1/2、p38 MAPK、JNK1/2信号途径,CRH-R1参与了CRH对ERK1/2、p38 MAPK、JNK1/2信号途径的活化;
     3.CRH-R1和p38 MAPK、JNK1/2信号途径参与了CRH对HaCaT细胞VEGFmRNA和蛋白表达的抑制作用;
     4.CRH-R1和ERK1/2、p38 MAPK、JNK1/2信号途径参与了CRH对HaCaT细胞IL-18 mRNA和蛋白表达的抑制作用。
PART ONE Expression of corticotropin-releasing hormone and receptor1 in chronic plaque psoriasis
     Background
     Psoriasis is a chronic inflammatory disease characterized by epidermal keratinocytic hyperproliferation and abnormal differentiation.It is one of the most illustrative examples of the close relation between exacerbation of disease and the psychopathologic burden of patients.Many clinical observations of plaque symmetry and stress-induced onset and/or exacerbation suggest an important role of the nervous system in the pathologic features of psoriasis.However,the mechanism remains poorly understood.
     Corticotrophin-releasing hormone(CRH) is a central component of the hypothalamic-pituitary-adrenal(HPA) axis and is an important coordinator of the systemic stress response.Typically,in response to systemic stress,CRH released from the hypothalamus regulates the HPA axis by stimulating the pituitary CRH receptor (CRH-R).Activated CRH-R further stimulates signal transduction pathways that enhance the production and secretion of proopiomelanocortin(POMC)-derived peptides,including adrenocorticotropic hormone(ACTH),α-melanocyte stimulating hormone(α-MSH) andβ-endorphin(β-END).
     In recent years,evidence has suggested that endocrine stress responses under control of the central nervous system also occur in peripheral tissue,outside of the classical HPA axis.CRH and CRH-R gene expression has been found in rodent and human skin.The existence of CRH produced peripherally and other HPA axis components such as POMC,ACTH,α-MSH,andβ-END at extracranial sites including skin suggests the existence of local HPA systems.Research has indicated that peripheral CRH is synthesized by cutaneous cells and immune cells in human skin.Moreover,CRH and POMC-derived peptides are produced locally in the skin and are regulated by infiltrating inflammatory cells,as well as by autocrine mechanisms.
     In peripheral sites,cutaneous CRH is believed to regulate various functions of the skin that are important for local homeostasis.These findings have shed new light on the role of CRH/CRH-R in peripheral cutaneous diseases,especially psoriasis, which is characterized by impaired keratinocyte differentiation and proliferation.
     Objective
     In the present study,we investigated by immunohistochemistry and western blot the expression of CRH and CRH-R1 in the lesions of chronic plaque psoriasis,as well as in perilesional skin and normal control skin,to explore the role of cutaneous CRH/CRH-R1 in the pathogenic mechanism associated with psoriasis.
     Materials and methods
     1.Tissue samples
     All patients(n=26;mean age=32±12 years) with dermatologist-confirmed diagnosis of chronic plaque psoriasis were recruited from outpatients and inpatients at Qilu Hospital.The mean course of psoriasis was 58±102 months.Age-matched healthy individuals(n=26,mean age=31±7 years) undergoing cosmetic surgery were used as controls.Subjects were excluded if they had chronic diseases.None of the patients was under any regular systemic therapy,including PUVA,cyclosporine, cyclophosphamide,methotrexate,or topical steroids for psoriasis,for at least 4 weeks before the study.Patients underwent clinical assessment,and skin biopsies were taken from the middle of plaques and perilesional skin at least 5 cm away from psoriatic lesions in the arm,tight,back or buttock.
     2.Immunohistochemistry
     For CRH and CRH-R1 immunostaining,sections were incubated overnight at 4℃in a wet box with the following primary antibodies diluted in PBS:rabbit polyclonal anti-corticotropin releasing hormone antibody(1:500;Chemicon International,Inc.,CA,USA) and mouse monoclonal anti-human CRH-R1 antibody (1:40;R&D Systems,Inc.,MN,USA).Negative control sections were treated identically,except the primary antibody was substituted with isotype-matched non-specific negative-control antibodies for rabbit IgG(Neomarkers,Inc.,Fremont, CA) and mouse IgG(Abcam,Cambridge,UK).The expression and localization of CRH and CRH-R1 in psoriatic lesions compared with those in perilesional skin and normal control skin.Image-Pro Plus 6 software(Media Cybernetics,USA) was used for image analysis.
     3.Western blot
     The expression of CRH and CRH-R1 were detected by western blot analysis in psoriatic lesions,perilesional skin and normal control skin.Equal protein loading was confirmed by assessing the protein level ofβ-actin.CRH(1:2000;Chemicon International,Inc.,CA,USA);CRH-R1(1:300;R&D Systems,Inc.,MN,USA); humanβ-actin(1:5000;Santa Cruz,CA).The images were recorded by use of FluorChem9900(Alpha Innotech,CA,USA) and analyzed with use of Quantity One software(Bio-Rad Laboratories,Hercules,CA).
     Results
     1.Expression of CRH in psoriatic lesions,perilesional skin and normal control skin
     Immunostaining revealed CRH localized in psoriatic lesions,perilesional and normal control skin.CRH expression was significantly lower in psoriatic lesions than in perilesional and normal skin,with no difference in CRH expression between psoriatic perilesional skin and normal control skin.
     Western blot showed all skin specimens were positive for CRH.There was a significant decrease in the expression of CRH in psoriatic lesions compared with psoriatic perilesional skin and normal control skin,no significant change in psoriatic perilesional skin and normal control skin.
     2.Expression of CRH-R1 in psoriatic lesions,perilesional skin and normal control skin
     Immunostaining found that CRH-R1 localized in psoriatic lesions,perilesional and normal control skin.CRH-R1 expression was lower in psoriatic lesions than in perilesional and normal control skin,with no difference in CRH-R1 expression between psoriatic perilesional skin and normal control skin.
     Western blot showed that all skin specimens were positive for CRH-R1.There was a significant decrease in the expression of CRH-R1 in psoriatic lesions compared with psoriatic perilesional skin and normal control skin,no significant change in psoriatic perilesional skin and normal control skin.
     Conclusions
     1.Immunohistochemistry and western blot revealed that all skin specimens were positive for CRH and CRH-R1,including psoriatic lesions,perilesional skin and normal control skin.
     2.An aberrant cutaneous CRH/CRH-R1 system may exist in chronic plaque psoriasis.There was a significant decrease in the expression of CRH and CRH-R1 in psoriatic lesions compared with psoriatic perilesional skin and normal control skin,no significant change in psoriatic perilesional skin and normal control skin.
     PART TWO Corticotropin-releasing hormone attenuates vascular endothelial growth factor and interleukin-18 release from human HaCaT keratinocytes via the mitogen-activated protein kinases pathway
     Background
     Corticotropin-releasing hormone(CRH),a 41-amino acid neuropeptide,is produced mainly in the hypothalamus and regulates endocrine and behavioral responses to stress through the activation of the hypothalamic-pituitary-adrenal(HPA) axis.CRH exerts its actions via interaction with specific CRH receptors(CRH-Rs). Recent research has indicated that CRH and CRH-Rs are expressed and have functions in the skin,in human skin;CRH-R1 is the major receptor in epidermis and dermis.
     In part one,our research found that lesions from patients with chronic plaque psoriasis showed significantly lower CRH and CRH-R1 expressions compared with psoriatic perilesional skin and normal control skin.The results suggested that an aberrant cutaneous CRH/CRH-R1 system may play a role in the pathogenesis of chronic plaque psoriasis,especially the formation of plaque.
     Psoriasis is a chronic inflammatory disease characterized by erythematous plaques with silvery scales.Psoriatic lesions exhibit proliferation of epidermal keratinocytes,inflammatory cell infiltration,and increased angiogenesis of the superficial dermal vessels.So we choose vascular endothelial growth factor(VEGF) and interleukin-18(IL-18) as objects to study the effect of CRH and its receptor CRH-R1 on the expression of VEGF and IL-18 in a human keratinocyte cell line, HaCaT.
     The prominence of dermal microvascular expansion in the psoriatic lesion demonstrates that psoriasis is an angiogenesis-dependent disease.VEGF is a crucial regulator of angiogenesis and vascular permeability in both physiological and pathological conditions such as tumor growth and chronic inflammation.VEGF is expressed and secreted by epidermal keratinocytes in normal human skin. Keratinocytes overexpress VEGF in clinically involved and uninvolved skin of patients with chronic plaque psoriasis.In transgenic mice with epidermis-specific overexpression of VEGF and enhanced skin vascularity and vascular permeability; chronic transgenic delivery of VEGF to the skin induced inflammation and all characteristics of psoriasis spontaneously,and the VEGF antagonist reversed the phenotype.These findings suggested a causative role of VEGF in the pathogenesis of psoriasis.IL-18,a member of the IL-1 cytokine superfamily which shares structural features with IL-1βand functions primarily as an IFN-γinducer and promoter of Th1 responses in T cells,is now recognized as an important regulator of innate and acquired immune responses which is expressed at sites of chronic inflammation and in autoimmune diseases.IL-18 might be an important mediator in the communication between the nervous,the endocrine and the immune systems.Recent works have demonstrated that human keratinocyte-derived IL-18 participates in the development of the Th1 response in psoriatic lesions,and its bioactivity appears to be tightly regulated in cutaneous inflammation.IL-18 secreted by keratinocytes might play an important role in cutaneous inflammatory response,especially in Th1-mediated inflammatory diseases such as psoriasis.
     However,little is known about the exact role of CRH in skin.We hypothesized that CRH may modulate VEGF and IL-18 expression.We examined whether this effect functioned via the mitogen-activated protein kinases(MAPKs) signal transduction pathway,particularly p38 mitogen-activated protein kinase(p38 MAPK), extracellular signal-regulated protein kinase 1/2(ERK1/2) and c-Jun N-terminal kinase(JNK).
     In light of this,we performed a study to investigate the effect of CRH on the expression of VEGF and IL-18 on HaCaT cells,and examine whether this effect functioned via MAPKs signal transduction pathway.
     Objective
     1.Investigate the effect of CRH on the expression of VEGF and IL-18 on HaCaT cells;
     2.Examine whether the effect of CRH on the expression of VEGF and IL-18 functioned via MAPKs signal transduction pathway.
     Materials and methods
     1.Cell culture
     The immortalized human HaCaT keratinocytes were maintained at 37℃and 5% carbon dioxide(CO_2) in Dulbecco's Modified Eagle's Medium(DMEM) supplemented with 10%heat-inactivated fetal bovine serum,100 U/ml penicillin and 100μg/ml streptomycin.
     2.Cell pretreatment
     HaCaT cells were seeded at density 4×10~4 cells/ml,grown for 48 h until 70% confluence.The cells were pretreated with 10μM antalarmin,10μM PD98059,10μM SB203580,or 10μM SP600125 respectively and incubated for 1 h before application of CRH.
     3.Methods
     3.1.Real-time RT-PCR
     After the experimental treatment,the total RNA was extracted from HaCaT cells. The reverse transcription of RNA to cDNA was performed,cDNA were amplified with real-time RT-PCR.VEGF mRNA and IL-18 mRNA expression were normalized to the expressed housekeeping gene humanβ-actin.Samples were tested in triplicate and the average values were used for quantification.
     3.2.ELISA
     After stimulation for 24 h,culture supernatants of cells were collected, centrifuged(15 000 rpm,5 min) and stored at -80℃until analysis.The concentrations of VEGF and IL-18 in the culture supernatant were measured by commercially available enzyme linked immunosorbent assay(ELISA) kits according to manufacturer's instructions.Each supernatant was analyzed in triplicate.
     3.3.Western blot
     The phosphorylation of ERK1/2,p38 MAPK,and JNK1/2 were detected by western blot analysis,antalarmin and all kinds of inhibitors were used to block MAPKs pathway.Densitometric analysis of the band intensity was carried out using Quantity One software(Bio-Rad Laboratories,Hercules,CA).
     Results
     1.CRH attenuated VEGF release in HaCaT cells via the MAPKs pathway
     1.1.Effect of 100 nM CRH on VEGF production in HaCaT cells
     VEGF mRNA expression and its production were significantly downregulated by 100 nM CRH in a time-dependent manner.
     1.2.Effect of CRH on VEGF production in HaCaT cells
     VEGF mRNA expression and its production were significantly downregulated by CRH in a dose-dependent manner.
     1.3.CRH-R1 and MAPKs signaling pathway were involved in VEGF production
     CRH downregulated VEGF mRNA and protein expression in HaCaT cells by CRH-R1 through p38 MAPK and JNK1/2 pathways,except ERK1/2.
     1.4.The role of MAPKs pathway in the effect of CRH in HaCaT cells
     1.4.1.CRH activated p38 MAPK and JNK1/2 phosphorylation in HaCaT cells
     CRH induced a rapid phosphorylation of p38 MAPK and JNK1/2,with a peak at 5 min,and CRH-R1 was involved in CRH-induced phosphorylation of p38 MAPK and JNK1/2.
     1.4.2.The effect of CRH-R1 antagonist antalarmin,p38 MAPK inhibitor SB203580,JNK1/2 inhibitor SP600125 on phosphorylation of p38 MAPK and JNK1/2 induced by CRH in HaCaT ceils
     Pretreating HaCaT cells with the p38 MAPK inhibitor SB203580,the JNK1/2 inhibitor SP600125 or the CRH-R1 antagonist antalarmin significantly inhibited the CRH-induced phosphorylation of p38 MAPK and JNK1/2.These data indicated that CRH activated p38 MAPK and JNK1/2 phosphorylation in HaCaT cells,and CRH-R1 was involved in the CRH-induced phosphorylation of p38 MAPK and JNK1/2.
     2.CRH attenuated IL-18 release in HaCaT cells via the MAPKs pathway
     2.1.Effect of 100 nM CRH on IL-18 production in HaCaT cells
     IL-18 mRNA expression and its production were significantly downregulated by 100 nM CRH in a time-dependent manner.
     2.2.Effect of CRH on IL-18 production in HaCaT cells
     IL-18 mRNA expression and its production were significantly downregulated by CRH in a dose-dependent manner.
     2.3.CRH-R1 and MAPKs signaling pathway were involved in IL-18 production
     CRH downregulated IL-18 expression in HaCaT cells by CRH-R1 through ERK1/2,p38 MAPK and JNK1/2 pathways.
     2.4.The role of MAPKs pathway in the effect of CRH in HaCaT cells
     2.4.1.CRH activated ERK1/2,p38 MAPK and JNK1/2 phosphorylation in HaCaT cells
     CRH induced a rapid phosphorylation of ERK1/2 with a peak at 10 min;CRH induced a rapid phosphorylation of p38 MAPK and JNK1/2,with a peak at 5 min,and CRH-R1 was involved in CRH-induced phosphorylation of ERK1/2,p38 MAPK and JNK1/2.
     2.4.2.The effect of CRH-R1 antagonist antalarmin,ERK1/2 inhibitor PD98059,p38 MAPK inhibitor SB203580,JNK1/2 inhibitor SP600125 on phosphorylation of p38 MAPK and JNK1/2 induced by CRH in HaCaT cells
     Pretreating HaCaT cells with the CRH-R1 antagonist antalarmin,the ERK1/2 inhibitor PD98059,the p38 MAPK inhibitor SB203580,the JNK1/2 inhibitor SP600125 significantly inhibited the CRH-induced phosphorylation of ERK1/2,p38 MAPK and JNK1/2.These data indicated that CRH activated ERK1/2,p38 MAPK and JNK1/2 phosphorylation in HaCaT cells,and CRH-R1 was involved in the CRH-induced phosphorylation of ERK1/2,p38 MAPK and JNK1/2.
     Conclusions
     1.VEGF and IL-18 mRNA expression and protein production were significantly downregulated by CRH.
     2.CRH activated ERK1/2,p38 MAPK and JNK1/2 phosphorylation in HaCaT cells,and CRH-R1 was involved in CRH-induced phosphorylation of ERK1/2,p38 MAPK and JNK1/2.
     3.CRH downregulated VEGF expression in HaCaT cells by CRH-R1 through p38 MAPK and JNK1/2 pathways.
     4.CRH downregulated IL-18 expression in HaCaT cells by CRH-R1 through ERK1/2,p38 MAPK,JNK1/2 pathways.
引文
1. Abdou AG, Hanout HM. Evaluation of Survivin and NF-kappaB in psoriasis, an immunohistochemical study. J Cutan Pathol. May 2008;35(5):445-451.
    
    2. Gupta MA, Gupta AK. Psychiatric and psychological co-morbidity in patients with dermatologic disorders: epidemiology and management. Am J Clin Dermatol. 2003;4(12):833-842.
    
    3. Saraceno R, Kleyn CE, Terenghi G,Griffiths CE. The role of neuropeptides in psoriasis. Br J Dermatol. Nov 2006;155(5):876-882.
    
    4. Seung NR, Park EJ, Kim CW, et al. Comparison of expression of heat-shock protein 60, Toll-like receptors 2 and 4, and T-cell receptor gammadelta in plaque and guttate psoriasis. J Cutan Pathol. Dec 2007;34(12):903-911.
    
    5. Brazzini B, Ghersetich I, Hercogova J, Lotti T. The neuro-immuno-cutaneous-endocrine network: relationship between mind and skin. Dermatol Ther. 2003;16(2): 123-131.
    
    6. O'Sullivan RL, Lipper G, Lerner EA. The neuro-immuno-cutaneous-endocrine network: relationship of mind and skin. Arch Dermatol. Nov 1998;134(11):1431-1435.
    
    7. Chrousos GP, Gold PW. The concepts of stress and stress system disorders. Overview of physical and behavioral homeostasis. JAMA. Mar 4 1992;267(9):1244-1252.
    
    8. Tsigos C, Chrousos GP. Hypothalamic-pituitary-adrenal axis, neuroendocrine factors and stress. J Psychosom Res. Oct 2002;53(4):865-871.
    
    9. Chrousos GP. The hypothalamic-pituitary-adrenal axis and immune-mediated inflammation. N Engl J Med. May 18 1995;332(20):1351-1362.
    
    10. Hillhouse EW, Grammatopoulos DK. The molecular mechanisms underlying the regulation of the biological activity of corticotropin-releasing hormone receptors: implications for physiology and pathophysiology. Endocr Rev. May 2006;27(3):260-286.
    
    11. Kono M, Nagata H, Umemura S, Kawana S, Osamura RY. In situ expression of corticotropin-releasing hormone (CRH) and proopiomelanocortin (POMC) genes in human skin. FasebJ. Oct 2001; 15( 12):2297-2299.
    
    12. Slominski A, Wortsman J, Pisarchik A, et al. Cutaneous expression of corticotropin-releasing hormone (CRH), urocortin, and CRH receptors. Faseb J. Aug 2001;15(10):1678-1693.
    
    13. Slominski AT, Botchkarev V, Choudhry M, et al. Cutaneous expression of CRH and CRH-R. Is there a "skin stress response system?" Ann N Y Acad Sci. Oct 20 1999;885:287-311.
    
    14. Slominski A, Wortsman J, Tuckey RC, Paus R. Differential expression of HPA axis homolog in the skin. Mol Cell Endocrinol. Feb 2007;265-266:143-149.
    
    15. Slominski A, Mihm MC. Potential mechanism of skin response to stress. Int J Dermatol. Dec 1996;35(12):849-851.
    
    16. Slominski A, Zbytek B, Zmijewski M, et al. Corticotropin releasing hormone and the skin. Front Biosci. 2006; 11:2230-2248.
    
    17. Slominski A, Wortsman J. Neuroendocrinology of the skin. Endocr Rev. Oct 2000;21(5):457-487.
    
    18. Karalis K, Muglia LJ, Bae D, Hilderbrand H, Majzoub JA. CRH and the immune system. J Neuroimmunol. Feb 1997;72(2): 131-136.
    
    19. Kempuraj D, Papadopoulou NG, Lytinas M, et al. Corticotropin-releasing hormone and its structurally related urocortin are synthesized and secreted by human mast cells. Endocrinology. Jan 2004;145(1):43-48.
    
    20. Slominski A, Ermak G, Mazurkiewicz JE, Baker J, Wortsman J. Characterization of corticotropin-releasing hormone (CRH) in human skin. J Clin Endocrinol Metab. Mar 1998;83(3):1020-1024.
    
    21. Arck PC, Slominski A, Theoharides TC, Peters EM, Paus R. Neuroimmunology of stress: skin takes center stage. J Invest Dermatol. Aug 2006;126(8):1697-1704.
    
    22. Ziegler CG, Krug AW, Zouboulis CC, Bornstein SR. Corticotropin releasing hormone and its function in the skin. Horm Metab Res. Feb 2007;39(2):106-109.
    23. Blalock JE, Harbour-McMenamin D, Smith EM. Peptide hormones shared by the neuroendocrine and immunologic systems. J Immunol. Vol 135; 1985:858s-861s.
    
    24. Dhabhar FS. Stress, leukocyte trafficking, and the augmentation of skin immune function. Ann N Y Acad Sci. May 2003;992:205-217.
    
    25. Steinhoff M, Stander S, Seeliger S, Ansel JC, Schmelz M, Luger T. Modern aspects of cutaneous neurogenic inflammation. Arch Dermatol. Nov 2003;139(11):1479-1488.
    
    26. Scholzen T, Armstrong CA, Bunnett NW, Luger TA, Olerud JE, Ansel JC. Neuropeptides in the skin: interactions between the neuroendocrine and the skin immune systems. Exp Dermatol. Apr-Jun 1998;7(2-3):81 -96.
    
    27. Smith EM. Neuropeptides as signal molecules in common with leukocytes and the hypothalamic-pituitary-adrenal axis. Brain Behav Immun. Jan 2008;22(1):3-14.
    
    28. Ansel JC, Kaynard AH, Armstrong CA, Olerud J, Bunnett N, Payan D. Skin-nervous system interactions. J Invest Dermatol. Jan 1996;106(1):198-204.
    
    29. Vale W, Vaughan J, Yamamoto G, et al. Assay of corticotropin releasing factor. Methods Enzymol. 1983;103:565-577.
    
    30. Vale W, Rivier C, Brown MR, et al. Chemical and biological characterization of corticotropin releasing factor. Recent Prog Horm Res. 1983;39:245-270.
    
    31. Orth DN. Corticotropin-releasing hormone in humans. Endocr Rev. May 1992;13(2):164-191.
    
    32. Owens MJ, Nemeroff CB. Physiology and pharmacology of corticotropin-releasing factor. Pharmacol Rev. Dec 1991;43(4):425-473.
    
    33. Shibahara S, Morimoto Y, Furutani Y, et al. Isolation and sequence analysis of the human corticotropin-releasing factor precursor gene. Embo J. 1983;2(5):775-779.
    
    34. Thompson RC, Seasholtz AF, Herbert E. Rat corticotropin-releasing hormone gene: sequence and tissue-specific expression. Mol Endocrinol. May 1987;1(5):363-370.
    
    35. Pisarchik A, Slominski A. Molecular and functional characterization of novel CRFR1 isoforms from the skin. Eur J Biochem. Jul 2004;271(13):2821-2830.
    
    36. Arai M, Assil IQ, Abou-Samra AB. Characterization of three corticotropin-releasing factor receptors in catfish: a novel third receptor is predominantly expressed in pituitary and urophysis. Endocrinology. Jan 2001;142(1):446-454.
    
    37. Chen R, Lewis KA, Perrin MH, Vale WW. Expression cloning of a human corticotropin-releasing-factor receptor. Proc Natl Acad Sci U S A. Oct 1 1993;90(19):8967-8971.
    
    38. Liaw CW, Lovenberg TW, Barry G, Oltersdorf T, Grigoriadis DE, de Souza EB. Cloning and characterization of the human corticotropin-releasing factor-2 receptor complementary deoxyribonucleic acid. Endocrinology. Jan 1996;137(1):72-77.
    
    39. Lovenberg TW, Liaw CW, Grigoriadis DE, et al. Cloning and characterization of a functionally distinct corticotropin-releasing factor receptor subtype from rat brain. Proc Natl Acad Sci USA. Jan 31 1995;92(3):836-840.
    
    40. Vita N, Laurent P, Lefort S, et al. Primary structure and functional expression of mouse pituitary and human brain corticotrophin releasing factor receptors. FEBS Lett. Nov 29 1993;335(1):l-5.
    
    41. Kostic TS, Andric SA, Stojilkovic SS. Spontaneous and receptor-controlled soluble guanylyl cyclase activity in anterior pituitary cells. Mol Endocrinol. Jun2001;15(6):1010-1022.
    
    42. Aggelidou E, Hillhouse EW, Grammatopoulos DK. Up-regulation of nitric oxide synthase and modulation of the guanylate cyclase activity by corticotropin-releasing hormone but not urocortin II or urocortin III in cultured human pregnant myometrial cells. Proc Natl Acad Sci U S A. Mar 5 2002;99(5):3300-3305.
    
    43. Slominski A, Wortsman J, Luger T, Paus R, Solomon S. Corticotropin releasing hormone and proopiomelanocortin involvement in the cutaneous response to stress.Physiol Rev.Jul 2000;80(3):979-1020.
    44.Wiesner B,Roloff B,Fechner K,Slominski A.Intracellular calcium measurements of single human skin cells after stimulation with corticotropin-releasing factor and urocortin using confocal laser scanning microscopy.J Cell Sci.Apr 1 2003;116(Pt 7):1261-1268.
    45.Fazal N,Slominski A,Choudhry MA,Wei ET,Sayeed MM.Effect of CRF and related peptides on calcium signaling in human and rodent melanoma cells.FEBS Lett.Sep 18 1998;435(2-3):187-190.
    46.Seasholtz AF,Valverde RA,Denver RJ.Corticotropin-releasing hormone-binding protein:biochemistry and function from fishes to mammals.J Endocrinol.Oct 2002;175(1):89-97.
    47.Potter E,Behan DP,Fischer WH,Linton EA,Lowry PJ,Vale WW.Cloning and characterization of the cDNAs for human and rat corticotropin releasing factor-binding proteins.Nature.Jan 31 1991;349(6308):423-426.
    48.Zouboulis CC.The human skin as a hormone target and an endocrine gland.Hormones(Athens).Jan-Mar 2004;3(1):9-26.
    49.Slominski AT,Roloff B,Zbytek B,et al.Corticotropin releasing hormone and related peptides can act as bioregulatory factors in human keratinocytes.In Vitro Cell Dev Biol Anim.Mar 2000;36(3):211-216.
    50.Slominski A,Pisarchik A,Tobin DJ,Mazurkiewicz JE,Wortsman J.Differential expression of a cutaneous corticotropin-releasing hormone system.Endocrinology.Feb 2004;145(2):941-950.
    51.Slominski A,Zbytek B,Pisarchik A,Slominski RM,Zmijewski MA,Wortsman J.CRH functions as a growth factor/cytokine in the skin.J Cell Physiol.Mar 2006;206(3):780-791.
    52.Zbytek B,Wortsman J,Slominski A.Characterization of a ultraviolet B-induced corticotropin-releasing hormone-proopiomelanocortin system in human melanocytes.Mol Endocrinol.Oct 2006;20(10):2539-2547.
    53.Slominski A.Neuroendocrine system of the skin.Dermatology.2005;211(3):199-208.
    54. Zbytek B, Slominski AT. Corticotropin-releasing hormone induces keratinocyte differentiation in the adult human epidermis. J Cell Physiol. Apr 2005;203(1):118-126.
    
    55. Kavelaars A, Berkenbosch F, Croiset G, Ballieux RE, Heijnen CJ. Induction of beta-endorphin secretion by lymphocytes after subcutaneous administration of corticotropin-releasing factor. Endocrinology. Feb 1990;126(2):759-764.
    
    56. Karalis KP, Kontopoulos E, Muglia LJ, Majzoub JA. Corticotropin-releasing hormone deficiency unmasks the proinflammatory effect of epinephrine. Proc Natl Acad Sci U S A. Jun 8 1999;96(12):7093-7097.
    
    57. Turnbull AV, Vale W, Rivier C. Urocortin, a corticotropin-releasing factor-related mammalian peptide, inhibits edema due to thermal injury in rats. Eur J Pharmacol. May 15 1996;303(3):213-216.
    
    58. Correa SG, Riera CM, Spiess J, Bianco ID. Modulation of the inflammatory response by corticotropin-releasing factor. Eur J Pharmacol. Jan 14 1997;319(1):85-90.
    
    59. Thomas HA, Ling N, Wei ET. CRF and related peptides as anti-inflammatory agonists. Ann N Y Acad Sci. Oct 29 1993;697:219-228.
    
    60. Veraksits A, Bileviciute-Ljungar I, Maaroos J, Vasar E, Lundeberg T. Neuronal mechanisms contribute to corticotropin-releasing factor-induced anti-oedema effect in the rat hind paw. Neuropeptides. Apr 2000;34(2):129-134.
    
    61. Torpy DJ, Webster EL, Zachman EK, Aguilera G, Chrousos GP. Urocortin and inflammation: confounding effects of hypotension on measures of inflammation. Neuroimmunomodulation. May-Jun 1999;6(3): 182-186.
    
    62. Radulovic M, Hippel C, Spiess J. Corticotropin-releasing factor (CRF) rapidly suppresses apoptosis by acting upstream of the activation of caspases. J Neurochem. Mar 2003;84(5):1074-1085.
    
    63. Marone G, Galli SJ, Kitamura Y. Probing the roles of mast cells and basophils in natural and acquired immunity, physiology and disease. Trends Immunol. Sep 2002;23(9):425-427.
    
    64. Theoharides TC, Singh LK, Boucher W, et al. Corticotropin-releasing hormone induces skin mast cell degranulation and increased vascular permeability, a possible explanation for its proinflammatory effects. Endocrinology. Jan 1998;139(1):403-413.
    
    65. Crompton R, Clifton VL, Bisits AT, Read MA, Smith R, Wright IM. Corticotropin-releasing hormone causes vasodilation in human skin via mast cell-dependent pathways. J Clin Endocrinol Metab. Nov 2003;88(11):5427-5432.
    
    66. Cao J, Papadopoulou N, Kempuraj D, et al. Human mast cells express corticotropin-releasing hormone (CRH) receptors and CRH leads to selective secretion of vascular endothelial growth factor. J Immunol. Jun 15 2005;174(12):7665-7675.
    
    67. Cao J, Cetrulo CL, Theoharides TC. Corticotropin-releasing hormone induces vascular endothelial growth factor release from human mast cells via the cAMP/protein kinase A/p38 mitogen-activated protein kinase pathway. Mol Pharmacol. Mar 2006;69(3):998-1006.
    
    68. Donelan J, Boucher W, Papadopoulou N, et al. Corticotropin-releasing hormone induces skin vascular permeability through a neurotensin-dependent process. Proc Natl Acad Sci U S A. May 16 2006;103(20):7759-7764.
    
    69. O'Kane M, Murphy EP, Kirby B. The role of corticotropin-releasing hormone in immune-mediated cutaneous inflammatory disease. Exp Dermatol. Mar 2006;15(3):143-153.
    
    70. Quevedo ME, Slominski A, Pinto W, Wei E, Wortsman J. Pleiotropic effects of corticotropin releasing hormone on normal human skin keratinocytes. In Vitro Cell Dev Biol Anim. Jan 2001;37(1):50-54.
    
    71. Zbytek B, Pikula M, Slominski RM, et al. Corticotropin-releasing hormone triggers differentiation in HaCaT keratinocytes. Br J Dermatol. Mar 2005;152(3):474-480.
    
    72. Mitsuma T, Matsumoto Y, Tomita Y. Corticotropin releasing hormone stimulates proliferation of keratinocytes. Life Sci. Sep 14 2001;69(17):1991-1998.
    73. Farber EM, Nickoloff BJ, Recht B, Fraki JE. Stress, symmetry, and psoriasis: possible role of neuropeptides. J Am Acad Dermatol. Feb 1986; 14(2 Pt 1):305-311.
    
    74. Kane D, Lockhart JC, Balint PV, Mann C, Ferrell WR, McInnes IB. Protective effect of sensory denervation in inflammatory arthritis (evidence of regulatory neuroimmune pathways in the arthritic joint). Ann Rheum Dis. Feb 2005;64(2):325-327.
    
    75. Paez Pereda M, Sauer J, Perez Castro C, et al. Corticotropin-releasing hormone differentially modulates the interleukin-1 system according to the level of monocyte activation by endotoxin. Endocrinology. Dec 1995;136(12):5504-5510.
    
    76. Richards HL, Ray DW, Kirby B, et al. Response of the hypothalamic-pituitary-adrenal axis to psychological stress in patients with psoriasis. Br J Dermatol. Dec 2005;153(6):1114-1120.
    
    77. Karanikas E, Harsoulis F, Giouzepas I, Griveas I. Stimulation of the hypothalamic-pituitary-adrenal axis with corticotropin releasing hormone in patients with psoriasis. Hormones (Athens). Oct-Dec 2007;6(4):314-320.
    
    78. Kim JE, Cho DH, Kim HS, et al. Expression of the corticotropin-releasing hormone-proopiomelanocortin axis in the various clinical types of psoriasis. Exp Dermatol. Feb 2007; 16(2): 104-109.
    
    79. Tagen M, Stiles L, Kalogeromitros D, et al. Skin corticotropin-releasing hormone receptor expression in psoriasis. J Invest Dermatol. Jul 2007; 127(7): 1789-1791.
    
    80. Bowcock AM, Krueger JG Getting under the skin: the immunogenetics of psoriasis. Nat Rev Immunol. Sep 2005;5(9):699-711.
    1. Karalis K, Muglia LJ, Bae D, Hilderbrand H, Majzoub JA. CRH and the immune system. J Neuroimmunol. Feb 1997;72(2): 131-136.
    
    2. Slominski A, Wortsman J, Pisarchik A, et al. Cutaneous expression of corticotropin-releasing hormone (CRH), urocortin, and CRH receptors. Faseb J. Aug2001;15(10):1678-1693.
    
    3. Slominski A, Wortsman J, Luger T, Paus R, Solomon S. Corticotropin releasing hormone and proopiomelanocortin involvement in the cutaneous response to stress. Physiol Rev. Jul 2000;80(3):979-1020.
    
    4. Pisarchik A, Slominski A. Molecular and functional characterization of novel CRFR1 isoforms from the skin. EurJBiochem. Jul 2004;271(13):2821-2830.
    
    5. Zouboulis CC. The human skin as a hormone target and an endocrine gland. Hormones (Athens). Jan-Mar 2004;3(1):9-26.
    
    6. Kono M, Nagata H, Umemura S, Kawana S, Osamura RY. In situ expression of corticotropin-releasing hormone (CRH) and proopiomelanocortin (POMC) genes in human skin. Faseb J. Oct 2001;15(12):2297-2299.
    
    7. Gaspari AA. Innate and adaptive immunity and the pathophysiology of psoriasis. J Am Acad Dermatol. Mar 2006;54(3 Suppl 2):S67-80.
    
    8. Senger DR, Van de Water L, Brown LF, et al. Vascular permeability factor (VPF, VEGF) in tumor biology. Cancer Metastasis Rev. Sep 1993;12(3-4):303-324.
    
    9. Ferrara N. Role of vascular endothelial growth factor in physiologic and pathologic angiogenesis: therapeutic implications. Semin Oncol. Dec 2002;29(6 Suppl 16):10-14.
    
    10. Dvorak HF. Angiogenesis: update 2005. J Thromb Haemost. Aug 2005;3(8): 1835-1842.
    
    11. Ferrara N, Gerber HP. The role of vascular endothelial growth factor in angiogenesis. Acta Haematol. 2001; 106(4): 148-156.
    
    12. Byrne AM, Bouchier-Hayes DJ, Harmey JH. Angiogenic and cell survival functions of vascular endothelial growth factor (VEGF). J Cell Mol Med. Oct-Dec 2005;9(4):777-794.
    
    13. Brown LF, Yeo KT, Berse B, et al. Expression of vascular permeability factor (vascular endothelial growth factor) by epidermal keratinocytes during wound healing. J Exp Med. Nov 1 1992;176(5):1375-1379.
    
    14. Detmar M, Brown LF, Claffey KP, et al. Overexpression of vascular permeability factor/vascular endothelial growth factor and its receptors in psoriasis. JExpMed. Sep 1 1994;180(3):1141-1146.
    
    15. Xia YP, Li B, Hylton D, Detmar M, Yancopoulos GD, Rudge JS. Transgenic delivery of VEGF to mouse skin leads to an inflammatory condition resembling human psoriasis. Blood. Jul 1 2003;102(1):161-168.
    
    16. Sugama S, Conti B. Interleukin-18 and stress. Brain Res Rev. Jun 2008;58(1):85-95.
    
    17. Gracie JA, Robertson SE, McInnes IB. Interleukin-18. J Leukoc Biol. Feb 2003;73(2):213-224.
    
    18. Companjen AR, van der Velden VH, Vooys A, Debets R, Benner R, Prens EP. Human keratinocytes are major producers of IL-18: predominant expression of the unprocessed form. Eur Cytokine Netw. Sep 2000; 11(3):383-390.
    
    19. Ohta Y, Hamada Y, Katsuoka K. Expression of IL-18 in psoriasis. Arch Dermatol Res. Jul 2001;293(7):334-342.
    
    20. Mee JB, Alam Y, Groves RW. Human keratinocytes constitutively produce but do not process interleukin-18. Br J Dermatol. Aug 2000;143(2):330-336.
    
    21. Wraight CJ, Murashita MM, Russo VC, Werther GA. A keratinocyte cell line synthesizes a predominant insulin-like growth factor-binding protein (IGFBP-3) that modulates insulin-like growth factor-I action. J Invest Dermatol. Nov 1994;103(5):627-631.
    
    22. Robinson MJ, Cobb MH. Mitogen-activated protein kinase pathways. Curr Opin Cell Biol. Apr 1997;9(2):180-186.
    
    23. Raman M, Cobb MH. MAP kinase modules: many roads home. Curr Biol. Nov 11 2003;13(22):R886-888.
    24. Paez Pereda M, Sauer J, Perez Castro C, et al. Corticotropin-releasing hormone differentially modulates the interleukin-1 system according to the level of monocyte activation by endotoxin. Endocrinology. Dec 1995;136(12):5504-5510.
    
    25. Zbytek B, Pfeffer LM, Slominski AT. Corticotropin-releasing hormone inhibits nuclear factor-kappaB pathway in human HaCaT keratinocytes. J Invest Dermatol. Dec 2003;121(6):1496-1499.
    
    26. Wang W, Nan X, Ji P, Dow KE. Corticotropin releasing hormone modulates endotoxin-induced inflammatory cytokine expression in human trophoblast cells. Placenta. Oct 2007;28(10):1032-1038.
    
    27. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods. Dec 2001 ;25(4):402-408.
    
    28. Nickoloff BJ. Cracking the cytokine code in psoriasis. Nat Med. Mar 2007;13(3):242-244.
    
    29. Nickoloff BJ, Xin H, Nestle FO, Qin JZ. The cytokine and chemokine network in psoriasis. Clin Dermatol. Nov-Dec 2007;25(6):568-573.
    
    30. Lowes MA, Bowcock AM, Krueger JG Pathogenesis and therapy of psoriasis. Nature. Feb 22 2007;445(7130):866-873.
    
    31. Sano S, Chan KS, Carbajal S, et al. Stat3 links activated keratinocytes and immunocytes required for development of psoriasis in a novel transgenic mouse model. Nat Med. Jan 2005;11(1):43-49.
    
    32. Slominski A, Zbytek B, Pisarchik A, Slominski RM, Zmijewski MA, Wortsman J. CRH functions as a growth factor/cytokine in the skin. J Cell Physiol. Mar 2006;206(3):780-791.
    
    33. Kempuraj D, Papadopoulou NG, Lytinas M, et al. Corticotropin-releasing hormone and its structurally related urocortin are synthesized and secreted by human mast cells. Endocrinology. Jan 2004;145(1):43-48.
    
    34. Slominski A, Ermak G, Mazurkiewicz JE, Baker J, Wortsman J. Characterization of corticotropin-releasing hormone (CRH) in human skin. J Clin Endocrinol Metab. Mar 1998;83(3): 1020-1024.
    
    35. Slominski AT, Roloff B, Zbytek B, et al. Corticotropin releasing hormone and related peptides can act as bioregulatory factors in human keratinocytes. In Vitro Cell Dev Biol Anim. Mar 2000;36(3):211-216.
    
    36. Quevedo ME, Slominski A, Pinto W, Wei E, Wortsman J. Pleiotropic effects of corticotropin releasing hormone on normal human skin keratinocytes. In Vitro Cell Dev Biol Anim. Jan 2001;37(1):50-54.
    
    37. Zbytek B, Slominski AT. Corticotropin-releasing hormone induces keratinocyte differentiation in the adult human epidermis. J Cell Physiol. Apr 2005;203(1): 118-126.
    
    38. Zbytek B, Pikula M, Slominski RM, et al. Corticotropin-releasing hormone triggers differentiation in HaCaT keratinocytes. Br J Dermatol. Mar 2005;152(3):474-480.
    
    39. Fusenig NE, Boukamp P. Multiple stages and genetic alterations in immortalization, malignant transformation, and tumor progression of human skin keratinocytes. Mol Carcinog. Nov 1998;23(3):144-158.
    
    40. Park HJ, Kim HJ, Lee JH, et al. Corticotropin-releasing hormone (CRH) downregulates interleukin-18 expression in human HaCaT keratinocytes by activation of p38 mitogen-activated protein kinase (MAPK) pathway. J Invest Dermatol. Apr 2005;124(4):751-755.
    
    41. Kwon YW, Kwon KS, Moon HE, et al. Insulin-like growth factor-II regulates the expression of vascular endothelial growth factor by the human keratinocyte cell line HaCaT. J Invest Dermatol. Jul 2004;123(1):152-158.
    
    42. Mildner M, Weninger W, Trautinger F, Ban J, Tschachler E. UVA and UVB radiation differentially regulate vascular endothelial growth factor expression in keratinocyte-derived cell lines and in human keratinocytes. Photochem Photobiol. Oct 1999;70(4):674-679.
    
    43. Bonnekoh B, Wevers A, Geisel J, Rasokat H, Mahrle G.Antiproliferative potential of zidovudine in human keratinocyte cultures. J Am Acad Dermatol. Sep 1991;25(3):483-490.
    44. Stein M, Bernd A, Ramirez-Bosca A, Kippenberger S, Holzmann H. Measurement of anti-inflammatory effects of glucocorticoids on human keratinocytes in vitro. Comparison of normal human keratinocytes with the keratinocyte cell line HaCaT. Arzneimittelforschung. Nov 1997; 47(11):1266-1270.
    
    45. Muller K, Prinz H. Antipsoriatic anthrones with modulated redox properties. 4. Synthesis and biological activity of novel 9,10-dihydro-1, 8-dihydroxy-9-oxo-2-anthracenecarboxylic and -hydroxamic acids. J Med Chem. Aug 15 1997;40(17):2780-2787.
    
    46. Barker JN. The pathophysiology of psoriasis. Lancet. Jul 27 1991;338(8761):227-230.
    
    47. Diaz BV, Lenoir MC, Ladoux A, Frelin C, Demarchez M, Michel S. Regulation of vascular endothelial growth factor expression in human keratinocytes by retinoids. J Biol Chem. Jan 7 2000;275(1):642-650.
    
    48. Neufeld G, Cohen T, Gengrinovitch S, Poltorak Z. Vascular endothelial growth factor (VEGF) and its receptors. Faseb J. Jan 1999;13(1):9-22.
    
    49. Garcea G, Lloyd TD, Gescher A, Dennison AR, Steward WP, Berry DP. Angiogenesis of gastrointestinal tumours and their metastases--a target for intervention? Eur J Cancer. Jun 2004;40(9):1302-1313.
    
    50. Carmeliet P, Collen D. Molecular basis of angiogenesis. Role of VEGF and VE-cadherin. Ann N Y Acad Sci. May 2000;902:249-262; discussion 262-244.
    
    51. Houck KA, Ferrara N, Winer J, Cachianes G, Li B, Leung DW. The vascular endothelial growth factor family, identification of a fourth molecular species and characterization of alternative splicing of RNA. Mol Endocrinol. Dec 1991;5(12):1806-1814.
    
    52. Man XY, Yang XH, Cai SQ, Yao YG, Zheng M. Immunolocalization and expression of vascular endothelial growth factor receptors (VEGFRs) and neuropilins (NRPs) on keratinocytes in human epidermis. Mol Med. Jul-Aug 2006;12(7-8):127-136.
    
    53. Detmar M, Yeo KT, Nagy JA, et al. Keratinocyte-derived vascular permeability factor (vascular endothelial growth factor) is a potent mitogen for dermal microvascular endothelial cells. J Invest Dermatol Jul 1995;105(1):44-50.
    
    54. Bowden J, Brennan PA, Umar T, Cronin A. Expression of vascular endothelial growth factor in basal cell carcinoma and cutaneous squamous cell carcinoma of the head and neck. J Cutan Pathol. Nov 2002;29(10):585-589.
    
    55. Gira AK, Brown LF, Washington CV, Cohen C, Arbiser JL. Keloids demonstrate high-level epidermal expression of vascular endothelial growth factor. J Am Acad Dermatol. Jun 2004;50(6):850-853.
    
    56. Ettehadi P, Greaves MW, Wallach D, Aderka D, Camp RD. Elevated tumour necrosis factor-alpha (TNF-alpha) biological activity in psoriatic skin lesions. Clin Exp Immunol. Apr 1994;96(1):146-151.
    
    57. Bhushan M, McLaughlin B, Weiss JB, Griffiths CE. Levels of endothelial cell stimulating angiogenesis factor and vascular endothelial growth factor are elevated in psoriasis. Br J Dermatol. Dec 1999;141(6):1054-1060.
    
    58. Zhang Y, Matsuo H, Morita E. Increased production of vascular endothelial growth factor in the lesions of atopic dermatitis. Arch Dermatol Res. Mar 2006;297(9):425-429.
    
    59. O'Kane M, Murphy EP, Kirby B. The role of corticotropin-releasing hormone in immune-mediated cutaneous inflammatory disease. Exp Dermatol. Mar 2006;15(3):143-153.
    
    60. Okamura H, Tsutsi H, Komatsu T, et al. Cloning of a new cytokine that induces IFN-gamma production by T cells. Nature. Nov 2 1995;378(6552):88-91.
    
    61. Ushio S, Namba M, Okura T, et al. Cloning of the cDNA for human IFN-gamma-inducing factor, expression in Escherichia coli, and studies on the biologic activities of the protein. J Immunol. Jun 1 1996;156(11):4274-4279.
    
    62. Kojima H, Takeuchi M, Ohta T, et al. Interleukin-18 activates the IRAK-TRAF6 pathway in mouse EL-4 cells. Biochem Biophys Res Commun. Mar 6 1998;244(1):183-186.
    63. Kalina U, Kauschat D, Koyama N, et al. IL-18 activates STAT3 in the natural killer cell line 92, augments cytotoxic activity, and mediates IFN-gamma production by the stress kinase p38 and by the extracellular regulated kinases p44erk-l and p42erk-21. J Immunol. Aug 1 2000;165(3):1307-1313.
    
    64. Dao T, Ohashi K, Kayano T, Kurimoto M, Okamura H. Interferon-gamma-inducing factor, a novel cytokine, enhances Fas ligand-mediated cytotoxicity of murine T helper 1 cells. Cell Immunol. Nov 1 1996;173(2):230-235.
    
    65. Dinarello CA. Interleukin-18. Methods. Sep 1999;19(1):121-132.
    
    66. Pietrzak A, Lecewicz-Torun B, Chodorowska G, Rolinski J. hiterleukin-18 levels in the plasma of psoriatic patients correlate with the extent of skin lesions and the PASI score. Acta Derm Venereol. 2003;83(4):262-265.
    
    67. Johnson GL, Lapadat R. Mitogen-activated protein kinase pathways mediated by ERK, JNK, and p38 protein kinases. Science. Dec 6 2002;298(5600):1911-1912.
    
    68. Cano E, Mahadevan LC. Parallel signal processing among mammalian MAPKs. Trends Biochem Sci. Mar 1995;20(3):117-122.
    
    69. Sutherland CL, Heath AW, Pelech SL, Young PR, Gold MR. Differential activation of the ERK, JNK, and p38 mitogen-activated protein kinases by CD40 and the B cell antigen receptor. J Immunol. Oct 15 1996;157(8):3381-3390.
    
    70. Gupta S, Barrett T, Whitmarsh AJ, et al. Selective interaction of JNK protein kinase isoforms with transcription factors. Embo J. Jun 3 1996;15(11):2760-2770.
    
    71. Li Z, Jiang Y, Ulevitch RJ, Han J. The primary structure of p38 gamma: a new member of p38 group of MAP kinases. Biochem Biophys Res Commun. Nov 12 1996;228(2):334-340.
    
    72. Jiang Y, Gram H, Zhao M, et al. Characterization of the structure and function of the fourth member of p38 group mitogen-activated protein kinases, p38delta. J Biol Chem. Nov 28 1997;272(48):30122-30128.
    73. Jiang Y, Chen C, Li Z, et al. Characterization of the structure and function of a new mitogen-activated protein kinase (p38beta). J Biol Chem. Jul 26 1996;271 (30): 17920-17926.
    
    74. Zhang J, Salojin KV, Gao JX, Cameron MJ, Bergerot I, Delovitch TL. p38 mitogen-activated protein kinase mediates signal integration of TCR/CD28 costimulation in primary murine T cells. J Immunol. Apr 1 1999; 162(7):3819-3829.
    
    75. Yehia G, Schlotter F, Razavi R, Alessandrini A, Molina CA. Mitogen-activated protein kinase phosphorylates and targets inducible cAMP early repressor to ubiquitin-mediated destruction. J Biol Chem. Sep 21 2001 ;276(38):35272-35279.
    
    76. Zhang X, Yang D, Ma S, Liu H. Up-regulation of activities of mitogen-activated protein kinase in psoriatic lesions. J Dermatol Sci. Feb 2005;37(2):118-119.
    
    77. Takahashi H, Ibe M, Nakamura S, Ishida-Yamamoto A, Hashimoto Y, Iizuka H. Extracellular regulated kinase and c-Jun N-terminal kinase are activated in psoriatic involved epidermis. J Dermatol Sci. Nov 2002;30(2):94-99.
    
    78. Haase I, Hobbs RM, Romero MR, Broad S, Watt FM. A role for mitogen-activated protein kinase activation by integrins in the pathogenesis of psoriasis. J Clin Invest. Aug 2001;108(4):527-536.
    
    79. Johansen C, Kragballe K, Westergaard M, Henningsen J, Kristiansen K, Iversen L. The mitogen-activated protein kinases p38 and ERK1/2 are increased in lesional psoriatic skin. Br J Dermatol. Jan 2005;152(1):37-42.
    
    80. Yu XJ, Li CY, Dai HY, et al. Expression and localization of the activated mitogen-activated protein kinase in lesional psoriatic skin. Exp Mol Pathol. Dec 2007;83(3):413-418.
    [1] A.G.Abdou, H.M. Hanout, Evaluation of Survivin and NF-kappaB in psoriasis, an immunohistochemical study, J Cutan Pathol 35 (2008) 445-451.
    [2] M.A. Gupta, A.K. Gupta, Psychiatric and psychological co-morbidity in patients with dermatologic disorders: epidemiology and management, Am J Clin Dermatol 4 (2003) 833-842.
    [3] R. Saraceno, C.E. Kleyn, G. Terenghi, C.E. Griffiths, The role of neuropeptides in psoriasis, Br J Dermatol 155 (2006) 876-882.
    [4] GP. Chrousos, P.W. Gold, The concepts of stress and stress system disorders. Overview of physical and behavioral homeostasis, JAMA 267 (1992) 1244-1252.
    [5] C. Tsigos, GP. Chrousos, Hypothalamic-pituitary-adrenal axis, neuroendocrine factors and stress, J Psychosom Res 53 (2002) 865-871.
    [6] M. O'Kane, E.P. Murphy, B. Kirby, The role of corticotropin-releasing hormone in immune-mediated cutaneous inflammatory disease, Exp Dermatol 15(2006)143-153.
    [7] A. Slominski, J. Wortsman, A. Pisarchik, B. Zbytek, E.A. Linton, J.E. Mazurkiewicz, E.T. Wei, Cutaneous expression of corticotropin-releasing hormone (CRH), urocortin, and CRH receptors, Faseb J 15 (2001) 1678-1693.
    [8] A. Slominski, J. Wortsman, T. Luger, R. Paus, S. Solomon, Corticotropin releasing hormone and proopiomelanocortin involvement in the cutaneous response to stress, Physiol Rev 80 (2000) 979-1020.
    [9] A.T. Slominski, V. Botchkarev, M. Choudhry, N. Fazal, K. Fechner, J. Furkert, E. Krause, B. Roloff, M. Sayeed, E. Wei, B. Zbytek, J. Zipper, J. Wortsman, R. Paus, Cutaneous expression of CRH and CRH-R. Is there a "skin stress response system?" Ann N Y Acad Sci 885 (1999) 287-311.
    
    [10] K. Karalis, L.J. Muglia, D. Bae, H. Hilderbrand, J.A. Majzoub, CRH and the immune system, J Neuroimmunol 72 (1997) 131-136.
    
    [11] D. Kempuraj, N.G. Papadopoulou, M. Lytinas, M. Huang, K. Kandere-Grzybowska, B. Madhappan, W. Boucher, S. Christodoulou, A. Athanassiou, T.C. Theoharides, Corticotropin-releasing hormone and itsstructurally related urocortin are synthesized and secreted by human mast cells, Endocrinology 145 (2004) 43-48.
    [12] A. Slominski, G. Ermak, J.E. Mazurkiewicz, J. Baker, J. Wortsman, Characterization of corticotropin-releasing hormone (CRH) in human skin, J Clin Endocrinol Metab 83 (1998) 1020-1024.
    [13] M. Kono, H. Nagata, S. Umemura, S. Kawana, R.Y. Osamura, In situ expression of corticotropin-releasing hormone (CRH) and proopiomelanocortin (POMC) genes in human skin, Faseb J 15 (2001) 2297-2299.
    [14] H. Sato, Y. Nagashima, GP. Chrousos, M. Ichihashi, Y. Funasak, The expression of corticotropin-releasing hormone in melanoma, Pigment Cell Res 15(2002)98-103.
    [15] A. Slominski, M.C. Mihm, Potential mechanism of skin response to stress, Int J Dermatol 35 (1996) 849-851.
    [16] A. Slominski, A. Szczesniewski, J. Wortsman, Liquid chromatography-mass spectrometry detection of corticotropin-releasing hormone and proopiomelanocortin-derived peptides in human skin, J Clin Endocrinol Metab 85 (2000) 3582-3588.
    [17] A. Slominski, J. Wortsman, Neuroendocrinology of the skin, Endocr Rev 21 (2000) 457-487.
    
    [18] R. Crompton, V.L. Clifton, A.T. Bisits, M.A. Read, R. Smith, I.M. Wright, Corticotropin-releasing hormone causes vasodilation in human skin via mast cell-dependent pathways, J Clin Endocrinol Metab 88 (2003) 5427-5432.
    [19] H.J. Park, H.J. Kim, J.H. Lee, J.Y. Lee, B.K. Cho, J.S. Kang, H. Kang, Y. Yang, D.H. Cho, Corticotropin-releasing hormone (CRH) downregulates interleukin-18 expression in human HaCaT keratinocytes by activation of p38 mitogen-activated protein kinase (MAPK) pathway, J Invest Dermatol 124 (2005)751-755.
    [20] C.G.Ziegler, A.W. Krug, C.C. Zouboulis, S.R. Bornstein, Corticotropin releasing hormone and its function in the skin, Horm Metab Res 39 (2007) 106-109.
    [21] A. Pisarchik, A. Slominski, Molecular and functional characterization of novel CRFR1 isoforms from the skin, Eur J Biochem 271 (2004) 2821-2830.
    [22] C.C. Zouboulis, The human skin as a hormone target and an endocrine gland, Hormones (Athens) 3 (2004) 9-26.
    [23] A. Slominski, A. Pisarchik, D.J. Tobin, J.E. Mazurkiewicz, J. Wortsman, Differential expression of a cutaneous corticotropin-releasing hormone system, Endocrinology 145 (2004) 941-950.
    [24] N.R. Seung, E.J. Park, C.W. Kim, K.H. Kim, K.J. Kim, H.J. Cho, H.R. Park, Comparison of expression of heat-shock protein 60, Toll-like receptors 2 and 4, and T-cell receptor gammadelta in plaque and guttate psoriasis, J Cutan Pathol 34(2007)903-911.
    [25] H.L. Richards, D.W. Ray, B. Kirby, D. Mason, D. Plant, C.J. Main, D.G. Fortune, C.E. Griffiths, Response of the hypothalamic-pituitary-adrenal axis to psychological stress in patients with psoriasis, Br J Dermatol 153 (2005) 1114-1120.
    [26] E. Karanikas, F. Harsoulis, I. Giouzepas, I. Griveas, Stimulation of the hypothalamic-pituitary-adrenal axis with corticotropin releasing hormone in patients with psoriasis, Hormones (Athens) 6 (2007) 314-320.
    [27] J.E. Kim, D.H. Cho, H.S. Kim, H.J. Kim, J.Y. Lee, B.K. Cho, H.J. Park, Expression of the corticotropin-releasing hormone-proopiomelanocortin axis in the various clinical types of psoriasis, Exp Dermatol 16 (2007) 104-109.
    [28] M. Tagen, L. Stiles, D. Kalogeromitros, S. Gregoriou, D. Kempuraj, M. Makris, J. Donelan, M. Vasiadi, N.G.Staurianeas, T.C. Theoharides, Skin corticotropin-releasing hormone receptor expression in psoriasis, J Invest Dermatol 127 (2007) 1789-1791.
    
    [29] A. Slominski, B. Zbytek, A. Pisarchik, R.M. Slominski, M.A. Zmijewski, J. Wortsman, CRH functions as a growth factor/cytokine in the skin, J Cell Physiol 206 (2006) 780-791.
    [30] M.E. Quevedo, A. Slominski, W. Pinto, E. Wei, J. Wortsman, Pleiotropic effects of corticotropin releasing hormone on normal human skin keratinocytes, In Vitro Cell Dev Biol Anim 37 (2001) 50-54.
    [31] A. Slominski, Neuroendocrine system of the skin, Dermatology 211 (2005) 199-208.
     [32] A. Slominski, B. Zbytek, M. Zmijewski, R.M. Slominski, S. Kauser, J. Wortsman, D.J. Tobin, Corticotropin releasing hormone and the skin, Front Biosci 11 (2006) 2230-2248.
    [33] B. Zbytek, A.T. Slominski, Corticotropin-releasing hormone induces keratinocyte differentiation in the adult human epidermis, J Cell Physiol 203 (2005) 118-126.
    [34] A.M. Bowcock, J.G.Krueger, Getting under the skin: the immunogenetics of psoriasis, Nature reviews 5 (2005) 699-711.
    [1] Karalis K, Muglia LJ, Bae D, Hilderbrand H, Majzoub JA. CRH and the immune system. J Neuroimmunol 1997;72:131-6.
    
    [2] Slominski A, Wortsman J, Pisarchik A, Zbytek B, Linton EA, Mazurkiewicz JE, Wei ET. Cutaneous expression of corticotropin-releasing hormone (CRH), urocortin, and CRH receptors. Faseb J 2001; 15:1678-93.
    [3] Grammatopoulos DK, Chrousos GP. Functional characteristics of CRH receptors and potential clinical applications of CRH-receptor antagonists. Trends in endocrinology and metabolism: TEM 2002; 13:436-44.
    [4] Wiesner B, Roloff B, Fechner K, Slominski A. Intracellular calcium measurements of single human skin cells after stimulation with corticotropin-releasing factor and urocortin using confocal laser scanning microscopy. Journal of cell science 2003; 116:1261-8.
    [5] Slominski A, Pisarchik A, Tobin DJ, Mazurkiewicz JE, Wortsman J. Differential expression of a cutaneous corticotropin-releasing hormone system. Endocrinology 2004;145:941-50.
    [6] Slominski A, Wortsman J, Luger T, Paus R, Solomon S. Corticotropin releasing hormone and proopiomelanocortin involvement in the cutaneous response to stress. Physiol Rev 2000;80:979-1020.
    [7] Pisarchik A, Slominski A. Molecular and functional characterization of novel CRFR1 isoforms from the skin. Eur J Biochem 2004;271:2821-30.
    
    [8] Zouboulis CC. The human skin as a hormone target and an endocrine gland. Hormones (Athens) 2004;3:9-26.
    [9] Kono M, Nagata H, Umemura S, Kawana S, Osamura RY. In situ expression of corticotropin-releasing hormone (CRH) and proopiomelanocortin (POMC) genes in human skin. Faseb J 2001; 15:2297-9.
    [10] Slominski A, Mihm MC. Potential mechanism of skin response to stress. Int J Dermatol 1996;3 5:849-51.
    
    [11] Arck PC, Slominski A, Theoharides TC, Peters EM, Paus R. Neuroimmunology of stress: skin takes center stage. J Invest Dermatol 2006; 126:1697-704.
    [12] Slominski AT, Botchkarev V, Choudhry M, Fazal N, Fechner K, Furkert J, Krause E, Roloff B, Sayeed M, Wei E, Zbytek B, Zipper J, Wortsman J, Paus R. Cutaneous expression of CRH and CRH-R. Is there a "skin stress response system?" Ann N Y Acad Sci 1999;885:287-311.
    [13] Kempuraj D, Papadopoulou NG, Lytinas M, Huang M, Kandere-Grzybowska K, Madhappan B, Boucher W, Christodoulou S, Athanassiou A, Theoharides TC. Corticotropin-releasing hormone and its structurally related urocortin are synthesized and secreted by human mast cells. Endocrinology 2004;145:43-8.
    [14] Slominski A, Ermak G, Mazurkiewicz JE, Baker J, Wortsman J. Characterization of corticotropin-releasing hormone (CRH) in human skin. J Clin Endocrinol Metab 1998;83:1020-4.
    [15] Slominski AT, Roloff B, Zbytek B, Wei ET, Fechner K, Curry J, Wortsman J. Corticotropin releasing hormone and related peptides can act as bioregulatory factors in human keratinocytes. In Vitro Cell Dev Biol Anim 2000;36:211-6.
    [16] Quevedo ME, Slominski A, Pinto W, Wei E, Wortsman J. Pleiotropic effects of corticotropin releasing hormone on normal human skin keratinocytes. In vitro cellular & developmental biology 2001 ;37:50-4.
    [17] Zbytek B, Slominski AT. Corticotropin-releasing hormone induces keratinocyte differentiation in the adult human epidermis. J Cell Physiol 2005;203:118-26.
    
    [18] Zbytek B, Pikula M, Slominski RM, Mysliwski A, Wei E, Wortsman J, Slominski AT. Corticotropin-releasing hormone triggers differentiation in HaCaT keratinocytes. Br J Dermatol 2005; 152:474-80.
    [19] Slominski A, Zbytek B, Pisarchik A, Slominski RM, Zmijewski MA, Wortsman J. CRH functions as a growth factor/cytokine in the skin. J Cell Physiol 2006;206:780-91.
    [20] O'Kane M, Murphy EP, Kirby B. The role of corticotropin-releasing hormone in immune-mediated cutaneous inflammatory disease. Exp Dermatol 2006; 15:143-53.
    [21] Gaspari AA. Innate and adaptive immunity and the pathophysiology of psoriasis. J Am Acad Dermatol 2006;54:S67-80.
    
    [22]Barker J N. The pathophysiology of psoriasis. Lancet 1991;338:227-30.
    [23] Ferrara N. Role of vascular endothelial growth factor in physiologic and pathologic angiogenesis: therapeutic implications. Seminars in oncology 2002;29:10-4.
    
    [24]Dvorak HF. Angiogenesis: update 2005. J Thromb Haemost 2005;3:1835-42.
    [25] Ferrara N, Gerber HP. The role of vascular endothelial growth factor in angiogenesis. Acta haematologica 2001; 106:148-56.
    [26] Byrne AM, Bouchier-Hayes DJ, Harmey JH. Angiogenic and cell survival functions of vascular endothelial growth factor (VEGF). Journal of cellular and molecular medicine 2005;9:777-94.
    [27] Brown LF, Yeo KT, Berse B, Yeo TK, Senger DR, Dvorak HF, van de Water L. Expression of vascular permeability factor (vascular endothelial growth factor) by epidermal keratinocytes during wound healing. The Journal of experimental medicine 1992; 176:1375-9.
    [28] Detmar M, Brown LF, Claffey KP, Yeo KT, Kocher O, Jackman RW, Berse B, Dvorak HF. Overexpression of vascular permeability factor/vascular endothelial growth factor and its receptors in psoriasis. The Journal of experimental medicine 1994;180:1141-6.
    [29] Detmar M, Brown LF, Schon MP, Elicker BM, Velasco P, Richard L, Fukumura D, Monsky W, Claffey KP, Jain RK. Increased microvascular density and enhanced leukocyte rolling and adhesion in the skin of VEGF transgenic mice. J Invest Dermatol 1998; 111:1 -6.
    [30] Xia YP, Li B, Hylton D, Detmar M, Yancopoulos GD, Rudge JS. Transgenic delivery of VEGF to mouse skin leads to an inflammatory condition resembling human psoriasis. Blood 2003;102:161-8.
    [31] Robinson MJ, Cobb MH. Mitogen-activated protein kinase pathways. Current opinion in cell biology 1997;9:180-6.
    
    [32] Raman M, Cobb MH. MAP kinase modules: many roads home. Curr Biol 2003;13:R886-8.
    [33] Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods (San Diego, Calif) 2001;25:402-8.
    [34] Bowden J, Brennan PA, Umar T, Cronin A. Expression of vascular endothelial growth factor in basal cell carcinoma and cutaneous squamous cell carcinoma of the head and neck. J Cutan Pathol 2002;29:585-9.
    [35] Gira AK, Brown LF, Washington CV, Cohen C, Arbiser JL. Keloids demonstrate high-level epidermal expression of vascular endothelial growth factor. J Am Acad Dermatol 2004;50:850-3.
    [36] Detmar M, Yeo KT, Nagy JA, Van de Water L, Brown LF, Berse B, Elicker BM, Ledbetter S, Dvorak HF. Keratinocyte-derived vascular permeability factor (vascular endothelial growth factor) is a potent mitogen for dermal microvascular endothelial cells. J Invest Dermatol 1995; 105:44-50.
    [37] Ettehadi P, Greaves MW, Wallach D, Aderka D, Camp RD. Elevated tumour necrosis factor-alpha (TNF-alpha) biological activity in psoriatic skin lesions. Clinical and experimental immunology 1994;96:146-51.
    [38] Bhushan M, McLaughlin B, Weiss JB, Griffiths CE. Levels of endothelial cell stimulating angiogenesis factor and vascular endothelial growth factor are elevated in psoriasis. Br J Dermatol 1999; 141:1054-60.
    [39] Crompton R, Clifton VL, Bisits AT, Read MA, Smith R, Wright IM. Corticotropin-releasing hormone causes vasodilation in human skin via mast cell-dependent pathways. J Clin Endocrinol Metab 2003;88:5427-32.
    [40] Wakahashi S, Nakabayashi K, Maruo N, Yata A, Ohara N, Maruo T. Effects of corticotropin-releasing hormone and stresscopin on vascular endothelial growth factor mRNA expression in cultured early human extravillous trophoblasts. Endocrine 2008;33:144-51.
    
    [41] Zbytek B, Mysliwski A, Slominski A, Wortsman J, Wei ET, Mysliwska J. Corticotropin-releasing hormone affects cytokine production in human HaCaT keratinocytes. Life sciences 2002;70:1013-21.
    [42] Cao J, Cetrulo CL, Theoharides TC. Corticotropin-releasing hormone induces vascular endothelial growth factor release from human mast cells via the cAMP/protein kinase A/p38 mitogen-activated protein kinase pathway. Molecular pharmacology 2006;69:998-1006.
    
    [43] Park HJ, Kim HJ, Lee JH, Lee JY, Cho BK, Kang JS, Kang H, Yang Y, Cho DH. Corticotropin-releasing hormone (CRH) downregulates interleukin-18 expression in human HaCaT keratinocytes by activation of p38 mitogen-activated protein kinase (MAPK) pathway. J Invest Dermatol 2005;124:751-5.
    
    [44] Fusenig NE, Boukamp P. Multiple stages and genetic alterations in immortalization, malignant transformation, and tumor progression of human skin keratinocytes. Molecular carcinogenesis 1998;23:144-58.
    
    [45] Bonnekoh B, Wevers A, Geisel J, Rasokat H, Mahrle G.Antiproliferative potential of zidovudine in human keratinocyte cultures. J Am Acad Dermatol 1991;25:483-90.
    
    [46] Stein M, Bernd A, Ramirez-Bosca A, Kippenberger S, Holzmann H. Measurement of anti-inflammatory effects of glucocorticoids on human keratinocytes in vitro. Comparison of normal human keratinocytes with the keratinocyte cell line HaCaT. Arzneimittel-Forschung 1997;47:1266-70.
    
    [47] Muller K, Prinz H. Antipsoriatic anthrones with modulated redox properties. 4. Synthesis and biological activity of novel 9,10-dihydro-1,8-dihydroxy-9-oxo-2-anthracenecarboxylic and -hydroxamic acids. Journal of medicinal chemistry 1997;40:2780-7.
    
    [48] Paez Pereda M, Sauer J, Perez Castro C, Finkielman S, Stalla GK, Holsboer F, Arzt E. Corticotropin-releasing hormone differentially modulates the interleukin-1 system according to the level of monocyte activation by endotoxin. Endocrinology 1995;136:5504-10.
    
    [49] Zbytek B, Pfeffer LM, Slominski AT. Corticotropin-releasing hormone inhibits nuclear factor-kappaB pathway in human HaCaT keratinocytes. J Invest Dermatol 2003;121:1496-9.
    
    [50] Wang W, Nan X, Ji P, Dow KE. Corticotropin releasing hormone modulates endotoxin-induced inflammatory cytokine expression in human trophoblast cells. Placenta 2007;28:1032-8.
    [51] Pearson G, Robinson F, Beers Gibson T, Xu BE, Karandikar M, Berman K, Cobb MH. Mitogen-activated protein (MAP) kinase pathways: regulation and physiological functions. Endocr Rev 2001;22:153-83.
    [52] Chen W, Bowden GT. Role of p38 mitogen-activated protein kinases in ultraviolet-B irradiation-induced activator protein 1 activation in human keratinocytes. Molecular carcinogenesis 2000;28:196-202.
    [53] Kobayashi H, Aiba S, Yoshino Y, Tagami H. Acute cutaneous barrier disruption activates epidermal p44/42 and p38 mitogen-activated protein kinases in human and hairless guinea pig skin. Exp Dermatol 2003;12:734-46.
    [54] Adachi M, Gazel A, Pintucci G, Shuck A, Shifteh S, Ginsburg D, Rao LS, Kaneko T, Freedberg IM, Tamaki K, Blumenberg M. Specificity in stress response: epidermal keratinocytes exhibit specialized UV-responsive signal transduction pathways. DNA and cell biology 2003;22:665-77.
    [55] Takahashi H, Ibe M, Nakamura S, Ishida-Yamamoto A, Hashimoto Y, Iizuka H. Extracellular regulated kinase and c-Jun N-terminal kinase are activated in psoriatic involved epidermis. Journal of dermatological science 2002;30:94-9.
    [56] Yu XJ, Li CY, Dai HY, Cai DX, Wang KY, Xu YH, Chen LM, Zhou CL. Expression and localization of the activated mitogen-activated protein kinase in lesional psoriatic skin. Experimental and molecular pathology 2007;83:413-8.
    [57] Johansen C, Kragballe K, Westergaard M, Henningsen J, Kristiansen K, Iversen L. The mitogen-activated protein kinases p38 and ERK1/2 are increased in lesional psoriatic skin. Br J Dermatol 2005; 152:37-42.
    [58] Yano S, Komine M, Fujimoto M, Okochi H, Tamaki K. Mechanical stretching in vitro regulates signal transduction pathways and cellular proliferation in human epidermal keratinocytes. J Invest Dermatol 2004;122:783-90.