P38抑制剂SB203580及血必净注射液对小鼠肠道辐射损伤的保护作用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:小肠组织对射线极为敏感,核事故受照人员,白血病和腹腔局部放疗患者受到照射可引起对消化道特别是肠的损伤。电离辐射可导致小肠隐窝上皮细胞增殖抑制及部分细胞凋亡等异常改变,绒毛上皮的更新受阻,绒毛上皮结构的完整性遭到破坏,进而引起肠屏障功能障碍甚至引发菌血症和毒血症导致个体死亡。P38MAPK是重要的应激通路蛋白,在炎症中发挥着重要作用。本研究观察p38抑制剂SB203580对小鼠辐射致死效应和小肠损伤的保护作用。方法:小鼠辐射致死效应试验中C57BL/6小鼠按体重随机分为对照组,照射组和照射给药组,每组12只。对照组给予假照射,其它两组接受7.2Gy照射,照射前半小时腹腔注射SB203580(15mg/kg),以后隔天给药共5次。观察小鼠30天生存率。小肠损伤保护试验中小鼠随机分为对照组,照射组和照射给药组。对照组6只,其余各组8只。对照组为假照射,其它两组接受7.2Gy照射。给药组在照射前半小时腹腔注射SB203580(15mg/kg)。24小时后处死小鼠取小肠组织固定,脱水,并做石蜡切片。对切片进行HE染色,镜下计数每个隐窝内凋亡细胞数量,用免疫组化SP法检测caspase-3, Ki67, P53, p-p38表达,镜下计数隐窝阳性表达数。结果:对照组小鼠30天全部存活,照射组第11天全部死亡,照射给药组小鼠30天生存率为40.0%。照射组和照射给药组死亡小鼠平均生存天数分别为7.5d和13.6d。与照射组相比,照射给药组小肠隐窝细胞p-p38表达下降34.63%,p53表达下降21.78%,凋亡数量下降33.00%(caspase-3免疫组化染色)和30.14%(HE染色),Ki67表达升高37.96%,均有非常显著差异(p<0.01)
     结论:结果表明SB203580特异抑制受照小鼠小肠隐窝细胞p38激活及p53表达升高,小肠隐窝细胞凋亡减少,增殖能力提高,30天小鼠生存率提高。首次证明p38抑制剂SB203580可有效保护辐射导致小肠辐射损伤。提示p38通路在辐射致死效应和辐射诱导小肠上皮细胞损伤中起着一定作用。p38抑制剂可能是潜在的辐射防护剂。
     目的:血必净注射液具有拮抗内毒素、调节免疫功能、保护机体器官组织的作用。目前临床上广泛应用于感染及非感染因素所致全身炎症反应综合征,并取得了一定疗效。本研究观察血必净对辐射后ICR小鼠保护作用。方法:45只ICR小鼠按体重随机分为对照组,照射组,低剂量预防组组,低剂量治疗组和1/3低剂量预防组。对照组给予假照射,其它各组接受9Gy照射,预防给药组在照射前半小时给药一次,治疗给药组在照射后半小时给药一次,以后每天给药一次共10天。观察小鼠生存率。小肠损伤保护试验中小鼠随机分为对照组,照射组和血必净给药组,每组10只。对照组为假照射,其它两组接受9Gy照射。给药组在照射后半小时给药一次,给药剂量为0.4mg/kg。24小时后处死小鼠取小肠组织固定,脱水,并做石蜡切片。对切片进行HE染色,镜下计数每个隐窝内凋亡细胞数量。
     结果:对照组小鼠30天全部存活。照射组和低剂量治疗组死亡小鼠平均生存天数分别为10.8 d和15.0 d。与照射组相比,照射给药组小肠隐窝细胞凋亡数量下降28.26%,均有显著差异(p<0.05)
     结论:结果表明血必净可以提高小鼠受照后的生存率。给药后小鼠小肠隐窝细胞凋亡减少,这可能是提高小鼠照射后生存率原因之一。血必净有可能成为潜在的辐射防护剂。
To investigate the protective effects of the SB203580 against radiation induced mortality and intestinal injury. A total of 67 male C57/BL6 mice (20-22g) were matched according to body weight and randomly assigned to one of three groups: control, total body irradiation exposure (IR,7.2Gy) only, and IR+SB203580(15mg/kg). 30 days survival rate were observed in the experiment. In intestinal injury experiment, we assayed the caspase-3, Ki67, p53, p-p38 expression levels in the mice intestine crypts.We found that the 30 days survival rate were 100%(control),0 (IR) and 40% (IR+SB203580), respectively. Compared to the IR groups, the positive cells of caspase-3, P53 and p-p38 in crypt cells decreased 33.00%,21.78%and 34.63%, respectively. The positive cells of Ki67 increased 37.96%. Significant difference was found between all of them (p<0.01). SB203580 potently protected against radiation-induced lethal and intestinal injury in mice, and it may be a potential radioprotector.
     To investigate the protective effects of the xuebijing injection against radiation induced mortality and intestinal injury. A total of 45 mice (20-22g) were matched according to body weight and randomly assigned to one offive groups: control, total body irradiation exposure (IR,7.2Gy) only, and IR (7.2Gy) +xuebijing(0.4ml/kg treatment group,0.4ml/kg Prophylaxis group,0.13ml/kg Prophylaxis group).30 days survival rate were observed in the experiment. In intestinal injury experiment, we assayed the opoptosis levels in the mice intestine crypts. We found that in low dose treatment group, the average survival time of mice died were 15days, and higher than the IR group (10.8 days), respectively. Compared to the IR groups, the apoptosis cells in crypt cells of low dose treatment group decreased 28.26%. Xuebijing injection potently protected against radiation-induced lethal and intestinal injury in mice, and it may be a potential radioprotector.
引文
[1]樊飞跃等.放射医学与防护研究生教材[M].2010:1-13
    [2]Michael Joiner, Albert van der Kogel王中敏等泽.临床放射生物学基础[M].第1版.北京:军事医学科学出版社,2010:5-30
    [3]夏寿萱.放射生物学[M].北京:军事医学科学出版社.1998:1-35
    [4]Potten CS. A comprehensive study of the radiobiological response of the murine (BDF1) small intestine. Int J Radiat Biol.1990,58:925-973
    [5]Potten CS. The significance of spontaneous and induced apoptosis in the gastrointestinal tract of mice[J]. Cancer Metastasis Rev.1992,11:179-195
    [6]Westcarr S, Farshori P, Wyche J, et al. Apoptosis and differentiation in the crypt-villus unit of the rat small intestine[J]. J Submicrosc Cyto Pathol.1999,31:15-30
    [7]Potten CS. Stem cells in gastrointestinal epithelium:numbers, characteristics and death[J]. Philos Trans R Soc Lond B Biol Sci.1998,353:821-830
    [8]Potten CS, Grant HK. The relationship between ionizing radiation-induced apoptosis and stem cells in the small and large intestine[J]. Br J Cancer.1998, 78:993-1003
    [9]Potten CS, Loeffler M. Stem cells:attributes, cycles, spirals, pitfalls and uncertainties. Lessons for and from the crypt[J]. Development.1990,110:1001-1020
    [10]PottenCS, OwenG, HewittD et al. Stimulation and inhibition of proliferation in the small intestinal crypts of themouse after in vivo administration of growth factors[J]. Gut.1995,36:864-873
    [11]Jones BA, Gores GJ. Physiology and pathophysiology of apoptosis in epithelial cells of the liver, pancreas,and intestine[J]. Am J Physiol.1997,273:G1174-G1188
    [12]Merritt AJ, Potten CS, Kemp CJ, et al. The role of p53 in spontaneous and radiation-induced apoptosis in the gastrointestinal tract of normal and p53-deficient mice[J]. Cancer Res.1994,54:614-617
    [13]Potten CS,Wilson JW, Booth C. Regulation and significance of apoptosis in the stem cells of the gastrointestinal epithelium[J]. Stem Cells.1997,15:82-93
    [l4]DeLeo AB, Jay G, Appella E, et al. Detection of a transformation-related antigen in chemically induced sarcomas and other transformed cells of the mouse[J]. Proc Natl Acad Sci USA.1979,76:2420-2424
    [15]Baker SJ, Markowitz S, Fearon ER, et al. Suppression of human colorectal carcinoma cell growth by wild-type p53[J]. Science.1990,249:912-915
    [16]Slee EA, O'Connor DJ, Lu X. To die or not to die:how does p53decide[J]? Oncogene.2004.23:2809-2818
    [17]Smith ND, Rubenstein JN, EggenerSE, et al. The p53 tumor suppressor gene and nuclear protein:basic science review and relevance in the management of bladder cancer[J]. J Urol.2003,169:1219-1228
    [18]Vogelstein B, Lane D, Levine AJ. Surfing the p53 network. Nature.2000, 408:307-310
    [19]Vousden KH, Lu X. Live or let die:the cell's response to p53[J]. Nat Rev Cancer. 2002,2:594-604
    [20]Merritt AJ, Potten CS. Kemp CJ. The role of p53 in spontaneous and radiation-induced apoptosis in the gastrointestinal tract of normal and p53-deficient mice[J].Cancer Res.1994,54(3):614-7
    [21]Jeffers JR. Parganas E, Lee Y. Puma is an essential mediator of p53-dependent and-independent apoptotic pathways[J]. Cancer Cell.2003,4(4):321-8.
    [22]Potten CS. Extreme sensitivity of some intestinal crypt cells to X and gamma irradiation[J].Nature.1977,269(5628):518-21
    [23]Wei Qiu,Eleanor B. Carson-Walter. PUMA Regulates Intestinal Progenitor Cell Radiosensitivity and Gastrointestinal Syndrome[J].Cell Stem Cell.2008,2(6): 576-583
    [24]Merritt AJ, Allen TD, Potten CS, et al. Apoptosis in small intestinal epithelial from p53-null mice:evidence for a delayed, p53-independent G2/M-associated cell death after gamma-irradiation[J].Oncogene.1997,14(23):2759-66
    [25]DG Kirsch, PM Santiago, ED Tomasso et al. p53 Controls Radiation-Induced Gastrointestinal Syndrome in Mice Independent of Apoptosis[J].Science.2010, 327(5965):593-596
    [26]Baldwin AS, Jr. The NF-kappa B and I kappa B proteins:new discoveries and insights[J]. Annu Rev Immunol.1996,14:649-83
    [27]Ghosh S, May MJ, Kopp EB. NF-kappa B and Rel proteins:evolutionary conserved mediators of immune responses[J]. Annu Rev Immunol.1998,16:225-60
    [28]Ikeda A, Sun X, Li Y, et al.p300/CBP dependent and-independent tran scriptional interference be tween NF-kappaB RelA and p53[J]. Biochem Biophys Res Commun, 2000,272(2):375-379
    [29]Perkins ND, Gilmore TD. Good cop, bad cop:the diferent faces of NF-kappaB [J].Cell Death Differ,2006,13(5):759-772
    [30]Zhou D, Brown SA, Yu T, et al. A high dose ofionizing radiation induces tissue-specific activation of nuclear factor-kappaB in vivo[J]. Radiat Res,1999, 151(6):703-709
    [31]Wang Y, Meng A, lang H, et al. Activation of nuclear factor κB in vivo selectively protects the murine small intestine against ionizing Radiation-Induced Damage[J]. Cancer Res,2004,64(17):6240-6246
    [32]Zarubin T, Han J. Activation and signaling of the p38 MAPkinase pathway[J]. Cell Res.2005,15:11-18
    [33]Chang L, Karin M. Mammalian MAP kinase. signalincascades.Nature[J].2001, 410:37-40
    [34]Schaeffer HJ, Weber MJ. Mitogen-activated protein kinases:specific messages from ubiquitous messengers[J]. Mol Cell Biol.1999,19:2435-2444
    [35]Raman M, Chen W, Cobb, MH. Differential regulation and properties of MAPKs[J]. Oncogene.2007,26:3100-3112
    [36]王国军,刘亚伟,李玉花,姜勇.p38丝裂原活化蛋白激酶抑制剂研究进展[J]生物技术通讯.2009,20(3):399-403
    [37]NebredaAR, Porras A. p38 MAP kinases:beyond the stress response[J]. Trends Biochem. Sci.2000,25:257-260
    [38]Ono K, Han J. The p38 signal transduction pathway:activation and function[J]. Cell. Signal.2000,12,1-13
    [39]Giannakis M, Stappenbeck TS, Mills JC, et al. Molecular properties of adult mouse gastric and intestinal epithelial progenitors in their niches[J].J Biol Chem. 2006,281:11292-11300
    [40]WANG FC. Experimental study on mechanisms involved in intestinal epithelial cell damage caused by whole body irradiation and endotoxin stress[D]. Chongqing. Third Military Medical University.2006:58-72
    [41]Noble ME, Endicott J A, Johnson L N. Protein kinase inhibitors:insights into drug design from structure[J]. Science.2004.303(5665):1800-1805
    [42]Jackson PF, Bullington JL. Pyridinylimidazole based p38 MAP kinase inhibitors[J]. Curr Top Med Chem,2002,2:1011-1020
    [43]CMIlo PF, Pargellis C, Regan J. The non-diaryl heterocycle classes of p38 MAP kinase inhibitors[J]. Curt Top Med Chem.2002,2(9):1021-1035
    [44]Cuenda A, Rouse J, Doza YN, et al. SB203580 is a specific inhibitor of a MAP kinase homologue which is stimulated by cellular stresses and interleukin[J]. FEBS Lett,1995,364(2):229-233
    [45]翟中和等.细胞生物学[M],北京高等教育出版社.第二版.2009:442-445
    [46]Coleman ML, Sahai EA, Yeo M, et al. Membrane blebbing during apoptosis results from caspasemediated activation of ROCK-1[J]. Nat Cell Biol. 2001,3:339-345
    [47]Ndozangue-Touriguine O, Hamelin J, Breard J.Cytoskeleton and apoptosis[J]. Biochem Pharmacol.2008,76:11-18
    [48]Wen L-P, Fahrni JA, Troie S, et al. Cleavage of focal adhesion kinase by caspases during apoptosis[J]. J Biol Chem.1997,272:26056-61
    [49]Elliott MR, Chekeni FB, Trampont PC, et al. Nucleotides released by apoptotic cells act as a find-me signal to promote phagocyticclearance.Nature[J].2009,461:282-286
    [50]Aravind L, Dixit VM, Koonin EV. The domains of death:evolution of the apoptosis machinery. TIBS.1999,24:47-53
    [51]Potten CS. Radiation,the ideal cytotoxic agent for studying the cell biology of tissues such as the small intestine. Radiat Res,2004,161(2):123-36
    [52]Garrido MC, Cordell JL, Becker MH, et al. Monoclonal antibody JC1:new reagent for studying cell proliferation. J Clin Pathol.1992,45(10):860-5
    [53]Bulavin DV, Phillips C, Nannenga B, et al. Inactivation of the Wipl phosphatase inhibits mammary tumorigenesis through p38 MAPK-mediated activation of the pl6(Ink4a)-p19(Arf) pathway [J]. Nat Genet.2004,36(4):343-50
    [54]Onal C, Topkan E, Efe E, et al. Comparison of rectal volume definition techniques and their influence on rectal toxicity in patients with prostate cancer treated with 3D conformal radiotherapy:a dose-volume analysis[J]. Radiat Oncol. 2009,4:14
    [55]Potten CS. Radiation, the ideal cytotoxic agent for studying the cell biology of tissues such as the small intestine[J]. Radiat Res.2004,161(2):123-136.
    [56]Fei P, El-Deiry WS. P53 and radiation responses[J]. Oncogene,2003, 22(37):5774-5783
    [57]Bourgier C, Haydont V, Milliat F, et al. Inhibition of Rho kinase modulates radiation induced fibrogenic phenotype in intestinal smooth muscle cells through alteration of the cytoskeleton and connective tissue growth factor expression [J]. Gut 2005,54:336-343
    [58]Murmu N, Jung J, Mukhopadhyay D, et al. Dynamic antagonism between RNA-binding protein CUGBP2 and cyclooxygenase-2-mediated prostaglandin E2 in radiation damage. Proc Natl Acad Sci USA.2004,101:13873-13878
    [59]Bulavin DV, Demidov ON, Saito S,et al. Amplification of PPM1D in human tumors abrogates p53 tumor-suppressor activity[J].Nat Genet.2002,31 (2):210-215
    [60]Laufer S A,Margutti S.Isoxazolone based inhibitors of p38 MAPkinases[J]. J Med Chem,2008,51(8):2580-2584
    [61]Wmbleski S T.Lin S,Hynes J J,et al. Synthesis and SAR of new pyrrolo[2.1-f][1,2,4]triazines as potent p38[alpha]MAP kinaseinhibitors[J]. Bioorg Med Chem Lett,2008,18(8):739-2744
    [62]Hynes J J,Wu H,Pitt S,et al. The discovery of (R)-2-(sec-butylamino)-N-(2-methyl-5-(methy lcarbamoy 1)phenyl 1 thiazole-5-carbox-amide(BMS-640994)-A potent and eficacious p38[alpha]MAP kinase inhibitor[J]. Bioorg Med Chem Lett,2008,18(6):1762-1767
    [63]Montalban A G, Boman E, Chang C D, et al.The design and synthesis of novel[alpha]ketoamide-based p38 MAP kinase inhibitors[J]. Bioorg Med Chem Lett, 2008,18(6):1772-1777
    [64]Ozdemir C, Akdis C A. Discontinued drugs in 2006:pulmonary-allergy, dermatological, gastrointestinal and arthritis drugs[J]. Expert Opin Investig Drugs, 2007,16(9):1327-344
    [65]Angell R M,Bamborough P, Cleasby A, et al. Biphenyl amide p38 kinase inhibitors 1:discovery and binding mode [J]. Bioorg Med Chem Lett,2008,18(1): 318-323
    [66]Zhou W, Chen Q, Chen Q.The action of p38 MAP kinase and its inhibitors on endometriosis[J]. Acta Pharmaceutica Sinica(药学学报) 2010,45 (5):548-554
    [1]薛芳,许占民.中国药物大全(中药卷)[M].第1版.北京:人民卫生出版社出版:2005
    [2]血必净注射液说明[Z].天津红日药业.2008
    [3]曹书华,王今迭.血必净对感染性多器官功能障碍综合征大鼠组织及内皮损伤保护作用的研究.中国危重病急救医学,2002,14(8):489-491.
    [4]汪慧珍,饶红霞.血必净注射液治疗脓毒症药理作用研究进展[J].中外医学研究.2010,8(8):37
    [5]李海峰,于亚欣,姜晓明,刘永茂,刘晓亮,孙明莉等.血必净注射液对复苏后大鼠细胞因子和p38丝裂素活化蛋白激酶通路的影响[J].中国中西医结合急救杂志.2010,17(3):148-149
    [1]Knight DA,Holgate ST(2003). The airway epithelium:structural and functional properties in health and disease. Respirology,8(4),432-446.
    [2]Mercer BA, Lemaitre V, Powell CA, et al. (2006). The epithelial cell in lung health and emphysema pathogenesis. Current Respiratory Medicine Revue,2(2),101-142.
    [3]Rawlins EL, Hogan BL (2006). Epithelial stem cells of the lung:privileged few or opportunities for many? Development,133(13),2455-2465.
    [4]Bowden DH (1983). Cell turnover in the lung. American Review of Respiratory Disease,128(2 Pt 2), S46-S48.
    [5]Hong KU, Reynolds SD, Watkins S, et al. (2004). In vivo differentiation potential of tracheal basal cells:evidence for multipotent and unipotent subpopulations. American Journal of Physiology. Lung Cellular and Molecular Physiology,286(4), L643-L649.
    [6]Hong KU,Reynolds SD, Watkins S, et al. (2004). Basal cells are a multipotent progenitor capable of renewing the bronchial epithelium.American Journal of Pathology,164(2),577-588.
    [7]Nakajima M, Kawanami O, Jin E, et al. (1998). Immunohistochemical and ultrastructural studies of basal cells, Clara cells and bronchiolar cuboidal cells in normal human airways. Pathology International,48(12),944-953.
    [8]Reynolds SD, Giangreco A, Power JH, et al. (2000). Neuroepithelial bodies of pulmonary airways serve as a reservoir of progenitor cells capable of epithelial regeneration. American Journal of Pathology,156(1),269-278.
    [9]Reynolds SD, Hong KU, Giangreco A, et al. (2000). Conditional clara cell ablation reveals a self-renewing progenitor function of pulmonary neuroendocrine cells. American Journal of Physiology. Lung Cellular and Molecular Physiology,278(6), L1256-L1263.
    [10]Buckpitt A, Chang AM, Weir A, et al. (1995). Relationship of cytochrome P450 activity to Clara cell cytotoxicity. IV. Metabolism of naphthalene and naphthalene oxide in microdissected airways from mice, rats, and hamsters. Molecular Pharmacology,47(1),74-81.
    [11]Hong KU, Reynolds SD, Giangreco A, et al. (2001). Clara cell secretory protein expressing cells of the airway neuroepithelial body microenvironment include a label-retaining subset and are critical for epithelial renewal after progenitor cell depletion. American Journal of Respiratory Cell and Molecular Biology, 24(6),671-681.
    [12]Kim CF, Jackson EL, Woolfenden AE, et al. (2005). Identification of bronchioalveolar stem Cells in normal lung and lung cancer. Cell,121(6),823-835.
    [13]Adamson IY, Bowden DH (1975). Derivation of type 1 epithelium from type 2 cells in the developing rat lung. Laboratory Investigation,32(6),736-745.
    [14]Evans MJ, Cabral LJ, Stephens RJ, et al. (1975). Transformation of alveolar type 2 cells to type 1 cells following exposure to NO2. Experimental and Molecular Pathology,22(1),142-150.
    [15]Reddy R, Buckley S, Doerken M, et al. (2004). Isolation of a putative progenitor subpopulation of alveolar epithelial type 2 cells. American Journal of Physiology. Lung Cellular and Molecular Physiology,286(4), L658-L667.
    [16]Reya T, Morrison SJ, Clarke MF, et al. (2001). Stem cells, cancer, and cancer stem cells. Nature,414(6859),105-111.
    [17]Eramo A, Lotti F, Sette G,, et al. (2008). Identification and expansion of the tumorigenic lung cancer stem cell population. Cell Death and Differentiation.15(3), 504-514.
    [18]Barth PJ, Koch S, Miiller B, et al. (2000). Proliferation and number of Clara cell 10-kDa protein (CC10)-reactive epithelial cells and basal cells in normal, hyperplastic and metaplastic bronchial mucosa. Virchows Archiv,437(6),648-655.
    [19]Watkins DN, Berman DM, Burkholder SG, et al. (2003). Hedgehog signaling within airway epithelial progenitors and in small-cell lung cancer. "Nature,422 (6929), 313-317.
    [20]Giangreco A, Groot KR, Janes SM (2007). Lung cancer and lung stem cells-Strange bedfellows? American Journal of Respiratory and Critical Care Medicine, 175(6),547-553.
    [21]Goodell MA, Brose K, Paradis G, et al. (1996). Isolation and functional properties of murine hematopoietic stem cells that are replicating in vivo. Journal of Experimental Medicine,183(4),1797-1806.
    [22]Zhou S, Schuetz JD, Bunting KD, et al. (2001). The ABC transporter Bcrpl/ABCG2 is expressed in a wide variety of stem cells and is a molecular determinant of the side-population phenotype. Nature Medicine,7(9),1028-1034.
    [23]Hirschmann-Jax C, Foster AE, Wulf GG, et al. (2004). A distinct "side population" of cells with high drug efflux capacity in human tumor cells. Proceedings of the National Academy of Sciences of the United States of America,101(39), 14228-14233.
    [24]Ho MM, Ng AV, Lam S, et al. (2007). Side population in human lung cancer cell lines and tumors is enriched with stem-like cancer cells. Cancer Research,67(10), 4827-4833.
    [25]Wu C,Alman BA. (2008). Side population cells in human cancers. Cancer Letters, 268(1),1-9.
    [26]Meng X, Li M, Wang X, et al. (2009). Both CD133+and CD133-subpopulations of A549 and H446 cells contain cancer-initiating cells. Cancer Science,100(6),1040-1046.
    [27]Tirino V, Camerlingo R, Franco R, et al. (2009). The role of CD133 in the identification and characterisation of tumour-initiating cells in non-small-cell lung cancer. European Journal of Cardio-Thoracic Surgery,36 (3),446-453.
    [28]Chute JP, Muramoto GG, Whitesides J, et al. (2006). Inhibition of aldehyde dehydrogenase and retinoid signaling induces the expansion of human hematopoietic stem cells. Proceedings of the National Academy of Sciences of the United States of America,103(31),11707-11712.
    [29]Patel M, Lu L, Zander DS, et al. (2008). ALDH1A1 and ALDH3A1 expression in lung cancers:correlation with histologic type and potential precursors. Lung Cancer,59(3),340-349.
    [30]Jiang F, Qiu Q, Khanna A, et al. (2009). Aldehyde dehydrogenase 1 is a tumor stem cell-associated marker in lung cancer. Molecular Cancer Research,7(3), 330-338
    [31]Moreb JS, Baker HV, Chang LJ, et al. (2008). ALDH isozymes down regulation affects cell growth, cell motility and gene expression in lung cancer cells. Molecular Cancer,7,87.
    [32]Kitamura H, Okudela K, Yazawa T, et al. (2009). Cancer stem cell:implications in cancer biology and therapy with special reference to lung cancer. Lung Cancer, 66(3):275-81.
    [33]Kirstetter P, Anderson K, Porse BT, et al. (2006). Activation of the canonical Wnt pathway leads to loss of hematopoietic stem cell repopulation and multilineage differentiation block. Nature Immunology,7(10),1048-1056.
    [34]Reynolds SD, Zemke AC, Giangreco A, et al. (2008). Conditional stabilization of betacatenin expands the pool of lung stem cells. Stem Cells,26(5),1337-1346.
    [35]You L, He B, Xu Z, et al. (2004). Inhibition of Wnt-2-mediated signaling induces programmed cell death in non-small-cell lung cancer cells. Oncogene,23(36), 6170-6174.
    [36]Pepicelli CV, Lewis PM, McMahon AP. (1998). Sonic hedgehog regulates branching morphogenesis in the mammalian lung. Current Biology,8(19), 1083-1086.
    [37]TaipaleJ, Beachy PA. (2001). The Hedgehog and Wnt signaling pathways in cancer. Nature,411(6835),349-354.
    [38]Watkins DN, Berman DM, Burkholder SG, et al. (2003). Hedgehog signaling within airway epithelial progenitors and in small-cell lung cancer. Nature,422 (6929), 313-317.
    [39]Collins BJ, Kleeberger W, Ball DW. (2004). Notch in lung development and lung cancer. Seminars in Cancer Biology,14(5),357-364.
    [40]Ito T, Udaka N, Yazawa T, et al. (2000). Basic helix-loop-helix transcription factors regulate the neuroendocrine differentiation of fetal mouse pulmonary epithelium. Development,127(18),3913-3921.
    [41]Konishi J, Kawaguchi KS, Vo H, et al. (2007). Gamma-secretase inhibitor prevents Notch3 activation and reduces proliferation in human lung cancers. Cancer Research,67(17),8051-8057.
    [42]Zheng Q, Qin H, Zhang H,et al. (2007). Notch signaling inhibits growth of the human lung adenocarcinoma cell line A549. Oncology Reports,17(4),847-852.
    [43]Jemal A, Siegel R, Ward E, et al. (2009). Cancer statistics,2009. CA:A Cancer Journal for Clinicians,59(4),225-249.
    [1]赵宝锋,刘建香,苏旭.细胞凋亡信号通路调控与肿瘤辐射敏感性.中华放射医学与防护杂志,2005,25(4):401-4
    [2]Adams JM, Cory S. The Bcl-2 apoptotic switch in cancer development and therapy. Oncogene.2007;26(9):1324-1337
    [3]Yu J, Wang Z, Kinzler KW, et al. PUMA mediates the apoptotic response to p53 in colorectal cancer cells. Proc Natl Acad Sci USA.2003,100 (4) : 1931
    [4]Niizuma K, Endo H, Nito C, et al. Potential role of PUMA in delayed death of hippocampal CA1 neurons after transient global cerebral ischemia. Stroke,2009, 40(2):618-25
    [5]Avila JL,Grundmann O, Burd R, et al. Radiation-induced salivary gland dysfunction results from p53-dependent apoptosis. Int J Radiat Oncol Biol Phys. 2009,73(2):523-9
    [6]Nakano K, Vousden KH. PUMA, a novel proapoptotic gene, is induced by p53. Mol Cell,2001,7(3):683-694.
    [7]You H, et al. FOXO3a-dependent regulation of Puma in response to cytokine/ growth factor withdrawal. J Exp Med.2006,203:1657-1663
    [8]Lam D, Dickens D, Reid EB,et al. MAP4K3 modulates cell death via the post-transcriptional regulation of BH3-only proteins. Proc Natl Acad Sci USA. 2009,106(29):11978-83
    [9]Chipuk JE, Bouchier-Hayes L, Kuwana T, et al. PUMA couples the nuclear and cytoplasmic proapoptotic function of p53. Science,2005,309(5741):1732-1735.
    [10]Ming, L, Wang P, Bank A, et al. PUMA dissociates Bax and BCL-XL to induce apoptosis in colon cancer cells. J Biol Chem,2006,281,16034-16042
    [11]Chipuk JE, Green DR. How do BCL-2 proteins induce mitochondrial outer membrane permeabilization? Trends Cell Biol,2008,18(4):157-164.
    [12]Yee KS, Vousden KH. Contribution of membrane localization to the apoptotic activity of PUMA. Apoptosis 2008; 13(1):87-95.
    [13]Yu J, Wang P, Ming L, et al. SMAC/Diablo mediates the proapoptotic function of PUMA by regulating PUMA-induced mitochondrial events. Oncogene,2007, 26(29):4189-98.
    [14]Yu J, Zhang L. PUMA, a potent killer with or without p53. Oncogene.2009,27:71-83
    [15]Gallenne T, Gautier F, Oliver L,et al. Bax activation by the BH3-only protein Puma promotes cell dependence on antiapoptotic Bcl-2 family members. Cell Biol. 2009,185(2):279-90
    [16]Yee KS, Wilkinson S, James J, et al. PUMA-and Bax-induced autophagy contributes to apoptosis. Cell Death Differ,2009,16(8):1135-45.
    [17]Ishihara T, Hoshino T, Namba T, et al. Involvement of up-regulation of PUMA in non-steroidal antiin-flammatory druginduced apoptosis. Biochem Biophys Res Commun,2007,356(3):711-717.
    [18]Hao H, Dong Y, Bowling MT, et al. E2F-1 induces melanoma cell apoptosis via PUMA upregulation and Bax translocation. BMC Cancer,2007,7:24.
    [19]Hanahan D, Weinberg RA. The hallmarks of cancer. Cell,2000; 100:57-70.
    [20]Johnstone RW, Ruefli AA, Lowe SW. Apoptosis:a link between cancer genetics and chemotherapy. Cell,2002,108:153-164.
    [21]Vogelstein B, Kinzler KW. Cancer genes and the pathways they control. Nat Med,2004,10:789-799.
    [22]张克君,李德春,朱新国,等PUMA基因转染对胰腺细胞生长的影响.胰腺病学,2006,12(6):355-357.
    [23]Giladi N, Dvory-Sobol H, Sagiv E, et al. Gene therapy approach in prostate cancer cells using an active Wnt signal. BiomedPharmacother,2007, 61(9):527-530.
    [24]Liu Y, Li Y, Wang H, et al. BH3-based Fusion Artificial Peptide Induces Apoptosis and Targets Human Colon Cancer. Molecular Therapy,2009, 17(9):1509-16
    [25]La Porta CA. Drug resistance in melanoma:new perspectives. Curr Med Chem, 2007,14(4):387-391.
    [26]Wang H, Qian H, Yu J, et al. Administration of PUMA adenovirus increases the sensitivity of esophageal cancer cells to anticancer drugs. Cancer Biol Ther,2006, 5(4):380-385.
    [27]Yu J, Yue W, Wu B, et al. PUMA sensitizes lung cancer cells to chemotherapeutic agents and irradiation. Clin Cancer Res,2006,12(9):2928-36.
    [28]Sun Q. Ming L, Thomas SM, et al. PUMA mediates EGFR tyrosine kinase inhibitor-induced apoptosis in head and neck cancer cells. Oncogene,2009, 28(24):2348-57
    [29]Jeffers JR, Parganas E, Lee Y. et al. PUMA is an essential mediator of p53-dependent and-independent apoptotic pathways. Cancer Cell,2003, 4(4):321-328.
    [30]Villunger A, Michalak EM, Conltas L, et al. p53-and drug-induced apoptotic responses mediatd by bh3-only proteins puma and noxa. Science,2003, 302(5647):1036-38.
    [31]Ghosh AP, Walls KC, Klocke BJ, et al. The Proapoptotic BH3-Only, Bcl-2 Family Member, Puma Is Critical for Acute Ethanol-Induced Neuronal Apoptosis. Neuropathol Exp Neurol.2009,68(7):747-56
    [32]Avila JL, Grundmann O, Burd R,et al. Radiation-induced salivary gland dysfunction results from p53-dependent apoptosis. Int J Radiat Oncol Biol Phys, 2009,73(2):523-9
    [33]Chang HJ, Maj JG, Paris F, Xing HR, et al. ATM regulates target switching to escalating doses of radiation in the intestines. Nat Med,2005,11(5):484-90.
    [34]Qiu W, Liu H, Epperly MI, et al. PUMA regulates intestinal progenitor cell radiosensitivity and gastrointestinal syndrome. Cell Stem Cell,2008, 2(6):576-583.
    [35]Shao L, Sun Y, Cai Z, et al. Deletion of PUMA selectively protects HSCs from lethal dose γ-irradiation. International Forum on Stem Cells 2008,Oct 15-18,2008,Tianjin, China
    [36]Wu WS, Heinrichs S, Xu D, et al. Slug antagonizes p53-mediated apoptosis of hematopoietic progenitors by repressing puma. Cell,2005,123(4):641-653.
    [37]Kim H, Rafiuddin-Shah M, Tu HC, et al. Hierarchical regulation of mitochondrion-dependent apoptosis by BCL-2 subfamilies. Nat Cell Biol,2006,8 (12):1348-58