杨树维管组织特异性启动子转化和表达研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
杨树属杨柳科(Salicaceae)杨属(Populus),在我国分布广泛,是主要的造林和经济树种,并且在生态环境治理和解决木材短缺等方面占有重要位置。杨树具有生长快、材质好、适应性强等特点。本实验以三倍体毛白杨、741杨、107杨、108杨和烟草无菌苗为试验材料,建立了叶片再生体系并对农杆菌介导的遗传转化体系进行了优化。通过农杆菌介导法将杨树维管束特异表达载体pProNAC068::GUS转入烟草,将pProNAC157::GUS转入杨树和烟草。对转化植株进行DNA和GUS活性检测,研究该启动子在杨树和烟草中的特异表达情况。主要结果如下:
     确定烟草转化的卡那霉素临界筛选浓度为50 mg·L-l,头孢噻肟钠的抑菌浓度为300mg·L-l。利用农杆菌介导叶盘转化法,将植物表达载体pProNAC068::GUS和pProNAC157::GUS转入烟草中,分别获得17个株系和3个株系。经PCR检测,初步证明目的基因已整合到烟草的基因组中。GUS组织化学分析表明:植物表达载体pProNAC068::GUS在根、茎和叶中检测到GUS活性;植物表达载体pProNAC157::GUS在根、茎和叶中没有检测到GUS活性。
     对农杆菌介导的三倍体毛白杨和741杨遗传转化体系进行了优化,确立了最佳分化培养基MS+6-BA 1.0 mg·L-1+NAA 0.1 mg·L-1和MS+TDZ 0.1 mg·L-1+NAA 0.1 mg·L-1,生根培养基1/2MS+IBA 0.3~0.5 mg·L-1。适宜菌液浓OD600=0.4~0.6,侵菌时间为8~10 min,共培养时间以2 d为宜。卡那霉素临界筛选浓度为50 mg·L-1,抗生素头孢噻肟钠的抑菌浓度为400 mg·L-1。
     用农杆菌介导法将植物表达载体pProNAC157::GUS转入三倍体毛白杨和741杨。经过卡那霉素筛选,分别得到16个和2个抗性株系。经过PCR检测显示目的基因已整合到各基因组中。GUS组织化学分析显示:三倍体毛白杨仅在少量茎中检测到了GUS活性,在根和叶中没有检测到GUS活性;在741杨根、茎和叶中没有检测到GUS活性。
     采用无菌苗108杨叶片为外植体,筛选出MS+6-BA 0.6 mg·L-1+NAA 0.2 mg·L-1以诱导不定芽的分化,再生芽生根培养基为1/2 MS+IBA0.3 mg·L-1。107杨和108杨卡那霉素临界筛选浓度为30~35 mg·L-1,抗生素头孢噻肟钠的抑菌浓度为400 mg·L-1。遗传转化的适宜菌液浓OD600=0.4,侵菌时间为8~10 min,共培养时间以2 d为宜。用农杆菌介导法将植物表达载体pProNAC157::GUS转入107杨和108杨。筛选转化植株,107杨共获得2个卡那霉素抗性系号,经PCR分子检测,目的基因已整合到107杨基因组中。GUS组织化学分析显示:在根、茎和叶中没有检测到GUS活性。
Poplars belong to Salicaceae Populus, which is very popular throughout in the china. It not only is an important sylvicultural and commercial tree, but also has important use in maintenance balance of ecosystem and the resolvent of wood shortage.Popla has many advantages,such as fast growth, good adaptability, wide adaptation. Selecting Triploid of PopulusTomentosa,741poplar,Populus×euramericana‘Neva’,Populus×euramericana‘Guariento’and tobacco the experiment materials,the leaf regeneration systems were established and optimized the Agrobacterium tumefaciens mediated transformation system. Mediated by Agrobacterium tumefaciens, transfer pProNAC068::GUS were integrated into tobacco,pProNAC157::GUS were integrated into Poplars and tobacco genome.Some transgenic plants were tested on DNA levels and GUS gene activity.The main results were as follows:
     Kanamycin (Km) critical concentration was 50 mg·L-1 and Cefotaxime was 300 mg·L-1for the tobacco transformation. pProNAC068::GUS and pProNAC157::GUS were transformed into mode plant with leaf disc transformation respectively. At last we obtained 17 and 3 plants of Km resistant.PCR detections indicated that genes were integrated into the tobacco genome.A GUS histochemical assay showed that pProNAC068::GUS of GUS activity was found in root, stem and leave, but the pProNAC157::GUS of GUS activity was not found in root, stem and leave.
     The leaf high frequency transformation system of Triploid of PopulusTomentosa and 741 poplar was established.First, a high frequency regeneration system of Triploid of PopulusTomentosa has been established.The best shoot regeneration mediumwas MS+6-BA 1.0 mg·L-1+NAA 0.1 mg·L-1 and MS+TDZ 0.1 mg·L-1+NAA 0.1 mg·L-1, the root induction medium was 1/2 MS+6-BA 0.3~0.5 mg·L-1.Infected liquid concentration OD600 was 0.4~0.6, infection of leaf explants for 8~10min with Agrobacteria and cocultivation for 2 days after infection would befavorable for the transformation. Kanamycin critical concentration was 50 mg·L-1and Cefotaxime 400 mg·L-1 was a suitable concentration to control the propagation of Agrobacteria.
     16 and 2 plants of Km resistant with pProNAC157::GUS were gained via strictly selection by Km. The results of PCR showed that the foreign gene has been integrated into genome of Triploid of Populus Tomentosa and 741 poplars. A GUS histochemical assay showed that GUS activity of Triploid Populus Tomentosa was only found in some small amount of the stem and was not found in root and leave; the GUS activity of 741 poplars was not found.
     The regeneration system of Populus×euramericana‘Guariento’was established. The shoots regeneration medium were MS+ 6-BA 0.6 mg·L-1+NAA 0.2 mg·L-1 .Then the regenerated plants were rooted on 1/2 MS+IBA0.3 mg·L-1.Kanamycin (Km) critical concentration was 30~35mg·L-1and Cefotaxime 400 mg·L-1 was a suitable concentration to control the propagation of Agrobacteria. Several crucial factors influencing the transformation efficiency were studied.It was found that OD600=0.4, infection of leaf explants for 8~10 min with Agrobacteria and cocultivation for 2 days after infection would befavorable for the transformation.
     Mediated by Agrobacterium tumefaciens pProNAC157 genes were transformed into Populus×euramericana‘Neva’and Populus×euramericana‘Guariento’,there were 2 Kanamycin resistant buds of Populus×euramericana‘Neva’.PCR detections indicated that genes were integrated into the Populus×euramericana‘Neva’genome. A GUS histochemical assay showed that the GUS activity was not found in root, stem and leave.
引文
[1]赵华燕,卢善发,晁瑞堂.杨树的组织培养及其基因工程研究[J].植物学通报,2001, 18(2):169-176.
    [2]王世绩.杨树研究进展[M].北京:中国林业出版社,1995.
    [3]李淑梅,张春玲,胡建军,等.转基因抗虫杨树新品种‘健杨94’[J].林业科学,2008,44 (7):78.
    [4]姚燕,于惠敏,孙倩.杨树基因工程的研究进展[J].山东林业科技,2006,164(3):82-84.
    [5]BrunnerAM,BusovVB,StraussSH.Poplar genome sequence,functional genomics in an ecologically dominant Plant species[J].Trends Plant Sei 2004(9):49-56.
    [6]莽克强,陈受宜,李季伦.农业生物工程[M].化学工业出版社,1998.
    [7]赵鑫,詹立平,刘桂丰.杨树基因工程抗性育种研究进[J].东北林业大学学报,2004,32(6):76-78.
    [8]伍宁丰,范云六.含苏云金芽抱杆菌杀虫蛋白基因的杨树工程植株的建立[J].科学通报,1991,9:705-708.
    [9]McCown BH,McCabe DE,Russell DR,e tal.Stable transformation of Populus and Incorporation of pest resistance by electric discharge particle acceleration[J].Plant Cell Reports ,1991,9:590-594.
    [10]田颖川,韩一凡.抗虫转基因欧洲黑杨的培育[J].生物工程学报,1993,9(4):29-297.
    [11]王学聘,韩一凡,戴莲韵,等.抗虫转基因欧美杨的培育[J].林业科学,1997, 33(l):69-74.
    [12]陈颖,韩一凡,李铃,等.苏云金杆菌杀虫晶体蛋白基因转化美洲黑杨的研究[J].林业科学,1995,31(2):97-103.
    [13]郑均宝,张玉满.741杨离体叶片再生及抗虫基因转化[J].河北农业大学学报,1995, 18(3):20-25.
    [14]McNabb H S.A field trial of transgenic hybrid poplar trees:establishmeng and growth through the second season [J].Agroculture Resarch Institute,1991,9:155-159.
    [15]KloPeensten NB,McnabbJ,Hart E.Transformation of Populus hybrids to study and improve pest resistanee[J].Silvae Genetiea,1993,42(2-3):86-90.
    [16]田颖川,郑均宝,虞红梅,等.转双抗虫基因杂种741毛白杨的研究[J].植物学报,2000,42(3):263-268.
    [17]郑均宝,梁海永,田颖川,等.转双抗虫基因741毛白杨的选择及抗虫性[J].林业科学,2000,36(2):55-62.
    [18]姜静,常玉广,董京祥,等.小黑杨转双价抗虫基因的研究[J].植物生理学通讯,2004, (12):669-672.
    [19]张冰玉,苏晓华,等.转抗鞘翅目害虫基因银腺杨的获得及其抗虫性的初步研究[J].北京林业大学学报,2006,38(2):102-105.
    [20]闫新甫.转基因植物[M].北京:科学出版社,2003,154-192 426-435.
    [21]郝贵霞,朱祯,朱之珶.杨树基因工程进展[M].2000,20(4):6-9.
    [22]王关林,方宏筠.植物基因工程[M].北京:科学出版社,2004:370-382.
    [23]Nicolescu C,Sandre C,Jouanin L,et al.Genetic engineering on pHenolic metabolism in poplar in relation with resistance against pathogens[J].Acta Bot Hallica,1996, 143: 539-546.
    [24]赵世民,祖中诚,刘根齐.通过农杆菌介导法将兔防御素NP-1基因导入毛白杨.遗传学报,1999,26:711-714.
    [25]Ling H.Increased Septoria musive resistance in transgenic hybrid poplar leaves expressing a wheat oxalate oxidases gene[J].Plant Mol,201,45:173-176.
    [26]樊军锋,韩一凡.84K杨树耐盐基因转化研究[J].西北林学院学报,2002,7(4):33-37.
    [27]杨传平,刘桂丰.耐盐基因Bet-1转化小黑杨的研究[J].林业科学,2001,37(6):34-38.
    [28]邹维华,赵强,崔德才,等.反义磷脂酶Dr基因与几丁质酶基因转化美洲黑杨G2[J].林业科学,2006,42(1):37-42.
    [29]刘斌,李红双,王其会,等.反义磷脂酶Dr基因转化毛白杨的研究[J].遗传,2002, 24(l):40-44.
    [30]Arisi A C,Cornic G,JouaninL et al.Over- expression of Fe-SOD in transformed poplar modifiesthe regulation of Photosynthesis atlow CO2 Partial pressuresor following exposure to the prooxidant hebieide methyl viologen[J].Plant Phiysiol,1998, 117:565- 574.
    [31]陶用珍,管映亭.木质素的化学结构及其应用[J].纤维素科学与技术,2003,11 (1):41-55.
    [32]卢善发,宋艳茹.维管组织分化的分子生物学研究[J].植物学通报,1999, 16(3):219-227.
    [33]魏建华,赵华燕,等.毛白杨CCoAOMTcDNA片段的克隆与转基因杨木质素含量的调控.植物学报[J],2001,43(11):1179-1183.
    [34]DOORSSELAEREJV.Anovel lignin in Poplar trees with a redueed caffeinc acid/5-hydroxyferulic acid O-methytransferase activity[J].ThePlant Jounal,1995, 8(6): 855-864.
    [35]Vanholme R, Morreel K,Ralph J, et al. Lignin engineering. Curr Opin Plant Biol[J] .2008,11,278-285.
    [36]贾彩虹,赵华燕,王宏芝,等.抑制4CL基因表达获得低木质素含量的转基因毛白杨[J].科学通报,2004,49(7):662-666.
    [37] Mackay J,Presenell T,Jameel H,et al.Modified lignin and delignifieation with a CAD-deficient loblolly pine[J].Holzforschung,1999,53(4):403-410.
    [38]Jouanin L, Goujin T, Nadai V,et al.Lignification in transgenic poplar with extremely reduced caffeic acid o-methyltransferase activity[J].Plant Physiol,2000,123 (4):1363- 1373.
    [39]TzfiraT, Vainstein A.Rol-gene expression in transgenic aspen(Populus tremula) plants results in accelerated growth and improved stem production index[J].Trees, 1999, 14:49- 54.
    [40]Claudia G, Frank D, Dieter E.Wood formation in rolC transgenic aspen trees [J].Trees,2000,14:297 304.
    [41]Hu w J, Harding S A, Lung J et al.Repression of lignin biosynthesis promotes cellulose accumulation and growth in transgenic:trees[J]. Nat Bioteehnol, 1999, 17:808-812.
    [42]Eriksson M E,Israe1Sson M,Olsson, et al.Increased gibberellins biosynthesis in transgenic trees promoters growth , biomass production and xylem fiber length[J].Nature Biotechnology, 2000, 18(7):784-788.
    [43]Franke R,Mc Michael C M,Meyer K, et al.Modified lignin in tobacco and popular plants over-expressing the Arabidopsis gene encoding ferulate5-hydroxylase[J]. Plant,2000,22(3):223-234.
    [44]TANG Wei.Conifer genetic engineering: Partical bombardment and Agrobacterium mediated gene transfer and its applieation in future forests [J].Journal of Forestry Research,2001,12(4):220-228.
    [45]Charest PJ,Devantier Y,Lachance D.Stable genetic transformation of Prcea mariana(Black spruce)viamicroprojectile bombardment[J].InVitro Cell Dev.Biol,1996, 32:91-99.
    [46]]Huang Y, Diner AM, Karnosky DF.Agrobacterium rhizogenes-mediated genetic transformation and regeneration of aconifer: Larix deciduas[J].In Vitro cell Dev. Blol,1991,27:201-207.
    [47]尹伟伦,刘玉军,刘强,等.木本植物基因组研究[J].北京林业大学学报,2002,24 (21):244-248.
    [48]李浚明.植物组织培养教程[M].北京农业大学出版社,1992.
    [49]方宏筠,王关林,何孟元,等.天兰冰草染色体对小冰麦外值体再生能力的影响及基因的染色体定位[J].遗传学报,1996,23(3):220-227.
    [50]张自立,俞新人.植物细胞和体细胞遗传学技术原理[J].高等教育出版社,1990.
    [51]李浚明.植物组织培养教程[J].北京:北京农业大学出版社,1992.
    [52]龚峥.杨树杂交品系NC5331再生植株诱导和离体繁殖的研究[J].广东林业科技,1995,11(3),34-37.
    [53]詹亚光.杨树花药培养筛选耐盐变异体的研究[J].植物研究,1994,14(1),98-103.
    [54]朱忠荣.响叶杨优树无性繁殖技术[J].贵州农学院学报,1996,15(2):17-22.
    [55]董辰波.三倍体毛白杨组培快繁技术[J].山东林业科技,2000(3):43-45.
    [56]马海芸,何明珠,李毅.三倍体毛白杨愈伤组织诱导及腋芽增殖技术研究[J].甘肃林业科技,2002,27(1):5-7.
    [57]李毅,何明珠,马海芸.三倍体毛白杨组织脱分化培养与植株体再生[J].植物研究,2002,22(3) ,288-291.
    [58]董雁,别婉丽,赵继海.三倍体山杨组培繁育技术的研究[J].辽宁林业科技,1999 (6):11-15.
    [59]张卫芳,高疆生,段黄金,等.胡杨离体快繁技术[J].新疆农业科学.2001, 38(6): 320-322.
    [60]宋玉霞,马洪爱,郭生虎,等.银河I号杨叶外植体再生体系建立[J].西北植物学报, 2002,22(3),661-666.
    [61]李毅.箭胡毛杨愈伤组织诱导、保存与再分化[J].西北植物学报,2 0 0 2,22(3):656-660.
    [62]王树耀,田宗城,黄白红,等.84K杨叶片再生体系的建立[J].湖南文理学院学报(自然科学版),2004,16(4):50-55.
    [63]杨传平,郑琼,马徐俊,等.欧美杨“山地1号”组织培养再生体系的建立[J].分子植物育种,2006,4(4):579-582.
    [64]康薇,郑进,刘凯于,等.美洲黑杨(中嘉8号)离体叶片再生研究[J].武汉植物学研究,2006,24(1):83-86.
    [65]Rakesh Yadav,Pooja Arora,Dharmendar Kumar, et al. High frequency direct plant regeneration from leaf,internode and root segments of Eastern Cottonwood(Populus deltoides) [J]. Plant Biotechnol Rep,2009,3:175–182.
    [66]WangJianGe, SuXiaoHua, JiLiLi, et al. Multiple transgenes Populus×euramericana’Guariento’plants obtained by biolistic bombardment[J]. Chinese Science Bulletin, 2007:224-230.
    [67]吴双秀,吴汪黔生,祖元刚.一种快速有效的741杨离体叶片再生芽方法[J].植物研究,2004,24(3):247-350.
    [68]周鹏,郑学勤.番茄ACC2合酶基因5’端前导序列的改造及其特异表达分析[J].热带作物学报,2001,22(3):51-57.
    [69]Elmayan T, Vaucheret H. Expression of single copies of a stronglyexpressed 35S transgene can be silenced post-transcriptionally[J]. Plant J, 1996, 9:787–797.
    [70]皮灿辉,易自力,王志成.提高转基因植物外源基因表达效率的途径[J].中国生物工程杂志,2003,23(1):1-41.
    [71]刘昱辉,贾士荣.维管束特异表达启动子及其顺式调控元件[J].生物工程学报,2003,19(2):131-135.
    [72]Freitas RL,Carvalho CM,Fietto LG, et al..Distinct repressing modules on the distal region of the SBP2 promoter contribute to its vascular tissue-specific expression in different vegetative organs[J] .Plant Molecular Biology,2007,65(5):603-614.
    [73]Comels H,lchinose,Barz W.Characterization of cDNAs encoding two glycine-rich proteins in chickpea (Cicer arietinum L): accumulation in response to fungal infection and other stress actors[J].Plant Science,2000,154: 83- 88.
    [74]Sakuta C,Satoh S.Vascular tissue-specific gene expression of xylem sap g1ycine-rich proteins in root and their localization in the walls of metaxylem vessels incucumber[J].Plant Cell Physiol,2000,41:627-638.
    [75]蒋浩,秦红敏,虞红梅,等.笋瓜韧皮部蛋白基因启动子的克隆及其功能初探[J].农业生物技术学报,1999,7(1):63-69.
    [76]刘昱辉,王志兴,贾士荣.拟南芥profilin2启动子5’端缺失对维管束特异表达的影响[J].科学通报,2001,46(10):835-839.
    [77] TittaretliA,Milla L,Vargas F, et al.Isolation and comparative analysiso f the wheat TaPT2 promoter:identification in silico of new putative regulatory motifs conserved between monocots and dieots[J].Journal of experimental botany2007 ,58(10):2573-2582.
    [78]丛明,凌华,黄惠琴,等.利用REF启动子构建橡胶树乳管特异表达载体及GUS基因的瞬时表达[J].热带作物学报,2005,26(2):29-33.
    [79]Visser RGF,Stolte A,Jacobsen E.Expression of a chimaeric granule-bound starch synthase-gus gene in transgenic potato plants[J].Plant Mol Biol,1991,17(4):691-699.
    [80]宋东光,黄大庆,王光清,等.不同长度马铃薯GBSS基因启动子的块茎专一性表达的初报[J].复旦学报(自然科学版),1998,37(4):559-563.
    [81]Buttner M,Truernit E,Baier K,et al.At-STP3,a green leaf-specific , low affinity monosaccharide-H+symporter of Arabidopsis thaliana[J].Plant Cell Environ, 2000,23:175-178.
    [82]刘巧泉,陈秀花,陆美芳,等.水稻sbe1启动子驱动的反义sbe-GUS融合基因在转基因水稻中的表达[J].植物生理与分子生物学学报,2003,29(4):332-336.
    [83]Nomura M,Katayama K,Nishimura A,et al.The promoter of rbcS in a C3 plant(rice) directs organ-specific,light-dependent expression in a C4 plant(maize),but does not confer bundle sheath cell-specific expression[J].Plant Mol Biol, 2000, 44(1):99-106.
    [84]王利军,范三红,郭蔼光.拟南芥atslA基因启动子的克隆和功能分析[J].西北植物学报,2004, 24(10):1856-1860.
    [85]杨予涛,杨国栋,石娟,等.一个光合组织特异表达强启动子的分离及功能分析[J].中国科学,2003,33(4):298-306.
    [86]Yu H, Yang S H, Goh CJ.Spatial and temporal expression of the orchid floral homeotic gene DOMADS1 is mediated by its upstream regulatory regions[J].Plant Mol Biol, 2002, 49(2):225-237.
    [87]Guan X,Stege J,Kim M, et al.Heritable endogenous gene regulation in plants with designed polydactyl zinc finger transcription factors[J]. Proc Natl Acad Sci USA, 2002, 99(20):13296-13301.
    [88]ZHANG Shu-Zhen, YANG Ben-Peng,L IU Fei-Hu.Cloning and sequence analysis of a flower-specific expression promoter PchsA[J].Journal of A gricult ural Biotechnology,2002,10(2):116-119.
    [89]Annadana S,Beekwilderm J,Kuipers G.Cloning of the chrysanthemum UEP1 promoter and comparative expression in florets and leaves of Dendranthem a frandiflora[J].Transgenic Res,2002,11(4):437-445.
    [90]姚嵘,马三梅.植物果实的特异型启动子[J].生命化学,2006,26(4):336-339.
    [91]Chen YH,Ouyang B,LiHX, et al.Isolation and characterization of Ell gen promoter from tomato[M].Agriculture Scienees in China,2006,5(9):661-669.
    [92]石东乔,周奕华,万里红等.甘蓝型油菜基因BcNA1启动子在转基因烟草中对GUS基因表达的调控[J].植物生理学报,2001,27(4):313-320.
    [93]蔡祖国,徐小彪,周会萍.植物组织培养中的玻璃化现象及其预防[J].生物技术通讯, 2005, 16(3): 353-355.
    [94]王家麟.植物组织培养及其应用研究概况[J].黑龙江农业科学,2006(3):86-89.
    [95]李胜,李唯,杨德龙,等.植物试管苗玻璃化现象研究进展[J].甘肃农业大学学报, 2003, 38(1): 1-16.
    [96]张彦妮.影响植物组织培养成功的因素[J].北方园艺,2006(3):132-133.
    [97]杨敏生,李志兰,王颖,等.双抗虫基因对三倍体毛百杨的转化和抗虫性表达[J].林业科学,2006,42(9):61-68.
    [98]李静,李志兰,梁海永,等.三倍体毛白杨叶片再生体系建立研究[J].河北农业大学学报,2006,29(4):48-51.
    [99]丁霞,陈晓阳,李云,等.胡杨叶片不定芽再生体系的研究[J].北京林业大学学报:自然科学版,2003,25(2):28-31.
    [100]陈颖,韩一品,李铃,等.苏云杆菌杀虫晶体蛋白转化美洲黑杨的研究.杨树研究进展[C].北京:中国林业出版社,1995.77~83.
    [101]赵华燕,卢善发,晁瑞堂.杨树的组织培养及其基因工程研究[J].植物学通报,2001,18(2):169-176.
    [102]Ahuja M R.Micropagation of woody plants[M].Dordrecht:Klauwer Academic Publishers,1993.187-194.
    [103]王金祥,严小龙,潘瑞炽.不定根形成与植物激素的关系[J].植物生理学通讯, 2005,41(2): 133-142.
    [104]朱青松,梅康明,王沙生.外源激素对烟草髓愈伤组织分化和内源IAA含量的影响[J].北京林业大学学报,1999,21(1): 22-25.
    [105]梁海曼,周菊花.试管苗玻璃化现象的生理生化和机理讨论[J].武汉植物学研究,1994,12(3):281-288.
    [106]蔡祖国,符树根,黄宝祥,等.植物组织培养中玻璃化现象的研究进展[J].江西林业科技,2005(2):35-38.
    [107]李胜,李唯,杨德龙,等.植物试管苗玻璃化现象研究进展[J].甘肃农业大学学报,2002,38(1):1-16.
    [108]丰锋,陈厝边.草莓离体培养中玻璃化的发生及克服措施研究[J].西南大学学报,2007,29(4):78-82.
    [109]罗青,张曦燕,李晓莺,曹有龙.不同培养条件对枸杞组培苗玻璃化的影响[J].安徽农业科学,2008,36(22):9400-9401.
    [110]何芳兰,李毅,赵明,等.影响高山杜鹃试管苗玻璃化的几个因素研究[J].西北林学院学报,2008,23(1):104-107.
    [111]黄宇翔,李章汀,张晓耕.香石竹茎尖试管苗继代培养玻璃化现象的研究[J].中国农学通报,2005,3(21):81-83.
    [112]饶雪芹,张曙光.番木瓜组织培养中玻璃化苗的发生和预防[J].植物生理学通讯,2005,41(3):331.
    [113]顾德峰,宋彦君,赵春莉,等.蝴蝶兰类原球茎玻璃化产生的原因及恢复效果研究[J].北方园艺,2007, (8):183-185.
    [114]王艳,曾幼玲,贺宾,等.油菜试管苗玻璃化发生机理的研究初探[J].生物技术.2006,16(1):75-77.
    [115]朱新霞,孙黎,陶春萍.甜瓜离体再生继代培养中玻璃化现象的研究[J].西北植物学报.2006,26(7):1468-1472.
    [116]卜学贤,陈维伦.试管植物的玻璃化现象[J].植物生理学通讯,1987,23 (5):13-19.
    [117]胡晓琴,贾士荣.水稻琉基蛋白酶抑制剂基因导入马铃薯和茄子[J].园艺学报,1998,25(l):65- 69.
    [118]Van Roekel JSC,Damm B,Melchers LS,et al.Factors influencing transformation frequence of tomato(Lycopersion esculentum) [J].Plant Cell Reports,1993,12:644- 647.
    [119]Metz T D,Dixit R,Earle E D.Agrobacter iumtume faciens-mediated transformation of broccoli and cabbage[J].Plant Cell Reports,1995,15:287-292.
    [120]周冀明,卫志明,许智宏,等.根癌土壤杆菌介导转化诸葛菜子叶获得转基因植株[J].生物工程学报,1996,12(l):34-39.
    [121]Tjaden G,Coruzzi GM.A novel AT-rich DNA binding protein that combines an HMG I-like DNA binding domain with a putative transcription domain.The Plant Cell,1994,6:107-118.
    [122]Lam E,Kano-Murakami Y,Gilmartin P, et al.A metal-dependent DNA-binding protein interacts with a constitutive element of a light-responsive promoter.Plant Cell,1990, 2:857-866.
    [123]Yamamoto S,Nishihara M,Morikawa H, et al.Promoter analysis of seed storage protein genes from Canavalia gladiata D.C.Plant Molecular Biology,1995, 27:729- 741.
    [124]Czarnecka E,Nagao RT,Key JL, et al.Characterization of Gmhsp26-A,a stress gene encoding a divergent heat shock protein of soybean:heavy-metal-induced inhibition intron processing.Molecular Cell Biology,1988,8:1113-1122.