皮克林乳液型ASA的微粒乳化及应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
新型功能性纳米颗粒材料及其稳定的皮克林乳液,在很多领域中的研究与应用引起了人们极大的重视和关注。片状粘土颗粒作为无机固体矿物材料,其资源储量十分丰富,是廉价、环保的矿物资源之一。迄今为止,粘土资源在乳状液的乳化和破乳技术中的潜在价值远没有得到完全开发和利用,尤其是在造纸乳剂类化学品中的应用并未得到充分的研究,如何有效、高值化利用粘土矿物制备造纸化学品将成为制浆造纸清洁生产及无少污染生产研究的重要课题。微粒乳化技术和皮克林乳液在造纸工业中的应用和研究尚属空白,而乳液型助剂在造纸工业中的应用十分广泛,为开发更有效的乳化与分散体系,促进皮克林乳液型造纸助剂及化学品的研究与应用,本论文对片状粘土纳米颗粒乳化稳定的ASA皮克林乳液的乳化性能、稳定机理及施胶应用等方面进行了系统研究。这些研究的开展不仅为微粒乳化稳定机理提供基础研究,而且为造纸助剂的开发和应用领域开辟了新方向。
     1.阴离子片状粘土颗粒乳化稳定的ASA皮克林乳液。MMT颗粒浓度影响颗粒界面吸附性能及连续相中3D网络结构的形成,当C_p为1%时即可制备出粒径均一的乳液,C_p为1.5%时可制备出小粒径、高稳定性的ASA乳液。油相体积分数影响乳液的稳定性及乳液类型,Фo在0.8处发生突变转相。调节MMT水分散液的pH值可以控制颗粒润湿性、颗粒—颗粒(油/水界面上)以及颗粒—界面之间的静电作用力,改善颗粒的界面吸附以及乳液稳定性能,在pH=7时可以制备出均一稳定的ASA乳液。电解质的添加降低了带电粒子之间的相互排斥作用并使颗粒膜变得更致密。不同链长的烷烃对ASA乳液乳化性能及稳定性有明显影响,十二烷与ASA复配的乳化效果最佳。乳液CLSM证明了颗粒在皮克林乳液油/水界面处的吸附,形成的固体颗粒界面膜有效阻止乳滴间的聚结,起到稳定乳液的作用。
     2.阳离子片状粘土颗粒及与阴离子片状粘土颗粒复配乳化体系乳化稳定ASA皮克林乳液。NaCl的添加对LDHs乳化的ASA乳液稳定性具有促进作用,增大NaCl浓度可以改善LDHs颗粒在油/水界面的吸附,促进致密颗粒膜的形成,从而降低ASA乳液液滴粒径。油相体积分数的增大使乳液黏度的迅速提高,有利于乳液的分层稳定性。MMT与LDHs组成的复配固体颗粒乳化体系,在MMT/LDHs质量比为0.11或9时可以制备出均一稳定的ASA乳液,并且复配体系要比颗粒单独使用时乳化稳定作用更好。粘土颗粒卡片房结构由片状颗粒的正电边缘和负电端面通过静电吸引作用搭接而成,其形状为多边网格结构,并且随着三角格和四边格结构通过边—面搭接,可能进一步形成六角形结构单元,这种结构单元将作为卡片房网络结构以及粘土颗粒空间三维网络结构体的基本结构单元。颗粒浓度的提高使乳液储能模量提高,颗粒之间的作用力变强,三维网络结构体更为致密,乳液表现出强弹性行为。这种流变性为可用修复性三维网络结构的形成来解释。而颗粒三维网络结构的恢复和形成具有滞后性,并且复配颗粒的滞后性现象更为明显。复配颗粒乳化的ASA乳液在150min内具有良好的施胶性能。原子力显微镜显示了施胶纸张纤维形貌、排列变化和片状颗粒在纤维表面的留着。
     3.改性蒙脱石乳化稳定ODSA乳液。利用末端带有反应型三功能基的硅烷偶联剂γ-MPTMS对纳米级钠基蒙脱石固体颗粒进行表面接枝改性,经SEM、表面接触角、FT-IR和TGA等检测表明MPTMS成功接枝到蒙脱石表面。乳化体系的pH值对MPTMS改性蒙脱石制备的ODSA皮克林乳液稳定性有重要的影响,pH为7时可以制备出粒径均一稳定的油包水型乳液。油水比会影响ODSA皮克林乳液的乳液类型,1.5%浓度改性颗粒制备的乳液在油水比为3:1时发生转向,由水包油乳液转变为油包水乳液,随着颗粒浓度的提高,转向点随之提高。颗粒浓度C_p对乳液稳定性具有重要的影响,C_p~1.0%时可以将ODSA液滴完全包裹,C_p~1.5%时连续相中形成完整致密的颗粒3D网络结构,制备出均一稳定的乳液。所制备的ODSA皮克林乳液为非牛顿流体,具有明显的类固体流变性,随着C_p的增大呈现明显的剪切变稀性。ODSA乳液LRS及FT-IR分析表明改性颗粒对乳液水解稳定性具有明显的改善作用,改性蒙脱石乳化的ODSA乳液较未改性颗粒及常规表面活性剂乳化的乳液具有更好的施胶活性。
     4.改性MMT乳化稳定ASALP乳液及其稳定机理。利用三功能基硅烷偶联剂表面接枝改性的纳米蒙脱石固体颗粒制备均一稳定的ASALP皮克林乳液,液体石蜡添加量在30%~60%时即可制备出小粒径的水包油型乳液。乳液CLSM分析显示了改性蒙脱石固体颗粒在油水界面处的吸附,以及固体颗粒膜对液滴聚并的保护稳定作用。乳液流变性分析表明ASALP乳液为类似固体黏弹性的非牛顿流体,揭示了连续相中固体颗粒网络结构及有机改性颗粒之间相互作用对乳液流变性的影响。乳液制备完成后的5h内具有较高的水解稳定性,10h后水解完全。LP的添加改善了ASA的施胶效果,ASALP皮克林乳液浆内施胶纸张表面具有类荷叶结构,明显改善纸张的表面疏水性能,为复配型施胶剂的设计和开发提供理论依据和参考。
     5.磁性纳米颗粒乳化稳定ASA乳液。Fe_3O_4颗粒浓度、油相体积分数、pH值对ODSA乳液稳定性、乳液的类型以及液滴形态有明显影响,磁性纳米Fe_3O_4颗粒作为稳定乳化剂可以制备稳定的皮克林型ASA施胶剂乳液。随着固体颗粒用量的增加,乳液稳定性先升高后降低,固体粒子用量在0.1~0.3wt%时乳液具有较好分层稳定性。油相体积分数的增加会引起乳液类型的转变,但乳液稳定性增强,油相体积分数为0.5~0.66时乳液分层稳定性较好且为O/W型乳液。当pH值为7~8时,可以制备粒径小、分布均一的乳液。乳液放置时间1h内具有良好的施胶活性,随着放置时间的增长,施胶性能逐渐降低。
Preraration and application of novel and functional nanoparticle materials and Pickeringemulsions have attracted extensive attention because of the particular performances andapplications in wide fields. As an inorganic solid mineral material, clay mineral particle is richin resources, low-cost and environment-friendly. However, the potential value of the clays inthe particulate emulsification and demulsification technology has not been effectivelyexploited, especially in the papermaking industry. Effective and high-value utilization of claysin the emulsification of paper chemicals is one of the most important and challenging researchareas in the cleaner and non-pollution production.To the best of our knowledge, few studieshave been conducted on the application of particulate emulsifiers in the papermaking industry.For the purpose of efficiently emusification dispersion systems and promoting the researchand application of Pickering-type emulsions of papermaking additives, the current workfocused on emulsification performance, stability mechanism and sizing performance of ASAemulsions stabilized by layered clay nanoparticles. This study on Pickering-type ASAemulsions not only provied the basic research, but also opens up a new route to thepreparation of a variety of paper sizing agents in the papermaking industry.
     1. Pickering-type ASA emulsions stabilized by anionic layered clay particle. Particleconcentration of MMT had greatly effects on both the enrichment of these particles at theoil–water interface and the formation of the three-dimensional network built-up by the MMTlamellae. Stable ASA emulsions containing1wt%MMT particles could be obtained and morestable emulsion with smaller doplet diameter could be prepared at C_p~1.5wt%. The initialoil fraction obviously influenced on the type and stability of ASA emulion. Catastrophic phaseinversion occured when the value of Фowas0.8. Adjusting the pH value of MMT aqueousdispersion changed the wettability and electrostatic interactions of particle-particle andparticle-interface, promoting the stability of emulsion. Stable ASA emulsion withoutseparated phase was prepared at pH~7. The addition of sults weakened the electrostaticinteractions of charged MMT particles, which enhancing the envelope of particles. Theemulsification and stability was obviously influenced when the alkanes with different chainscooperated with ASA oil. The synergic effect of dodecane was more obvious than other alkenes. The CLSM analysis indicated the enrichment of these particles at the oil–waterinterface of Pickering emulsions and the envelope of particles creates a barrier which impededthe droplets from coalescence.
     2. ASA Pickering emulsions stabilized by cationic layered clay particles solely andco-stabilized with anionic layered clay particles. Sults boosted the stability of LDHs stabilizedASA emulison. Increasing the content of NaCl could improve the adsorption of particle at theoil/water interface and the creation of compact particulate envelope, reducing the droplet size.The stability of ASA emulsion to separation depended on the viscosity and oil volumefraction. For the MMT/LDHs co-stabilizer system, homogeneous and stable ASA emulsionscould be prepared when the mass ratio of MMT/LDHs was0.11or9. The house-cardstructure of clay particles that formed through the electrostatic attraction between positive andnegative platelet-edages would evolve into hexagonal structure, which could be the basicstructure unit of the clay-particle3D-network. We also found that co-stabilization system wasbetter than the solo stabilization system on the ASA emulsion. At low strain amplitude, thehiger the particle concentration was, the greater the storage modulus was, indicating astronger interparticle interaction and the three-dimensional network and a solidlikeviscoelastic behavior of the emulsion. This rheological behavior can be explained by theformation of the reversible particulate network in the emulsion. However, the rebuilding ofthree-dimensional network exhibited hysteresis, especially in the co-stabilizer system.MMT/LDHs stabilized ASA emulsion had good sizing performance within150min storagetime. AFM analysis indicated the change of fiber morphology and arrangement and theadsorption of layered particles.
     3. ODSA emulsion stabilized by γ-Methacryloxy propyl trimethoxysilane grafted MMT. Toprepare stable ODSA Pickering emulsions, montmorillonite clay-particles modified byγ-Methacryloxy propyl trimethoxysilane (γ-MPTMS) were used as particulate emulsifiers ofODSA and water at room temperature. The effects of pH value, oil-to-water ratio, and particleconcentration on the stability of the Pickering emulsions were investigated. The stability ofODSA emulsions in the presence of grafted-MMT first increased and then decreased as thepH value of the aqueous phase decreased. The critical pH for the phase separation of theODSA emulsions was~7. Addition of ODSA oil induced phase inversion from an O/W emulsion to a W/O emulsion when the ratio of oil-to-water passed a specific threshold of3:1(C_p~1.5wt%). The particle concentration was linked to the formation of particle films atoil–water interface and of clay particle networks in water phase. The ODSA emulsionsstabilized by grafted-MMT could have good sizing performance and lifespan. This study onODSA Pickering emulsions based on MPTMS-grafted MMT particles opens up a new route tothe preparation of a variety of paper sizing agents in the papermaking industry.
     4. Stablization and mechanism of ASALP emulsion prepared by grafted-MMT particles.Based on this study, it was found that MPTMS-grafted-MMT particles could be used forpreparing stable oil-in-water Pickering emulsions of ASA by emulsification in combinationwith30~60vol.%paraffin oil. The ASALP Pickering emulsions exhibited some kind of asolidlike viscoelastic behavior, which may be resulted from the particulate network formed bygrafted-MMT particles at oil/water interface and influence of the organic coemulsifier on theparticle–particle interactions. LP oil added not only improveed the stability of ASA Pickeringemulsions stabilized by particulate emulsifier, but also significantly promoted the stability andinternal paper sizing performance of ASA. Lotus-leaf-like paper surface structure would formthrough the ASALP internal sizing, which would facilitate the design of composite sizingagents.
     5. ASA emulsions stabilized by Magnetic Fe_3O_4nanoparticles. Magnetic Fe_3O_4nanoparticles were used as the stabilizer to prepare Pickering-type ASA emulsions. Particleconcentration, oil/water volume ratio, oil polarity, pH value of aqueous phase had significanteffects on the type, stability, and morphology of ASA emulsion. With the increase of Fe_3O_4particle concentration, the stability of emulsion to creaming and coalescence initiallyincreased and then decrease, and0.1~0.3wt%particles performed good stabilizationperformance. Increasing the volume fraction of ASA oil phase lead to phase conversation butincreased the stability of emulsion to separeation. Stable O/W type ASA emulsion wasprepared when the value of Φowas0.5~0.66. Adjusting the pH value of aqueous couldinprove the stability of emulsions to coalescence and separation. Homogeneous ASAemulsions with small droplet size were prepared at pH7~8. Fe_3O_4particles stabilized ASAemulsions presented well sizing performance in about1h storage time. However, there was asignificant reduction of sizing degree in prolonged storage time.
引文
[1]汪曾祁.浆内施胶剂的发展研究(上)[J].造纸化学品.1998,10(3):2-6.
    [2]刘仁庆.中性造纸与中性施胶剂(上)[J].纸和造纸.1998,1(5):7-8.
    [3]余贻骥.发展和用好造纸化学品促进造纸产业及造纸化学品产业的现代化[J].造纸化学品.2002,14(1):1-2.
    [4]张乃钧.造纸工业与可持续发展[C].2002.
    [5] Gess J M, Rende D S. Alkenyl succinic anhydride (ASA)[J]. Tappi journal,2005,4(9):25-30.
    [6] Novak R W. Emulsification of alkenyl succinic anhydride sizing agents US:4,606,773.
    [7] Hassler, Thord G. Paper Size and Paper Sizing Process WO Patent WO/1997/035,068.
    [8]赵建民.烯基琥珀酸酐(ASA)用于中性造纸施胶剂施胶性能及应用趋势[J].沈阳化工.2000,29(4):221-223.
    [9] Robert J C. Overview and theories of neutral and alkaline sizing Neutral/AlkalinePapermaking: TAPPI Short Course Notes,1990.
    [10] Maher J E. ASA sizes are highly effective, versatile for alkaline papermaking [J]. Pulp&Paper,1983,6(6):118-120.
    [11] Novak R W. Emulsification of alkenyl succinic anhydride sizing agents[P]. US Patent4,606,773,1986.
    [12]赵丽红,刘温霞.膨润土的特点及其在造纸工业中的应用[J].中国造纸.2004,23(10):49-53.
    [13]刘娜,刘温霞.膨润土在造纸工业中的应用与开发前景[J].纸和造纸.2003,1(2):55-56.
    [14]刘阳,汪永清,陈虎.膨润土改性及其应用[J].中国陶瓷工业.2001,2(8):39-42.
    [15]黎铉海,黄祖强,潘柳萍,等.膨润土酸活化工艺的试验研究[J].化工矿物与加工.2000,10(1):7-9.
    [16]王重,陈德芳.有机膨润土的研究[J].贵州化工.1999,24(4):9-11.
    [17]王连军,黄中华.膨润土的改性研究[J].工业水处理.1999,19(1):9-11.
    [18]吴祖武,童筠.改性膨润土造纸填料应用的研究[J].中国造纸.1993,6(27): l8.
    [19]曹明礼,于阳辉,袁继祖.膨润土的钠化改型研究[J].矿冶工程.2001,21(2):24-26.
    [20] Bajpai U, Jain A, Rai S. Grafting of polyacrylamide on to guar gum using potassiumpersulfate/ascorbic acid redox system [J]. Journal of Applied Polymer Science,2003,39(11‐12):2187-2204.
    [21]孙家寿,刘羽.有机交联膨润土对预处理造纸黑液COD的吸附研究[J].化工生产与技术.1998,5(1):41-43.
    [22] Lebaron P C, Wang Z, Pinnavaia T J. Polymer-layered silicate nanocomposites: anoverview [J]. Applied Clay Science,1999,15(1):11-29.
    [23] Kawasumi M. The discovery of polymer-clay hybrids [J]. Journal of Polymer SciencePart A: Polymer Chemistry,2004,42(4):819-824.
    [24] Gilman J W, Jackson C L, Morgan A B, et al. Flammability properties ofpolymer-layered-silicate nanocomposites. Polypropylene and polystyrenenanocomposites [J]. Chemistry of Materials,2000,12(7):1866-1873.
    [25] Vaia R A, Teukolsky R K, Giannelis E P. Interlayer structure and molecular environmentof alkylammonium layered silicates [J]. Chemistry of Materials,1994,6(7):1017-1022.
    [26] Xie W, Gao Z, Pan W, et al. Thermal degradation chemistry of alkyl quaternaryammonium montmorillonite [J]. Chemistry of Materials,2001,13(9):2979-2990.
    [27] Minet J, Abramson S, Bresson B, et al. New layered calcium organosilicate hybrids withcovalently linked organic functionalities [J]. Chemistry of Materials,2004,16(20):3955-3962.
    [28] Carrado K A, Xu L, Csencsits R, et al. Use of organo-and alkoxysilanes in the synthesisof grafted and pristine clays [J]. Chemistry of Materials,2001,13(10):3766-3773.
    [29] Letaief S, Ruiz-Hitzky E. Silica–clay nanocomposites [J]. Chemical Communications,2003(24):2996-2997.
    [30] Vaia R A, Ishii H, Giannelis E P. Synthesis and properties of two-dimensionalnanostructures by direct intercalation of polymer melts in layered silicates [J]. Chemistryof Materials,1993,5(12):1694-1696.
    [31] Hórv lgyi Z, Németh S, Fendler J H. Monoparticulate layers of silanized glass spheres atthe water-air interface: particle-particle and particle-subphase interactions [J]. Langmuir,1996,12(4):997-1004.
    [32] Zhou J, Qiao X, Binks B P, et al. Magnetic Pickering Emulsions Stabilized by Fe3O4Nanoparticles [J]. Langmuir,2011,27:3308-3316.
    [33] Yan N, Masliyah J H. Effect of pH on adsorption and desorption of clay particles atoil–water interface [J]. Journal of Colloid and Interface Science,1996,181(1):20-27.
    [34] Wan J, Wilson J L. Visualization of the role of the gas-water interface on the fate andtransport of colloids in porous media [J]. Water Resources Research,1994,30(1):11-24.
    [35] Kostakis T, Ettelaie R, Murray B S. Effect of high salt concentrations on the stabilizationof bubbles by silica particles [J]. Langmuir,2006,22(3):1273-1280.
    [36] Yan N, Maham Y, Masliyah J H, et al. Measurement of contact angles for fumed silicananospheres using enthalpy of immersion data [J]. Journal of Colloid and InterfaceScience,2000,228(1):1-6.
    [37] Paunov V N. Novel method for determining the three-phase contact angle of colloidparticles adsorbed at air-water and oil-water interfaces [J]. Langmuir,2003,19(19):7970-7976.
    [38] Cayre O J, Paunov V N. Contact angles of colloid silica and gold particles at air-waterand oil-water interfaces determined with the gel trapping technique [J]. Langmuir,2004,20(22):9594-9599.
    [39]纪经兵,王乐夫.水滑石类材料应用于氧化反应研究最新进展[J].天然气化工.2002,27(1):49-55.
    [40]安霞,谢鲜梅.水滑石类化合物的性质及其催化应用[J].太原理工大学学报.2002,33(5):498-501.
    [41]李渝江,周后永. MMH钻井液的国内首次钻井试验[J].钻井液与完井液.1992,9(3):44-47.
    [42]樊世忠,李淑白,杨光胜.对混合金属层状氢氧化物钻井液体系保护储层作用的评价[J].钻井液与完井液.1994,3(11):12-15.
    [43] Inacio J, Taviot-Gueho C, Forano C, et al. Adsorption of MCPA pesticide byMgAl-layered double hydroxides [J]. Applied Clay Science,2001,18(5):255-264.
    [44] Bruna F, Celis R, Pavlovic I, et al. Layered double hydroxides as adsorbents and carriersof the herbicide (4-chloro-2-methylphenoxy) acetic acid (MCPA): systems Mg–Al,Mg–Fe and Mg–Al–Fe [J]. Journal of Hazardous Materials,2009,168(2):1476-1481.
    [45]杨锡尧,任韶玲.新型催化剂载体材料—镁铝复合氧化物的制备及其物理化学性质[J].分子催化.1996,10(2):88-94.
    [46]杨飞.片状无机纳米粒子在油/水界面的吸附及其稳定的Pickering乳液[D].济南:山东大学,2007.
    [47] Rives V. Characterisation of layered double hydroxides and their decomposition products[J]. Materials Chemistry and Physics,2002,75(1):19-25.
    [48] Ribet S, Tichit D, Coq B, et al. Synthesis and activation of Co–Mg–Al layered doublehydroxides [J]. Journal of Solid State Chemistry,1999,142(2):382-392.
    [49]张克庆,刘温霞,陈子成.阳离子水滑石微粒的合成及表征[J].造纸化学品.2006,18(2):9-12.
    [50]王松林,刘温霞.不同阴离子型氢氧化镁铝正电胶体的合成和造纸助留试验[J].造纸化学品.2004,16(3):10.
    [51]杜以波,李峰.影响水滑石晶体结构的因素[J].燃料化学学报.1997,25(5):449-453.
    [52]张海永,景晓燕.磁性镁铝水滑石固体碱的制备与表征[J].应用科技.2002,29(3):61-63.
    [53]侯万国,张春光.氢氧化铝镁正电溶胶制备及性能研究[J].高等学校化学学报.1995,16(8):1292-1294.
    [54] Jun G, Ning W, Qingze J. Caltalytic oxidation of cyclohexene with molecular oxygen onhydrotalcite-like compounds [J]. Chemical research in Chinese Universities,1995,3(11):93-96.
    [55]韩书华,许之.插入法制备镁铝氢氧化物的性质研究[J].山东大学学报:自然科学版.1998,33(4):416-421.
    [56] Ennadi A, Legrouri A, De Roy A, et al. Shape and size determination forzinc–aluminium–chloridelayered double hydroxide crystallites by analysis of X-raydiffractionline broadening [J]. Journal of Material Chemistry,2000,10(10):2337-2341.
    [57]刘洁翔,候忠德.类水滑石化合物的合成及催化应用[J].太原理工大学学报.2000,31(6):628-632.
    [58] Xu Z P, Qing G. Hydrothermal synthesis of layered double hydroxides (LDHs) frommixed MgO and Al2O3: LDH formation mechanism [J]. Chemistry of Materials,2005,17(5):1055-1062.
    [59]胡长文,贺庆林.合成水滑合的插入化学[J].东北师大学报自然科学版.1995,4(3):49-55.
    [60] Han S, Zhang C, Hou W, et al. Studies on Structure of Magnesium AluminiumHydroxide Positive Sol [J]. Chemical Journal of Chinese University,1996,11(17):1785-1787.
    [61] Hibino T, Tsunashima A. Characterization of repeatedly reconstructed Mg-Alhydrotalcite-like compounds: gradual segregation of aluminum from the structure [J].Chemistry of Materials,1998,10(12):4055-4061.
    [62] Kanezaki E. Unexchangeable interlayer anions; Synthesis and characterization ofZn/Al-and Mg/Al-layered double hydroxides with interlayer Alizarin red S [J]. Journal ofInclusion Phenomena and Macrocyclic Chemistry,2003,46(1):89-95.
    [63] Feitknecht W. The formation of double hydroxides between bivalent and trivalent metals[J]. Helvetica Chimica Acta,1942,25(1):555-569.
    [64]谢鲜梅.锌铝层状复合氢氧化物的合成研究[J].无机材料学报.1999,14(2):245-250.
    [65]韩书华.氯离子柱撑水滑石共沉淀法合成反应动力学[D].济南:山东大学,1991.
    [66] Kooli F, Depege C, Ennaqadi A, et al. Rehydration of Zn-Al layered double hydroxides[J]. Clays and Clay Minerals,1997,45(1):92-98.
    [67] Prinetto F, Ghiotti G, Graffin P, et al. Synthesis and characterization of sol–gel Mg/Aland Ni/Al layered double hydroxides and comparison with co-precipitated samples [J].Microporous and Mesoporous Materials,2000,39(1):229-247.
    [68] Hansen H C B, Taylor R M. Formation of synthetic analogues of double metal-hydroxycarbonate minerals under controlled pH conditions. II: The synthesis of desautelsite [J].Clay Minerals,1991,26(4):507-525.
    [69] Fernandez J M, Barriga C, Ulibarri M, et al. Preparation and thermal stability ofmanganese-containing hydrotalcite,[Mg0.75Mn(II)0.04Mn(III)0.21(OH)2](CO3)0.11· nH2O [J]. Journal of Material Chemistry,1994,4(7):1117-1121.
    [70] Velu S, Shah N, Jyothi T M, et al. Effect of manganese substitution on thephysicochemical properties and catalytic toluene oxidation activities of Mg–Al layereddouble hydroxides [J]. Microporous and Mesoporous Materials,1999,33(1):61-75.
    [71] Ogawa M, Kaiho H. Homogeneous precipitation of uniform hydrotalcite particles [J].Langmuir,2002,18(11):4240-4242.
    [72] Esumi K, Takeda Y, Goino M, et al. Adsorption and adsolubilization by cationicsurfactants on laponite clay [J]. Langmuir,1997,13(9):2585-2587.
    [73] Sychev M, Prihod'Ko R, Erdmann K, et al. Hydrotalcites: relation between structuralfeatures, basicity and activity in the Wittig reaction [J]. Applied Clay Science,2001,18(1):103-110.
    [74] Puttaswamy N S, Kamath P V. Reversible thermal behaviour of layered doublehydroxides: athermogravimetric study [J]. Journal of Material Chemistry,1997,7(9):1941-1945.
    [75] Rocha J, Del Arco M, Rives V, et al. Reconstruction of layered double hydroxides fromcalcined precursors: a powder XRD and27Al MAS NMR study [J]. Journal of MaterialsChemistry,1999,9(10):2499-2503.
    [76] Kumbhar P S. Modified Mg–Al hydrotalcite: a highly active heterogeneous base catalystfor cyanoethylation of alcohols [J]. Chemical Communications,1998(10):1091-1092.
    [77] Ramsden W. Separation of Solids in the Surface-Layers of Solutionsand'Suspensions'(Observations on Surface-Membranes, Bubbles, Emulsions, andMechanical Coagulation).--Preliminary Account [J]. Proceedings of the Royal Society ofLondon,1903,72(1):156-164.
    [78] Pickering S U. CXCVI.—Emulsions [J]. Journal of the Chemical Society, Transactions,1907,91:2001-2021.
    [79] Wu C, Tarimala S, Dai L L. Dynamics of charged microparticles at oil-water interfaces[J]. Langmuir,2006,22(5):2112-2116.
    [80] Golemanov K, Tcholakova S, Kralchevsky P A, et al. Latex-particle-stabilized emulsionsof anti-Bancroft type [J]. Langmuir,2006,22(11):4968-4977.
    [81] Suzuki D, Tsuji S, Kawaguchi H. Janus microgels prepared by surfactant-free pickeringemulsion-based modification and their self-assembly [J]. Journal of the AmericanChemical Society,2007,129(26):8088-8089.
    [82] Bon S A, Chen T. Pickering stabilization as a tool in the fabrication of complexnanopatterned silica microcapsules [J]. Langmuir,2007,23(19):9527-9530.
    [83] Sztukowski D M, Yarranton H W. Oilfield solids and water-in-oil emulsion stability [J].Journal of Colloid and Interface Science,2005,285(2):821-833.
    [84] Moran K, Yeung A, Masliyah J. The viscoplastic properties of crude oil–water interfaces[J]. Chemical Engineering Science,2006,61(18):6016-6028.
    [85] Peutherer P, Waring I M, Collett L. Sizing of paper [P]. US Patent,6,284,099.
    [86] Sebillotte-Arnaud L. Water-in-oil emulsion containing fused silica and a polysaccharidealkyl ether [P]. US Patent6,228,377.
    [87] Mercier M F, Thau P, Chase J A. Mattifying oil-in-water emulsion [P]. US Patent,20,030,228,334.
    [88] Hodge S M, Rousseau D. Continuous-phase fat crystals strongly influence water-in-oilemulsion stability [J]. Journal of the American Oil Chemists' Society,2005,82(3):159-164.
    [89] Rousseau D. Fat crystals and emulsion stability—a review [J]. Food ResearchInternational,2000,33(1):3-14.
    [90] Garti N, Binyamin H, Aserin A. Stabilization of water-in-oil emulsions bysubmicrocrystalline α-form fat particles [J]. Journal of the American Oil Chemists'Society,1998,75(12):1825-1831.
    [91] Binks B P, Lumsdon S O. Catastrophic phase inversion of water-in-oil emulsionsstabilized by hydrophobic silica [J]. Langmuir,2000,16(6):2539-2547.
    [92] Reincke F, Hickey S G, Kegel W K, et al. Spontaneous assembly of a monolayer ofcharged gold nanocrystals at the water/oil interface [J]. Angewandte ChemieInternational Edition,2004,43(4):458-462.
    [93] Marinova K G, Alargova R G, Denkov N D, et al. Charging of oil-water interfaces due tospontaneous adsorption of hydroxyl ions [J]. Langmuir,1996,12(8):2045-2051.
    [94] Beattie J K, Djerdjev A M. The Pristine Oil/Water Interface: Surfactant‐FreeHydroxide‐Charged Emulsions [J]. Angewandte Chemie International Edition,2004,43(27):3568-3571.
    [95] Franks G V, Djerdjev A M, Beattie J K. Absence of specific cation or anion effects atlow salt concentrations on the charge at the oil/water interface [J]. Langmuir,2005,21(19):8670-8674.
    [96] Williams D F, Berg J C. The aggregation of colloidal particles at the air—water interface[J]. Journal of Colloid and Interface Science,1992,152(1):218-229.
    [97] Abdel-Fattah A I, El-Genk M S. Sorption of hydrophobic, negatively chargedmicrospheres onto a stagnant air/water interface [J]. Journal of Colloid and InterfaceScience,1998,202(2):417-429.
    [98] Simovic S, Prestidge C A. Hydrophilic silica nanoparticles at the PDMS droplet-waterinterface [J]. Langmuir,2003,19(9):3785-3792.
    [99] Mayya K S, Sastry M. A new technique for the spontaneous growth of colloidalnanoparticle superlattices [J]. Langmuir,1999,15(6):1902-1904.
    [100] Umemura Y, Yamagishi A, Schoonheydt R, et al. Fabrication of Hybrid Films ofAlkylammonium Cations (C n H2n+1NH3+; n=4-18) and a Smectite Clay by theLangmuir-Blodgett Method [J]. Langmuir,2001,17(2):449-455.
    [101] Abend S, Bonnke N, Gutschner U, et al. Stabilization of emulsions byheterocoagulation of clay minerals and layered double hydroxides [J]. Colloid andPolymer Science,1998,276(8):730-737.
    [102] Yan Y, Masliyah J H. Solids-stabilized oil-in-water emulsions: scavenging of emulsiondroplets by fresh oil addition [J]. Colloids and Surfaces A: Physicochemical andEngineering Aspects,1993,75:123-132.
    [103]刘温霞,邱化玉.造纸湿部化学[M].北京:化学工业出版社,2006:55-56.
    [104] Tambe D E, Sharma M M. Factors Controlling the Stability of Colloid-StabilizedEmulsions III. Measurement of the Rheological Properties of Colloid-Laden Interfaces[J]. Journal of Colloid and Interface Science,1995,171(2):456-462.
    [105] Vignati E, Piazza R, Lockhart T P. Pickering emulsions: interfacial tension, colloidallayer morphology, and trapped-particle motion [J]. Langmuir,2003,19(17):6650-6656.
    [106] Mart nez-López F, Cabrerizo-V lchez M A, Hidalgo-Alvarez R. Colloidal interaction atthe air–liquid interface [J]. Journal of Colloid and Interface Science,2000,232(2):303-310.
    [107] Ghezzi F, Earnshaw J C, Finnis M, et al. Pattern formation in colloidal monolayers atthe air–water interface [J]. Journal of Colloid and Interface Science,2001,238(2):433-446.
    [108] Horozov T S, Aveyard R, Clint J H, et al. Order-disorder transition in monolayers ofmodified monodisperse silica particles at the octane-water interface [J]. Langmuir,2003,19(7):2822-2829.
    [109] Aveyard R, Clint J H, Nees D, et al. Compression and structure of monolayers ofcharged latex particles at air/water and octane/water interfaces [J]. Langmuir,2000,16(4):1969-1979.
    [110] Aveyard R, Binks B P, Clint J H, et al. Measurement of long-range repulsive forcesbetween charged particles at an oil-water interface [J]. Physical Review Letters,2002,88(24):246101-246102.
    [111] Binks B P. Particles as surfactants—similarities and differences [J]. Current Opinion inColloid and Interface Science,2002,7(1):21-41.
    [112] Van Olphen H. An introduction to clay colloid chemistry: for clay technologists,geologists, and soil scient ists London: Wiley,1977:233-257.
    [113] Rand B, Peken E, Goodwin J W, et al. Investigation into the existence of edge—facecoagulated structures in Na-montmorillonite suspensions [J]. Journal of the ChemicalSociety, Faraday Trans.1,1980,76(1):225-235.
    [114] Knaebel A, Bellour M, Munch J, et al. Aging behavior of Laponite clay particlesuspensions [J]. Europhysics Letters,2007,52(1):73-79.
    [115] Aveyard R, Binks B P, Clint J H. Emulsions stabilized solely by colloidal particles [J].Advances in Colloid and Interface Science,2003,100:503-546.
    [116] Menon V B, Wasan D T. Particle—fluid interactions with application to solid-stabilizedemulsions part I. The effect of asphaltene adsorption [J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects,1986,19(1):89-105.
    [117] Yan N, Gray M R, Masliyah J H. On water-in-oil emulsions stabilized by fine solids [J].Colloids and Surfaces A: Physicochemical and Engineering Aspects,2001,193(1):97-107.
    [118] Stiller S, Gers-Barlag H, Lergenmueller M, et al. Investigation of the stability inemulsions stabilized with different surface modified titanium dioxides [J]. Colloids andSurfaces A: Physicochemical and Engineering Aspects,2004,232(2):261-267.
    [119] Binks B P, Lumsdon S O. Stability of oil-in-water emulsions stabilised by silicaparticles [J]. Physical Chemistry Chemical Physics,1999,1(12):3007-3016.
    [120] Binks B P, Fletcher P. Particles adsorbed at the oil-water interface: A theoreticalcomparison between spheres of uniform wettability and “Janus” particles [J]. Langmuir,2001,17(16):4708-4710.
    [121] Lin Y, Skaff H, Emrick T, et al. Nanoparticle assembly and transport at liquid-liquidinterfaces [J]. Science,2003,299(5604):226-229.
    [122] Binks B P, Lumsdon S O. Pickering emulsions stabilized by monodisperse latexparticles: Effects of particle size [J]. Langmuir,2001,17(15):4540-4547.
    [123] Binks B P, Lumsdon S O. Influence of particle wettability on the type and stability ofsurfactant-free emulsions [J]. Langmuir,2000,16(23):8622-8631.
    [124] Lucassen-Reynders E H, Tempel M V D. Stabilization of water-in-oil emulsions bysolid particles [J]. The Journal of Physical Chemistry,1963,67(4):731-734.
    [125]梁文平.乳状液科学与技术基础[M].北京:科学出版社,2001:67-68.
    [126] Binks B P, Rodrigues J A. Types of phase inversion of silica particle stabilizedemulsions containing triglyceride oil [J]. Langmuir,2003,19(12):4905-4912.
    [127] Nonomura Y, Kobayashi N. Phase inversion of the Pickering emulsions stabilized byplate-shaped clay particles [J]. Journal of Colloid and Interface Science,2009,330(2):463-466.
    [128] Binks B P, Murakami R. Phase inversion of particle-stabilized materials from foams todry water [J]. Nature Materials,2006,5(11):865-869.
    [129] Briggs T R. Emulsions with finely divided solids [J]. Industrial and EngineeringChemistry,1921,13(11):1008-1010.
    [130] Ashby N P, Binks B P. Pickering emulsions stabilised by Laponite clay particles [J].Physical Chemistry Chemical Physics,2000,2(24):5640-5646.
    [131]宋世谟,王正烈,李文斌.物理化学(下)[M].北京:高等教育出版社,1993:429-433.
    [132] Binks B P, Rodrigues J A. Inversion of emulsions stabilized solely by ionizablenanoparticles [J]. Angewandte Chemie,2004,117(3):445-448.
    [133] Amalvy J I, Armes S P, Binks B P, et al. Use of sterically-stabilised polystyrene latexparticles as a pH-responsive particulate emulsifier to prepare surfactant-free oil-in-wateremulsions [J]. Chemical Communications,2003,1(15):1826-1827.
    [134] Ngai T, Behrens S H, Auweter H. Novel emulsions stabilized by pH and temperaturesensitive microgels [J]. Chemical Communications,2005,1(3):331-333.
    [135] Saleh N, Sarbu T, Sirk K, et al. Oil-in-water emulsions stabilized by highly chargedpolyelectrolyte-grafted silica nanoparticles [J]. Langmuir,2005,21(22):9873-9878.
    [136] Fujii S, Read E S, Binks B P, et al. Stimulus-responsive emulsifiers based onnanocomposite microgel particles [J]. Advanced Materials,2005,17(8):1014-1018.
    [137] Fujii S, Cai Y, Weaver J V, et al. Syntheses of shell cross-linked micelles using acidicABC triblock copolymers and their application as pH-responsive particulate emulsifiers[J]. Journal of the American Chemical Society,2005,127(20):7304-7305.
    [138] Binks B P, Lumsdon S O. Effects of oil type and aqueous phase composition onoil-water mixtures containing particles of intermediate hydrophobicity [J]. PhysicalChemistry Chemical Physics,2000,2(13):2959-2967.
    [139]任俊,沈健,卢寿慈.颗粒分散科学与技术[M].北京:化学工业出版社,2005:250-252.
    [140] Denkov N D, Ivanov I B, Kralchevsky P A, et al. A possible mechanism of stabilizationof emulsions by solid particles [J]. Journal of Colloid and Interface Science,1992,150(2):589-593.
    [141] He Y. Interfacial synthesis and characterization of polyaniline nanofibers [J]. MaterialsScience and Engineering: B,2005,122(1):76-79.
    [142] Yan N, Masliyah J H. Characterization and demulsification of solids-stabilizedoil-in-water emulsions Part1. Partitioning of clay particles and preparation of emulsions[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects,1995,96(3):229-242.
    [143] Yan N, Masliyah J H. Characterization and demulsification of solids-stabilizedoil-in-water emulsions Part2. Demulsification by the addition of fresh oil [J]. Colloidsand Surfaces A: Physicochemical and Engineering Aspects,1995,96(3):243-252.
    [144] Yan N, Masliyah J H. Demulsification of solids-stabilized oil-in-water emulsions [J].Colloids and Surfaces A: Physicochemical and Engineering Aspects,1996,117(1):15-25.
    [145] Li C, Liu Q, Mei Z, et al. Pickering emulsions stabilized by paraffin wax and Laponiteclay particles [J]. Journal of Colloid and Interface Science,2009,336(1):314-321.
    [146] Zhou J, Wang L, Qiao X, et al. Pickering emulsions stabilized by surface-modifiedFe3O4nanoparticles.[J]. Journal of Colloid and Interface Science,2012,367(1):213-224.
    [147] Yang F, Liu S, Xu J, et al. Pickering emulsions stabilized solely by layered doublehydroxides particles: The effect of salt on emulsion formation and stability [J]. Journal ofColloid and Interface Science,2006,302(1):159-169.
    [148] He Y. Preparation and modification of ZnO microspheres using a Pickering emulsion astemplate [J]. Materials Letters,2005,59(1):114-117.
    [149] Tsuji S, Kawaguchi H. Thermosensitive Pickering Emulsion Stabilized by Poly(N-isopropylacrylamide)-Carrying Particles [J]. Langmuir,2008,24(7):3300-3305.
    [150] Melzer E, Kreuter J, Daniels R. Ethylcellulose: a new type of emulsion stabilizer [J].European Journal of Pharmaceutics and Biopharmaceutics,2003,56(1):23-27.
    [151] Fujii S, Okada M, Furuzono T. Hydroxyapatite nanoparticles as stimulus-responsiveparticulate emulsifiers and building block for porous materials [J]. Journal of Colloid andInterface Science,2007,315(1):287-296.
    [152] Fujii S, Armes S P, Binks B P, et al. Stimulus-responsive particulate emulsifiers basedon lightly cross-linked poly (4-vinylpyridine)-silica nanocomposite microgels [J].Langmuir,2006,22(16):6818-6825.
    [153] Melle S, Lask M, Fuller G G. Pickering emulsions with controllable stability [J].Langmuir,2005,21(6):2158-2162.
    [154] Jiang S, Schultz M J, Chen Q, et al. Solvent-free synthesis of Janus colloidal particles[J]. Langmuir,2008,24(18):10073-10077.
    [155] Frelichowska J, Bolzinger M A, Valour J P, et al. Pickering w/o emulsions: drug releaseand topical delivery [J]. International Journal of Pharmaceutics,2009,368(1):7-15.
    [156] Frelichowska J, Bolzinger M, Pelletier J, et al. Topical delivery of lipophilic drugs fromo/w Pickering emulsions [J]. International Journal of Pharmaceutics,2009,371(1):56-63.
    [157] Dickinson E. Food emulsions and foams: Stabilization by particles [J]. Current Opinionin Colloid and Interface Science,2010,15(1):40-49.
    [158] Sullivan A P, Kilpatrick P K. The effects of inorganic solid particles on water and crudeoil emulsion stability [J]. Industrial and Engineering Chemistry Research,2002,41(14):3389-3404.
    [159] Kruglyakov P M, Nushtayeva A V. Phase inversion in emulsions stabilised by solidparticles [J]. Advances in Colloid and Interface Science,2004,108:151-158.
    [160] Pardhy N P, Budhlall B M. Pickering emulsion as a template to synthesize Januscolloids with anisotropy in the surface potential [J]. Langmuir,2010,26(16):13130-13141.
    [161] Denkov N D, Ivanov I B, Kralchevsky P A, et al. A possible mechanism of stabilizationof emulsions by solid particles [J]. Journal of Colloid and Interface Science,1992,150(2):589-593.
    [162] Binks B P, Lumsdon S O. Pickering emulsions stabilized by monodisperse latexparticles: effects of particle size [J]. Langmuir,2001,17(15):4540-4547.
    [163] Mourchid A, Delville A, Lambard J, et al. Phase diagram of colloidal dispersions ofanisotropic charged particles: equilibrium properties, structure, and rheology of laponitesuspensions [J]. Langmuir,1995,11(6):1942-1950.
    [164] Juarez J A, Whitby C P. Oil-in-water Pickering emulsion destabilisation at low particleconcentrations [J]. Journal of Colloid and Interface Science,2012,368(1):319-325.
    [165] Marinova K G, Alargova R G, Denkov N D, et al. Charging of oil-water interfaces dueto spontaneous adsorption of hydroxyl ions [J]. Langmuir,1996,12(8):2045-2051.
    [166] Olphen H V. An introduction to clay colloid chemistry [J]. Soil Science,1964,97(4):290.
    [167] Binks B P, Clint J H, Whitby C P. Rheological behavior of water-in-oil emulsionsstabilized by hydrophobic bentonite particles [J]. Langmuir,2005,21(12):5307-5316.
    [168] Binks B P, Lumsdon S O. Effects of oil type and aqueous phase composition onoil–water mixtures containing particles of intermediate hydrophobicity [J]. PhysicalChemistry Chemical Physics,2000,2(13):2959-2967.
    [169] Becher P. Effect of preparation parameters on the initial size distribution function inoil-in-water emulsions [J]. Journal of Colloid and Interface Science,1967,24(1):91-96.
    [170] Nonomura Y, Kobayashi N. Phase inversion of the Pickering emulsions stabilized byplate-shaped clay particles [J]. Journal of Colloid and Interface Science,2009,330(2):463-466.
    [171] Iler R K. The chemistry of silica: solubility, polymerization, colloid and surfaceproperties, and biochemistry [M]. New York: Wiley-Interscience,1979.
    [172] Simovic S, Prestidge C A. Adsorption of hydrophobic silica nanoparticles at the PDMSdroplet-water interface [J]. Langmuir,2003,19(20):8364-8370.
    [173] Fokkink L G, Ralston J. Contact angles on charged substrates [J]. Colloids and Surfaces,1989,36(1):69-76.
    [174] Duan H, Wang D, Kurth D G, et al. Directing self-assembly of nanoparticles atwater/oil interfaces [J]. Angewandte Chemie International Edition,2004,43(42):5639-5642.
    [175] Overbeek J G. The rule of Schulze and Hardy [J]. Pure and Applied Chemistry,1980,52(5):1151-1161.
    [176] Binks B P, Duncumb B, Murakami R. Effect of pH and salt concentration on the phaseinversion of particle-stabilized foams [J]. Langmuir,2007,23(18):9143-9146.
    [177] Zhou J, Qiao X, Binks B P, et al. Magnetic Pickering Emulsions Stabilized by Fe3O4Nanoparticles [J]. Langmuir,2011,27(7):3308-3316.
    [178] Mollet H, Grubenmann A. Manufacture and Properties of Colloidal Suspensions andDispersions [J]. Formulation Technology: Emulsions, Suspensions, Solid Forms,2007,1(1):131-180.
    [179] Velev O D, Lenhoff A M. Colloidal crystals as templates for porous materials [J].Current Opinion in Colloid and Interface Science,2000,5(1):56-63.
    [180] Lu Y, Yin Y, Gates B, et al. Growth of large crystals of monodispersed sphericalcolloids in fluidic cells fabricated using non-photolithographic methods [J]. Langmuir,2001,17(20):6344-6350.
    [181] Gelot A, Friesen W, Hamza H A. Emulsification of oil and water in the presence offinely divided solids and surface-active agents [J]. Colloids and Surfaces,1984,12(3):271-303.
    [182] Liu W, Liu H, Chen M, et al. Sizing performance and molecular orientation ofdispersed cationic rosin-ester [J]. Appita Journal: Journal of the Technical Association ofthe Australian and New Zealand Pulp and Paper Industry,2008,61(5):387.
    [183] Yan N, Masliyah J H. Characterization and demulsification of solids-stabilizedoil-in-water emulsions Part1. Partitioning of clay particles and preparation of emulsions[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects,1995,96(3):229-242.
    [184] Yang F, Liu S, Xu J, et al. Pickering emulsions stabilized solely by layered doublehydroxides particles: The effect of salt on emulsion formation and stability [J]. Journal ofColloid and Interface Science,2006,302(1):159-169.
    [185] Binks B P, Kirkland M. Interfacial structure of solid-stabilised emulsions studied byscanning electron microscopy [J]. Physical Chemistry Chemical Physics,2002,4(15):3727-3733.
    [186] Abend S, Lagaly G. Sol-gel transitions of sodium montmorillonite dispersions [J].Applied Clay Science,2000,16(3):201-227.
    [187] Mourchid A, Delville A, Lambard J, et al. Phase diagram of colloidal dispersions ofanisotropic charged particles: equilibrium properties, structure, and rheology of laponitesuspensions [J]. Langmuir,1995,11(6):1942-1950.
    [188] Mourchid A, Delville A, Levitz P. Sol-gel transition of colloidal suspensions ofanisotropic particles of laponite [J]. Faraday Discussions,1995,101(1):275-285.
    [189] Binks B P. Modern aspects of emulsion science Cambridge: Royal Society ofChemistry,1998:115-116.
    [190] Binks B P, Whitby C P. Nanoparticle silica-stabilised oil-in-water emulsions:improving emulsion stability [J]. Colloids and Surfaces A: Physicochemical andEngineering Aspects,2005,253(1):105-115.
    [191] Pardhy N P, Budhlall B M. Pickering emulsion as a template to synthesize Januscolloids with anisotropy in the surface potential [J]. Langmuir,2010,26(16):13130-13141.
    [192] Okamoto M, Morita S, Kim Y H, et al. Dispersed structure change of smectic clay/poly(methyl methacrylate) nanocomposites by copolymerization with polar comonomers [J].Polymer,2001,42(3):1201-1206.
    [193] Okamoto M, Nam P H, Maiti P, et al. A house of cards structure in polypropylene/claynanocomposites under elongational flow [J]. Nano Letters,2001,1(6):295-298.
    [194] Olphen H V. An introduction to clay colloid chemistry [M]. New York: Wiley,1977.
    [195] Dijkstra M, Hansen J P, Madden P A. Gelation of a clay colloid suspension [J]. PhysicalReview Letters,1995,75(11):2236-2239.
    [196] Abend S, Bonnke N, Gutschner U, et al. Stabilization of emulsions byheterocoagulation of clay minerals and layered double hydroxides [J]. Colloid andPolymer Science,1998,276(8):730-737.
    [197] Huang H, You B, Zhou S, et al. Rheological behavior of aqueous organosilicone resinemulsion stabilized by colloidal nanosilica particles [J]. Journal of Colloid and InterfaceScience,2007,310(1):121-127.
    [198] K stner U. The impact of rheological modifiers on water-borne coatings [J]. Colloidsand Surfaces A: Physicochemical and Engineering Aspects,2001,183:805-821.
    [199] Kawaguchi M, Okuno M, Kato T. Rheological properties of carbon black suspensionsin a silicone oil [J]. Langmuir,2001,17(20):6041-6044.
    [200] Mohit T, Bhadra K, Goswami S, et al. Successful Trials and Optimization of ASASizing [J]. IPPTA,2007,19(4):143-145.
    [201]董元锋.膨润土的中性改性及其微粒助留助滤效果[D].济南:山东轻工业学院,2007.
    [202]王松林,刘温霞.阳离子微粒氢氧化镁铝的合成及其微粒助留作用[J].中国造纸学报.2004,19(1).
    [203] Binks B P, Desforges A, Duff D G. Synergistic stabilization of emulsions by a mixtureof surface-active nanoparticles and surfactant [J]. Langmuir,2007,23(3):1098-1106.
    [204] Binks B P, Rodrigues J A, Frith W J. Synergistic interaction in emulsions stabilized bya mixture of silica nanoparticles and cationic surfactant [J]. Langmuir,2007,23(7):3626-3636.
    [205] Binks B P, Lumsdon S O. Influence of particle wettability on the type and stability ofsurfactant-free emulsions [J]. Langmuir,2000,16(23):8622-8631.
    [206] Herrera N N, Letoffe J, Putaux J, et al. Aqueous dispersions of silane-functionalizedlaponite clay platelets. A first step toward the elaboration of water-based polymer/claynanocomposites [J]. Langmuir,2004,20(5):1564-1571.
    [207] Wheeler P A, Wang J, Baker J, et al. Synthesis and characterization of covalentlyfunctionalized laponite clay [J]. Chemistry of Materials,2005,17(11):3012-3018.
    [208] Lagaly G, Reese M, Abend S. Smectites as colloidal stabilizers of emulsions: I.Preparation and properties of emulsions with smectites and nonionic surfactants [J].Applied Clay Science,1999,14(1):83-103.
    [209] Mandair A S, Michael P J, Mcwhinnie W R.29Si MASNMR investigations of thethermochemistry of laponite and hectorite [J]. Polyhedron,1990,9(4):517-525.
    [210] Lindfors J, Ylisuvanto S, Kallio T, et al. Spreading and adhesion of ASA on hydrophilicand hydrophobic SiO2[J]. Colloids and Surfaces. A: Physicochemical and EngineeringAspects,2005,256(2-3):217-224.
    [211] Jennings Jr J W, Pallas N R. An efficient method for the determination of interfacialtensions from drop profiles [J]. Langmuir,1988,4(4):959-967.
    [212] Tcholakova S, Denkov N D, Lips A. Comparison of solid particles, globular proteinsand surfactants as emulsifiers [J]. Physical Chemistry Chemical Physics,2008,10(12):1608-1627.
    [213] Horozov T S, Binks B P, Gottschalk-Gaudig T. Effect of electrolyte in siliconeoil-in-water emulsions stabilised by fumed silica particles [J]. Physical ChemistryChemical Physics,2007,9(48):6398-6404.
    [214] Liu Q, Cui H, Gu W, et al. Surface Modification of Nano-silica by Silane CouplingAgent KH-570[J][J]. Nanoscience and Technology,2009,6(3):15-18.
    [215]薛茹君,吴玉程.硅烷偶联剂修饰改性的机理及改性绢云母的性能[J].硅酸盐学报.2007,35(3):373-376.
    [216]刘颖.纳米SiO2的修饰及其纳米复合材料的制备[D][D].天津:天津大学化工学院,2006.
    [217] Binks B P, Duncumb B, Murakami R. Effect of pH and salt concentration on the phaseinversion of particle-stabilized foams [J]. Langmuir,2007,23(18):9143-9146.
    [218] Binks B P, Murakami R, Armes S P, et al. Effects of pH and salt concentration onoil-in-water emulsions stabilized solely by nanocomposite microgel particles [J].Langmuir,2006,22(5):2050-2057.
    [219] Nicolai T, Cocard S. Light scattering study of the dispersion of laponite [J]. Langmuir,2000,16(21):8189-8193.
    [220] Tawari S L, Koch D L, Cohen C. Electrical double-layer effects on the browniandiffusivity and aggregation rate of laponite clay particles [J]. Journal of Colloid andInterface Science,2001,240(1):54-66.
    [221] Colver P J, Bon S A. Cellular polymer monoliths made via pickering high internalphase emulsions [J]. Chemistry of Materials,2007,19(7):1537-1539.
    [222] Binks B P, Rodrigues J A. Enhanced stabilization of emulsions due tosurfactant-induced nanoparticle flocculation [J]. Langmuir,2007,23(14):7436-7439.
    [223] Higuchi W I, Misra J. Physical degradation of emulsions via the molecular diffusionroute and the possible prevention thereof [J]. Journal of Pharmaceutical Sciences,1962,51(5):459-466.
    [224] Scatena L F, Brown M G, Richmond G L. Water at hydrophobic surfaces: weakhydrogen bonding and strong orientation effects [J]. Science,2001,292(5518):908-912.
    [225] Leunissen M E, Van Blaaderen A, Hollingsworth A D, et al. Electrostatics at theoil-water interface, stability, and order in emulsions and colloids [J]. Proceedings of theNational Academy of Sciences,2007,104(8):2585-2590.
    [226] Binks B P, Lumsdon S O. Transitional phase inversion of solid-stabilized emulsionsusing particle mixtures [J]. Langmuir,2000,16(8):3748-3756.
    [227] Lagaly G, Reese M, Abend S. Smectites as colloidal stabilizers of emulsions: I.Preparation and properties of emulsions with smectites and nonionic surfactants [J].Applied Clay Science,1999,14(1):83-103.
    [228] Binks B P, Fletcher P D, Holt B L, et al. Selective Retardation of Perfume OilEvaporation from Oil-in-Water Emulsions Stabilized by Either Surfactant orNanoparticles [J]. Langmuir,2010,26(23):18024-18030.
    [229] Bremmell K E, Tan A, Martin A, et al. Tableting lipid‐based formulations for oraldrug delivery: A case study with silica nanoparticle–lipid–mannitol hybrid microparticles[J]. Journal of Pharmaceutical Sciences,2013,102(2):684-693.
    [230] Sacca L, Drelich A, Gomez F, et al. Composition Ripening in Mixed Water-in-OilEmulsions Stabilized with Solid Particles [J]. Journal of Dispersion Science andTechnology,2008,29(7):948-952.
    [231] Wasser R B. The reactivity of alkenyl succinic anhydride: Its pertinence with respect toalkaline sizing [J]. Journal of Pulp and Paper Science,1987,13(1):29-32.
    [232] Carter H A. The Chemistry of Paper Preservation: Part4. Alkaline Paper [J]. Journal ofChemical Education,1997,74(5):508.
    [233] Mccarthy W R, Stratton R A. Effects of drying on ASA esterification and sizing [J].Tappi Journal,1987,70.
    [234] Zhang Y, Wang J, Huang Y, et al. Fabrication of functional colloidal photonic crystalsbased on well-designed latex particles [J]. Journal of Materials Chemistry,2011,21(37):14113-14126.
    [235] Wang C, Zhang C, Li Y, et al. Facile fabrication of nanocomposite microspheres withpolymer cores and magnetic shells by Pickering suspension polymerization [J]. Reactiveand Functional Polymers,2009,69(10):750-754.
    [236] Do T, Mitchell J R, Wolf B, et al. Use of ethylcellulose polymers as stabilizer infat-based food suspensions examined on the example of model reduced-fat chocolate [J].Reactive and Functional Polymers,2010,70(10):856-862.
    [237] Fujii S, Okada M, Sawa H, et al. Hydroxyapatite nanoparticles as particulate emulsifier:fabrication of hydroxyapatite-coated biodegradable microspheres [J]. Langmuir,2009,25(17):9759-9766.
    [238] Song X, Yang Y, Liu J, et al. PS colloidal particles stabilized by graphene oxide [J].Langmuir,2010,27(3):1186-1191.
    [239] Baudouin A, Auhl D, Tao F, et al. Polymer blend emulsion stabilization using carbonnanotubes interfacial confinement [J]. Polymer,2011,52(1):149-156.
    [240] Wang J, Liu G, Wang L, et al. Synergistic stabilization of emulsions by poly(oxypropylene) diamine and Laponite particles [J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2010,353(2):117-124.
    [241] Muller F, Salonen A, Glatter O. Monoglyceride-based cubosomes stabilized byLaponite: Separating the effects of stabilizer, pH and temperature [J]. Colloids andSurfaces A: Physicochemical and Engineering Aspects,2010,358(1):50-56.
    [242] Fujii S, Read E S, Binks B P, et al. Stimulus‐Responsive Emulsifiers Based onNanocomposite Microgel Particles [J]. Advanced Materials,2005,17(8):1014-1018.
    [243] Zhu Y, Zhang S, Hua Y, et al. Hydrophilic porous polymers based on high internalphase emulsions solely stabilized by poly (urethane urea) nanoparticles [J]. Polymer,2010,51(16):3612-3617.
    [244] Zhang S, Zhu Y, Hua Y, et al. Stability of surfactant-free high internal phase emulsionsand its tailoring morphology of porous polymers based on the emulsions [J]. Polymer,2011,52(21):4881-4890.
    [245] Messersmith P B, Giannelis E P. Polymer-layered silicate nanocomposites: in situintercalative polymerization of ε-caprolactone in layered silicates [J]. Chemistry ofMaterials,1993,5(8):1064-1066.
    [246] Wang D, Zhu J, Yao Q, et al. A comparison of various methods for the preparation ofpolystyrene and poly (methyl methacrylate) clay nanocomposites [J]. Chemistry ofMaterials,2002,14(9):3837-3843.
    [247]鲁鹏.反应型施胶剂的微粒乳化和微囊化研究[D].济南:山东轻工业学院,2010.
    [248]丁鹏翔.小分子胺改性锂皂石乳化ASA及乳液施胶性能的研究[D].山东轻工业学院,2011.
    [249] Ding P, Liu W, Zhao Z. Roles of short amine in preparation and sizing performance ofpartly hydrolyzed ASA emulsion stabilized by Laponite particles [J]. Colloids andSurfaces A: Physicochemical and Engineering Aspects,2011,384(1):150-156.
    [250] Li C, Liu Q, Mei Z, et al. Pickering emulsions stabilized by paraffin wax and Laponiteclay particles [J]. Journal of Colloid and Interface Science,2009,336(1):314-321.
    [251] Maher J E. ASA sizes are highly effective, versatile for alkaline papermaking [J]. Pulpand Paper,1983,6(6):118-122.
    [252]曹立姗,李春利.新型垂直筛板液滴粒度分布及物性影响的研究[J].河北工业大学学报.1997,26(1):52-57.
    [253] Trappe V, Weitz D A. Scaling of the viscoelasticity of weakly attractive particles [J].Physical review letters,2000,85(2):449-452.
    [254] Barthlott W, Neinhuis C. Purity of the sacred lotus, or escape from contamination inbiological surfaces [J]. Planta,1997,202(1):1-8.
    [255] Cassie A, Baxter S. Wettability of porous surfaces [J]. Transactions of the FaradaySociety,1944,40(1):546-551.
    [256] Yan Y Y, Gao N, Barthlott W. Mimicking natural superhydrophobic surfaces andgrasping the wetting process: A review on recent progress in preparing superhydrophobicsurfaces [J]. Advances in Colloid and Interface Science,2011,169(2):80-105.
    [257] Feng L, Zhang Y, Xi J, et al. Petal effect: a superhydrophobic state with high adhesiveforce [J]. Langmuir,2008,24(8):4114-4119.
    [258] Guo Z, Liu W. Biomimic from the superhydrophobic plant leaves in nature: Binarystructure and unitary structure [J]. Plant Science,2007,172(6):1103-1112.
    [259]董元锋,刘温霞.氟化钠改性膨润土的结构及对二次纤维的助留助滤效果[J].中国造纸学报.2007,22(3):40-44.
    [260] Li J, St ver H D. Doubly pH-responsive Pickering emulsion [J]. Langmuir,2008,24(23):13237-13240.
    [261] Tsuji S, Kawaguchi H. Thermosensitive Pickering emulsion stabilized by poly(N-isopropylacrylamide)-carrying particles [J]. Langmuir,2008,24(7):3300-3305.
    [262] Zhang K, Wu W, Guo K, et al. Magnetic polymer enhanced hybrid capsules preparedfrom a novel Pickering emulsion polymerization and their application in controlled drugrelease [J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects,2009,349(1):110-116.
    [263] Zhang K, Wu W, Guo K, et al. Magnetic polymer enhanced hybrid capsules preparedfrom a novel Pickering emulsion polymerization and their application in controlled drugrelease [J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects,2009,349(1):110-116.
    [264] Zhang C, W ngler B, Morgenstern B, et al. Silica-and alkoxysilane-coated ultrasmallsuperparamagnetic iron oxide particles: a promising tool to label cells for magneticresonance imaging [J]. Langmuir,2007,23(3):1427-1434.
    [265] Corchero J L, Villaverde A. Biomedical applications of distally controlled magneticnanoparticles [J]. Trends in Biotechnology,2009,27(8):468-476.
    [266] Gu H, Xu K, Xu C, et al. Biofunctional magnetic nanoparticles for protein separationand pathogen detection [J]. Chemical Communications,2006,1(9):941-949.
    [267] Melle S, Lask M, Fuller G G. Pickering emulsions with controllable stability [J].Langmuir,2005,21(6):2158-2162.
    [268] Kaiser A, Liu T, Richtering W, et al. Magnetic Capsules and Pickering emulsionsstabilized by core-shell particles [J]. Langmuir,2009,25(13):7335-7341.
    [269] Lan Q, Liu C, Yang F, et al. Synthesis of bilayer oleic acid-coated Fe3O4nanoparticlesand their application in pH-responsive Pickering emulsions [J]. Journal of Colloid andInterface Science,2007,310(1):260.
    [270] Yee C, Kataby G, Ulman A, et al. Self-assembled monolayers of alkanesulfonicand-phosphonic acids on amorphous iron oxide nanoparticles [J]. Langmuir,1999,15(21):7111-7115.
    [271] Kataby G, Cojocaru M, Prozorov R, et al. Coating carboxylic acids on amorphous ironnanoparticles [J]. Langmuir,1999,15(5):1703-1708.
    [272] Peutherer P, Waring I M, Collett L. Sizing of paper [P]. US Patent6,284,099,2001.
    [273]张光华,化学工业.造纸湿部化学原理及其应用[M].北京:中国轻工业出版社,1998.
    [274] Dennisápocklington W. Analytical quality assurance. A review [J]. Analyst,1991,116(10):975-990.
    [275] Matsumura H, Glasser W G. Cellulosic nanocomposites. II. Studies by atomic forcemicroscopy [J]. Journal of Applied Polymer Science,2000,78(13):2254-2261.