兼具表面活性的疏水缔合型DMDAAC聚合物的制备及其在造纸施胶中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
烯基琥珀酸酐(Alkenyl Succinic Anhydride,ASA)是一种重要的造纸用施胶剂。现有的ASA乳化剂存在使用成本高或乳化性能差等不足。本文以二甲基二烯丙基氯化铵(DMDAAC)聚合物为基础,设计合成了一种兼具表面活性的疏水缔合型DMDAAC聚合物,并成功地将其作为ASA的乳化剂应用于造纸施胶过程,弥补了现有ASA乳化剂的不足,并拓宽了疏水缔合水溶性聚合物的应用领域。
     选择马来酸双酯型Gemini表面活性剂(MDE)代替常规的表面活性剂增溶疏水性单体甲基丙烯酸丁酯(MBA)或甲基丙烯酸辛酯(MOA),并与DMDAAC、丙烯酰胺(AM)共聚,合成了DMDAAC-AM-MDE-MBA(或MOA)聚合物(PDAMM)。采用适宜的分析手段对PDAMM进行了结构表征。PDAMM具有两个玻璃化转变温度(Tg),例如198.57℃和120.98℃,说明具有嵌段结构。
     研究了反应条件对聚合反应的影响规律。转化率随着引发剂的起始浓度和聚合反应温度的升高而增加,随着DMDAAC、MDE以及MBA(或MOA)的起始浓度增加而降低;阳离子度随着引发剂的起始浓度、聚合反应温度以及DMDAAC的起始浓度的升高而增加,随着MDE和MBA(或MOA)的起始浓度增加而降低;特性粘度随着引发剂起始浓度的升高出现先升高后降低的趋势,并随着聚合反应温度以及DMDAAC、MDE和MBA(或MOA)的起始浓度增加而降低。
     研究了PDAMM结构对疏水缔合性能及表面活性的影响规律。疏水性基团的疏水性越强,则疏水缔合性能越强;在疏水性基团含量低于饱和增溶量,得到的PDAMM水溶性好的条件下,疏水性基团含量越高,聚合物的特性粘度越高,疏水缔合性能也越强。PDAMM具有显著的表面活性,受疏水缔合性能的影响,其溶液表观表面张力在临界缔合浓度附近具有最低值,例如45.04mN/m(25℃)。
     研究了PDAMM结构对其乳化ASA能力的影响规律。PDAM(DMDAAC.AM-MDE共聚物)乳化得到的ASA乳状液在浓度为0.50%、25℃时的稳定时间低于30min,而相同条件下MBA含量为2.00%的PDAMM乳化得到的ASA乳状液稳定时间可达到15h。实验证明疏水性基团能促使PDAMM亲水性主链向ASA颗粒表面迁移并吸附包裹在颗粒表面,从而提高了乳状液的稳定性。
     根据乳化性能及施胶性能进行优化,得到ASA乳化剂PDAMM-4N。PDAMM-4N符合如下条件:DMDAAC=70.00%,AM=18.00%,MDE=10.00%,MBA=2.00%,特性粘度为0.40dL/g左右。采用PDAMM-4N乳化得到的ASA乳状液的粒径、粒径分布以及稳定性均能满足施胶的要求。
     研究了ASA/PDAMM-4N乳状液的应用技术。较佳的施胶条件是:ASA与PDAMM-4N按质量比1/1进行乳化,采用1%阳离子淀粉和0.02%阳离子聚丙烯酰胺双元助留,碳酸钙的加填量不高于25%,干燥温度为100-105℃,抄纸pH值是6-8。另外,ASA/PDAMM-4N乳状液在较强的剪切力和较宽的水质硬度范围均可使用。ASA/PDAMM-4N乳状液能满足工业应用要求,其直接施胶成本为39.14元/吨纸,略低于另一种常用中性施胶剂AKD在相同条件下的施胶成本。
     建立了ASA施胶数学模型。仅考虑ASA添加量w变化时的模型简化式为t=1/a-b·w,该模型拟合的相关系数为0.9788,平均绝对偏差为13.48%。仅考虑纸张定量G变化时的模型简化式为t=G~2/m-2·G,模型拟合的相关系数为0.9932,平均绝对偏差为11.12%。
Alkenyl Succinic Anhydride (ASA) is an important paper sizing agent. The conventional emulsifiers of ASA have many drawbacks such as high cost or bad emulsifying ability. In the dissertation, a DMDAAC copolymer both have hydrophobically associating property and prominent surface activity, is designed and synthesized based on DMDAAC polymer, and successfully used in paper sizing process as emulsifier of ASA. The utilization covered many drawbacks related to conventional ASA emulsifier, and widen the application fields of hydrophobically associating water soluble polymers meanwhile.
     The target polymer is named as PDAMM and is copolymerized by DMDAAC, acrylamide (AM), maleic di-ester type of Gemini surfactant (MDE), hydrophobic monomer butyl methacrylate (MBA) or octyl methacrylate (MOA). MDE used both as the solubilization aid of MBA or MOA, taking place of conventional surfactant, and as a monomer. Suitable methods are adopted in structure characterization of PDAMM. PDAMM has two glass transition temperature (Tg), such as 198.57℃and 120.98℃, which shows it have a block structure.
     Various influencing factors during the preparation of PDAMM are studied. The conversion rate are increased by improving of the initial concentration of the initiator and the reaction temperature, decreased by improving of the initial concentration of DMDAAC, MDE and MBA (or MOA); the cationic grade are increased by improving of the reaction temperature, the initial concentration of the initiator and DMDAAC, decreased by improving of the initial concentration of MDE and MBA (or MOA); the intrinsic viscosity of the polymer shows a trend of rising first and falling afterward by improving of the initial concentration of the initiator, and decreased by improving of the reaction temperature, the initial concentration of DMDAAC, MDE and MBA (or MOA).
     Influence of PDAMM's structure to its hydrophobically associating property and surface activity are studied. Hydrophobically associating property is enhanced by increasing of content and hydrophobic property of hydrophobic monomer and intrinsic viscosity of the polymer when hydrophobic monomer is under its saturate solubilizing amount and PDAMM have good water soluble property. PDAMM has a prominent surface activity. The apparent surface tention of PDAMM solution is affected by its hydrophobically associating property, and has a minimum value at the critical association concentration, such as 45.04mN/m (25℃).
     Influence of PDAMM's structure to its property of emulsifying ASA is studied. When ASA concentration is 0.50%, ASA latex emulsified by PDAM (DMDAAC- AM-MDE copolymer) breaks in 30 minutes, while ASA latex emulsified by PDAMM (MBA content in PDAMM is 2.00%) remains unbroken in 15 hours. It is proved that the hydrophobic groups cause the main hydrophilic chain of PDAMM to migrate toward and wrap ASA particles, so that the stability of ASA latex is enhanced.
     ASA emulsifier PDAMM-4N is carried out by optimizing according to the emulsion capability and the sizing effects. PDAMM-4N have monomers contents of DMDAAC = 70.00%, AM = 18.00%, MDE = 10.00%, MBA = 2.00%, and has intrinsic viscosity value of around 0.40 dL/g. The equivalent particle size, radium size distribution and stabilities of ASA latex prepared by PDAMM-4N are all meet the sizing requests.
     Application technology of ASA/PDAMM-4N latex is studied. Suitable sizing conditions are: ASA is emulsified with the ratio of 1:1 to PDAMM-4N, retention aid system is composed of 1% cationic starch and 0.02% cationic polyacrylamide, filling amount of CaCO_3 is no higher than 25%, drying temperature is 100-105℃, sizing pH is between 6-8. Besides, ASA/PDAMM-4N latex can be used under a high sheering condition and within a broad range of water rigidity. ASA/PDAMM-4N latex can meet the industrial application requests, sizing with it cost 39.14 Chinese Yuan, lower than that of AKD, another commonly used neutral sizing agent.
     An ASA sizing model is firstly proposed. When only ASA dosage w is concerned, the modelhas a simplified expression of t =1/a-b·w, the related coefficients is 0.9788, and the meanabsolute deviation is 13.48%. When only fix quantity G is concerned, the model has a simplifiedexpression of t =G~2/m-n·G, the related coefficients is 0.9932, and the mean absolute deviationis 11.12%.
引文
[1] McCormick C L, Bock J, Schulz D N. Water-soluble polymers[A]. In: Mark H F, Bikales N M, Overberger C G, et al. eds. Encyclopedia of Polymer Science and Engineering 2nd ed[C](vol. 17). New York: Wiley-Interscience, 1989:730-748.
    
    [2] Peer W J. Polymer in Aqueous Media: Performance through Association[A]. In: Glass J E eds. Advance in Chemistry. No.233[C]. Washington D C: Am Chem Soc, 1989.
    
    [3]胡红旗,陈鸣才,程榕时.疏水缔合作用研究[J],广州化学,2003,28(1):26-33
    
    [4] Kauzmann W, Adv. Protein Chem., 1959,14:1-7.
    
    [5] Dupin P. Strauss U P.Hydrophobic Hypercoiling in Copolymers of Maleic Acid and AlkyiVinyl Ethers. J. Phys. Chem., 1967,71:2757-2763.
    
    [6] Glass J E. Associative Polymer: from Nonsense to Reality. Polym. Mater. Sci. Eng., 1989, 69:102-109.
    
    [7] Landoll L M. Nonionic Polymer Surfactants. J. Polym. Sci., Polym. Chem. Ed., 1982, 20:443-452.
    
    [8]沈平平,俞稼镛.大幅度提高石油采收谐的基础研究.北京:石油工业出版社,2001,5.
    
    [9] Otto B. Wurzburg, Whitehouse Station, and Emil D. Mazzarelia, Plainfield, N.J.. Novel PaperSizing process[P]. US 3102 064(8/1963)
    
    [10] Francios Jean. Morphology of Water-soluble Interpolyelectrolyte Complexes formed byPoly(2-vinylPyridininium)-block-Poly(ethylene oxide) Diblock and Poly(4-styrenesulfonate)Polyanions. Macromolecules, 2001, 34: 2745-2747.
    
    [11]王中华,AMPS/AM/AN三元共聚物降滤失剂的合成与性能[J].油田化学,1995,15(4): 367-369
    
    [12] McCormick C L, Johnson C B. Water-soluble copolymers 29. Ampholytic copolymers of sodium 2-acrylamido-2-methylpropanesulfonate with (2-acrylamido-2-methylpropyl) dimethylammomnium chloride: solution properties. Macromolecules[J], 1988, 21(3):694-699.
    
    [13]冯玉军,郑焰,罗平亚.疏水缔合聚丙烯酰胺的合成及溶液性能研究[J].化学研究与应 用,2000,12(1):70-73.
    
    [14]张健,张黎明,李卓美.疏水阳离子单体ADMCAB及其共聚物的溶液性质[J].中山大 学学报(自然科学版),1999,38(6):49-53.
    
    [15] Dowling K C, Thomas J K. A novel micellar synthesis and photophysical characterization of water-soluble acryamide-styrene block copolymers. Macromolecules[J], 1990,23:1059-1064
    
    [16] Hill A, Candau F, Selb J. Properties of hydrophobicall associating polyacrylamides: Influence??of the method of synthesis[J]. Macromolecules, 1993,26(17)4521-4532.
    
    [17] Evani S. Water-dispersible hydrophobic thickening agent[P]. US: 4432881, 1984
    
    [18] Turner S R, Siano D B, Bock J. Micellar process for the production of acrylamide-N-alkylacrylamide copolymers[P]. US 4458348, 1985
    
    [19] Ezzell S A, McCormick C L. Water-soluble Polymer Synthesis, Solution Properties andApplications [A]. In: Shalaby S W, McCormick C L, Buttler G B eds. ACS Symposium Series467[C]. Washington D C: Am Chem Soc, 1991
    
    [20] Lacik I, Selb J, Candau F. Compositional heterogeneity effects in hydrophobicall associatingwater-soluble polymers prepared by micellar copolymerization[J]. Polymer, 1995, 36(16):3197-3211.
    
    [21]陈颖,耿同谋,吴文辉.丙烯酰胺/丙烯酸钠/N-辛基丙烯酰胺疏水缔合共聚物的合成及 水溶液性能研究[J].精细石油化工进展,2004,5(1):10-14.
    
    [22]钟传蓉,黄荣华,张熙等.AM-STD-NaAMPS三元疏水缔合共聚物表征及耐热性能[J]. 高分子材料科学与工程,2003,19(6):126-130.
    
    [23]姜桂元,任鲲,徐春明等.疏水缔合聚合物的合成及溶液性能研究[J].石油大学学报(自 然科学版),2003,27(6):80-82.
    
    [24]罗开福,叶林,黄荣华.AM/MEDMDA阳离子型疏水缔合水溶性聚合物溶液性能的研究 [J].高分子材料科学与工程,1999,15(1):145-148.
    
    [25]李爱霞,左晓玲,杨学云.氨酯型疏水缔合水溶性聚合物的合成[J].西南石油学院学 报,2002,24(3):61-63,67.
    
    [26]罗开富,张熙,黄荣华.疏水缔合水溶性聚合物的合成.油田化学,1999,16(3):282-285.
    
    [27] Strauss J P. Gershfel N L. Crook E H. J Phys Chem. 1956, 60: 517.
    
    [28] Midderon J C, Cummnus D C, McCormick C L. Polymer Prepr. 1989, 30(2): 348.
    
    [29] Chang Y, McCormick C L. Polymer prepr. 1992, 33(2):202.
    
    [30] Kaczmarski J F, Glass J E. Macromolecules, 1993, 26:5149.
    
    [31] Annable T, Buscall R et al. Langmuir, 1993, 10:1060.
    
    [32] Duhamel J. Yekta A, Zhu Y Z et al. Macromolecules, 1992, 25: 7024.
    
    [33] Hill A, Candau F. Selb J. Macromolecules, 1993, 26: 4521-4532.
    
    [34] Candau F, et al. Macromolecules. 1986, 19(7): 1985.
    
    [35]冯玉军,罗传秋,罗平亚等.疏水缔合水溶性聚丙烯酰胺的溶液结构的研究[J].石油学报, 2001,17(6):39-43.
    
    [36] Needham R B, Doe P H. J Petrol. Technol., 1987(12): 1503-1508.
    
    [37]淡宜,王琪.聚(丙烯酰胺-丙烯酸)/聚(丙烯酰胺-二甲基二烯丙基氯化铵)分子复合型聚 合物驱油剂的增粘作用[J].高等学校化学学报,1997,18(5):818-822.
    
    [38]张健,张黎明,李卓美.疏水化水溶性聚电解质的增粘作用[J].功能高分子学报,1999, 12(1):88-96.
    
    [39] Zhuang D Q, Cao Y, Zhang H D et al. Interaction of fluorocarbon and hydrocarbon hydrophobically co-modified PAA with a nonionic surfactant: rheological properties of polymers solutions in the absence of salt[J]. Polymer, 2002,43: 2075-2084.
    
    [40] Yamamoto Hiroshi, Tomatsu Itsuro, Hashidzu Me, Akihito et al. Associative Properties in Water of Copolymers of Sodium 2-(acrylamido)-2-methylproparne Sulfonate and Methacrylamides Substituted with Alkyl Groups of Varying Lengths[J]. Macromolecules. 2000, 33(21): 7852-7861.
    
    [41] Bick J., Valin P L., Jr, Pace S J, et al. Water-soluble Polymers for Petroleum Recovery. Plenum Press, New York, 1988: 147-160
    
    [42] Shalaby S W, McCormick C L., Butter G B. Water-soluble Polymers Synthesis Solution Properties and Application[A]. American chemistry society, 1999.
    
    [43] McCormick C L, Johnson C B. Water-soluble Polymers for Petroleum Recovery Structurally Tailored Macromolecules for Mobility Control in Enhanced Oil Recovery[J]. Plenum, New York, 1988: 161-180
    
    [44]钟传蓉,黄荣华,罗平亚.表面活性剂对疏水改性丙烯酰胺共聚物增粘性能的影响[J]. 应用化工,2006,12(35):913-917.
    
    [45]钟传蓉,梁兵,黄荣华,何文琼.丙烯酰胺/丁基苯乙烯疏水缔合共聚物的合成与表征. 精细化工.2006,10(23):1014-1018.
    
    [46] Ezzel S A, Holyle C E, Creed D et al. Water-soluble Copolymers. 40. Photophysical Studies of the Solution Behavior of Associative Pyrene Sulfonamide-labeled Polyacrylamides. Macromolecule. 1992,25(7): 1887-1895.
    
    [47]钟传蓉.疏水缔合丙烯酰胺共聚物的合成与性能及在溶液中的结构形态.四川大学博士 学位论文.71-73
    
    [48]罗健辉,卜若颖,王平美等.疏水缔合聚合物增稠性能研究[J].化学世界,2003(6): 291-293,296
    
    [49]赵军子,牛俊峰.疏水缔合型聚丙烯酸盐增稠剂的研究[J].印染助剂,2004,21(1):9-12
    
    [50]黄雪红,许国强.疏水缔合型增稠剂聚(丙烯酰胺-丙烯酸高级酯的合成及增稠性能研究 [J].合成化学,2002,10(1):135-139.
    
    [51]McCormick C L,Johnson C B著,师树一等译.强化采油中用作流度控制的结构改性高 分子.采油用水溶性聚合物[M],北京:石油工业出版社,1994.
    
    [52]施雷庭,叶仲斌,罗平亚等.疏水缔合水溶性聚合物AP-P3在多孔介质中的缔合行为研 究[J].天然气勘探与开发,2004,27(4):40-43,59.
    
    [53]纪朝凤,葛红红.调剖堵水材料研究现状与发展趋势[J].石油钻采工艺,2002,24(1): 54-57.
    
    [54]赵勇,李维云,哈润华等.(AM/AA/DADMAC)共聚物堵水剂的反相乳状液法制备研究 [J].精细化工,1997,14(6):35-37.
    
    [55]陈鸿,张熙,梁兵.疏水改性阳离子型高分子絮凝剂P(AM-DMDAAC-MBA)的合成与 性能研究[J].高分子材料与工程,2003,19(2):97-100
    
    [56]魏德卿,宋艳,金勇等.驱油用双亲聚合物的研究进展[J].精细化工,2004,21(9): 662-666.
    
    [57]魏举鹏,杨建军,刘一江.耐温抗盐驱油剂-新型疏水缔合水溶性聚合物[J].西部探矿 工程,2005(5):67-69.
    
    [58]张岩,岳前声,向兴金.疏水缔合型水溶性聚合物的合成与应用[J].钻井液与完井液, 2001,18(2):44-47.
    
    [59]曹亚,张熙,李惠林等.高分子材料在采油工程中的应用与展望[J].油田化学,2003, 20(1):94-98.
    
    [60]吕鑫,景艳,郑焰.油田用疏水缔合物的分子设计[J].精细石油化工进展,2003,4(9): 6-10.
    
    [61]王中华.AM/AMPS/DMDAAC/AMC16S共聚物的合成与性能[J].贵州化工,1998,(2): 27-29.
    
    [62]朱怀江,杨静波,曲波等.三种新型聚合物驱油效率对比研究[J].油田化学,2003,20(1): 35-39.
    
    [63] Taylor K C, Nasr-El-Din H A. Water-soluble hydrophically associating polymers for improved oil recovery: a literature review[J]. Journal of Petroleum Science and Engineering, 1998,19:265-280.
    
    [64]杨福廷.疏水缔合型聚丙烯酰胺共聚物在水处理中的应用[J].精细化工,2001,18(3): 144-147.
    
    [65] Nilhan Kayaman, Elifgiirel E, MBAysal B M, et al.. Kinetics of Coil-Globule collapse inPoly(methyl methacrylate) in Dilute Solutions below Temperature[J]. Macromolecules, 1999,32: 8399-8403.
    
    [66] Tonge S R, Tighe B J. Responsive hydrophobically associating polymers: a review ofstructure and properties[J]. Advanced Drug Delivery Reviews, 2001,53: 109-122
    
    [67] Debra T A, Robert K, Patrick L A et al.. Association of hydrophobically-modifiedpoly(ethylene glycol) with fusogenic liposomes[J]. Biochimica et Biophysica Ata. 2003,1616:184-195.
    
    [68] Jonsson M, Johansson H O. Protein partitioning in thermoseparating systems of a chargedhydrophobically modified ethylene oxide polymer[J]. Journal of Chromatography A. 2003,983: 133-144.
    
    [69] Hayashi H, Kono K, Takagishi T. Temperature-controlled release property of phosphohilipidvesicles bearing a thermo-sensitive polymer[J]. Biochimica et biophysica Acta. 1996,1280:127-134.
    
    [70] Polozova A, Winnik F M. Aechanism of the interaction of hydrophobically-modifiedpoly-(N-isopropylacrylamides) with liposomes[J]. Biochimica et Biophysica Acta. 1997,??1326: 213-224.
    
    [71] Rouzes C, Durand A, Leonard M et al.. Surface activity and emulsification properties of hydrophobically modified dextrans[J]. Journal of Colloid and Interface Science, 2002,253:217-223.
    
    [72]周明,代加林,李春福等.疏水缔合水溶性聚合物在水性涂料中的研究进展[J].中国涂 料,2004,(11):38-41.
    
    [73]徐福贵,董晓臣.聚丙烯酰胺疏水缔合衍生物研究进展[J].化学推进剂与高分子材料. 2003,1(2):25-28.
    
    [74]夏华林.我国造纸工业现状与浆内施胶剂发展趋势.2005(第十二届)全国造纸化学品 开发应用技术研讨会论文集,2005年10月,5
    
    [75]张光华编译.造纸湿部化学原理及其应用[M].中国轻工业出版社.1998年9月第1版. 119-126.
    
    [76]李志谦.几种常用的中性施胶剂[J].西南造纸,2004,33(3):47,49.
    
    [77]朱文远,赵传山.造纸用中碱性施胶剂的研究进展.湖南造纸,2005,2:23-27.
    
    [78]卜凡,陈洁静.造纸中性施胶剂ASA的生产和应用技术[J].造纸化学品,2001(2):40-42
    
    [79]曹春昱.造纸中性施胶剂-烯基琥珀酸酐(ASA).中国造纸,2002(3):61-64.
    
    [80]吕国福编译.中性ASA施胶剂的施胶机理及其应用技术.2006,18(4):60-65
    
    [81]赵建民.烯基琥珀酸酐(ASA)用于中性造纸施胶的施胶性能及应用趋势.沈阳化工, 2000,29(4):221-223,236
    
    [82]张践坚,赖秀美.新型烯基琥珀酸酐组合物及其用途[P].CN1432088,7/2003.
    
    [83]K松德伯格,J罗伯茨,C泽特,G彭.纸张施胶组合物.CN 1659338,8/2005.
    
    [84] E. Bahr, Leimung mit system-ASA, WOCHENBLATT FUR PAPIER FABRIKATION, 17, 2001,1112-1116.
    
    [85]王代启,胡开堂,宋诗莹.ASA在施胶过程中的化学行为[J].中国造纸,2006,25(1): 12-16.
    
    [86] Farley, C.E. and Wasser, R.B. Sizing of Paper, Second edition, W.F. Reynold, TAPPI PRESS,1989,51-61.
    
    [87] Herber Conner, Tingdong Lin, Gert Tuin, Henrica G.M.. Paper Sizing Dispersions[P]. US6183550, 5/2001.
    
    [88] HASSLER, Thord, G., etc., Paper Sizing and Paper Sizing Process, WO 97/35068, 3/1997
    
    [89]杨造豪.ASA中性施胶剂及其在高档纸板生产中的应用.中华纸业,2000,21(1):21-22
    
    [90]关颖,李大力,穆军.阳离子淀粉对ASA乳化的影响.中国造纸,2002(5):17-20
    
    [91] Robert W. Novak, Emulsification of Alkenyl Succinic Anhydride Sizing Agents, US4,606,773, 8/1986
    
    [92] Daniel E. Glover, ASA Sizing Emulsions Containing Low and High Molecular WeightCationic Polymers, US 5,962,555, 10/1999
    
    [93]沈一丁,陈顺喜,朱敏.改性ASA中性施胶剂的研究.中华纸业,2004,24(10):39-41
    
    [94]王代启、胡开堂、何北海,BCTMP的特性及其对ASA中性施胶的影响,中华纸业, 2005,26(4):33-36.
    
    [95]沈一丁编著.高分子表面活性剂[M].化学工业出版社,北京,2002,12:37.
    
    [96]林尚安,陆耘,梁兆熙编著.高分子化学[M].科学出版社,北京,2000,11
    
    [97] Yshida, Yoshifumi. Tanigawa, Akira. Tamamoto, Satoshi et al., Eur. Pat. Appl. EP688800Al(6/1995
    
    [98]崔平,马俊涛,黄荣华.疏水缔合水溶性聚合物溶液性能研究进展[J].化学研究与应用, 2002,14(4):377-382
    
    [99]戴永胜,刘金河,叶天旭等.疏水缔合水溶性耐温耐盐聚合物的研究进展(二)[J].精细与 专用化学品,2003,(20):18-21
    
    [100] 李与文,王慧丽编.制浆造纸分析检验[M].化学工业出版社,北京,2005,3
    
    [101] 戴红旗.漂白麦草浆AKD中性/碱性造纸化学的研究.南京林业大学博士学们论文, 2000
    
    [102] William R McCarthy, Robert A Stratton. Effects of drying on ASA esterification and sizing[J]. Tappi J. , 1987, 70(12): 117
    
    [103] 顾惕人,朱埗瑶,李外郎.表面化学[M].北京:科学出版社,1994:366
    
    [104] 隆言泉.制浆造纸工艺学(下册)[M].北京:轻工出版社,1981:71
    
    [105] 朱明月,乔卫红,毕晨光等.乳状液聚合中的反应型乳化剂研究进展[J].化工进展,2006,26(5):490-494
    
    [106] P.贝歇尔著,北京大学化学系胶体化学教研室译.乳状液理论与实践[M].北京: 科学出版社,1978:58