两个早熟葡萄芽变品种生物学特性研究与分子鉴定
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
试材'98-2'(Vitis vinifera cv.98-2)和‘洛浦早生’(V.vinifera cv. Luopuzaosheng)为河南科技大学园艺系分别从‘巨峰’(V.vinifera cv. Kyoho)和‘京亚’(V.vinifera cv. Jingya)中选育的早熟葡萄芽变新品种(系)。本研究对‘98-2’和‘洛浦早生’与其亲本的植物学和生物学特性及果实成熟过程中矿质元素、激素、糖、酸的变化以及分子鉴定等方面进行了研究,探讨了芽变品种(系)与亲本上述特性的差异,取得以下主要结果:
     1.通过对芽变品种(系)与其亲本的诸多植物学性状和生物学特性指标的比较分析,发现两个芽变品种(系)在果实大小、可溶性固形物含量、可滴定酸含量、物候期、果穗及果粒呼吸强度和乙烯释放量等方面均有不同程度的差异,以果实成熟期差异较为明显。果实发育期,‘98-2’比‘巨峰’少36 d左右,‘洛浦早生’比‘京亚’少20 d左右。
     2.果实发育期间矿质元素变化研究表明,在幼果期果实中除Ca外,其它元素的含量均是‘巨峰’高于‘98-2’;‘洛浦早生’除Fe、Zn、N、P、K等矿质元素外,其余均高于‘京亚’。此后,随着幼果的快速增大,因稀释作用,使多数矿质元素含量逐渐下降。进入果实迅速膨大期后,只有Mn元素出现一个较大值,其它大多数矿质元素平稳递减。在果实成熟时,‘98-2’果实中Zn、Ca、Mg、P、K、元素的含量高于‘巨峰’,其余则为巨峰高于‘98-2’;而‘洛浦早生’除Cu、Zn、Mg、P元素外,其余均是‘京亚’为高。
     3.果实发育期果肉中IAA、GA3、ZR、ABA的含量变化趋势相似,都是一个单峰曲线,在果实缓慢生长期开始前后即花后30 d或40 d达到较大值,但较大值出现时期与成熟期早晚无关。果皮中IAA、GA3、ZR的含量变化趋势相似,都有一明显的较大值,两个芽变品种(系)的较大值均低于亲本,且较大值出现时间可能与成熟期早晚有关;果皮中ABA含量‘98-2’高于‘巨峰’,‘洛浦早生’其含量低于‘京亚’,果皮中ABA含量在果实发育的后期含量较高,但成熟期不同的品种高含量ABA所持续的时间不同。
     4.果实发育期除蔗糖外,果肉中果糖、葡萄糖及总糖的含量变化‘98-2’与‘巨峰’有差别,‘洛浦早生’和‘京亚’相似。‘巨峰’果肉中果糖、葡萄糖及总糖的含量在花后40 d前增加缓慢,以后则迅速增加直到果实成熟:‘98-2’和‘京亚’分别在花后50 d、‘洛浦早生’在花后40 d以后果肉中果糖、葡萄糖及总糖的含量开始降低直到果实成熟,但‘洛浦早生’果实发育后期果糖、葡萄糖及总糖的含量均高于‘京亚’
     果皮中果糖、葡萄糖及总糖的含量变化‘98-2’、‘巨峰’、‘洛浦早生’、‘京亚’相似。花后30 d内4个品种果皮中果糖、葡萄糖及总糖的含量变化不大,以后则逐渐上升直到果实成熟,且在果实成熟时芽变品种(系)果皮中果糖、葡萄糖及总糖的含量均低于亲本。
     果实发育期转化酶均在果实糖分开始快速积累前后活性达到最大,‘洛浦早生’与‘京亚’变化较一致,而‘98-2’与‘巨峰’差别较大。
     5.无论芽变品种(系)和亲本,果实中酸的含量均以酒石酸、苹果酸最多,柠檬酸次之,草酸最低。果肉中4个品种苹果酸含量随果实生长发育逐渐上升,在果实发育中期上升到较大值,成熟期则下降,且芽变品种(系)的苹果酸含量均低于亲本;而果皮中苹果酸含量只有‘98-2’前期高于亲本,其余则和果肉的变化趋势一样。果肉、果皮中的酒石酸含量,在生长至成熟过程中均呈下降趋势,且芽变品种(系)酒石酸含量均低于亲本。果肉中总酸含量与苹果酸变化趋势相似,果皮中则与酒石酸相似。
     6.利用RAPD分子标记技术对两个芽变品种(系)与亲本的DNA差异进行了分析,发现S56的PCR产物中条带1300 bp在‘98-2’中出现,而‘巨峰’中没有出现,S234的PCR产物中条带950 bp只在‘京亚’中出现,而‘洛浦早生’中出现条带1320 bp。利用SSR标记,引物VRZAG25和VVS2分别在巨峰及其芽变98-2,京亚及其芽变洛浦早生的PCR产物中出现510bp和290bp的差异条带。从分子证据上表明它们是不同的品种,证明了它们具有芽变关系的可能。
     7.‘98-2’、‘巨峰’、‘京亚’与‘洛浦早生’的花粉粒形态相似;只是‘98-2’较细长,‘巨峰’较粗短;‘京亚’与‘98-2’、‘洛浦早生’的花粉形状也略有不同。花粉的萌发率‘98-2’低于‘巨峰’,‘京亚’高于‘洛浦早生’。
     8.‘98-2’与‘巨峰’的POD同工酶谱存在差异,‘98-2’与‘巨峰’相比多了一条P3带而少了一条P6带,而且P4、P5为强带。表明‘98-2’和‘巨峰’不是同一种种质,它们的遗传物质不完全相同。而‘洛浦早生’和‘京亚’的同工酶谱完全相同。
Two new grape varieties,'98-2'(Vitis vinifera) and 'Luopuzaosheng'(V. viniferd) were early-ripening bud mutations varieties of 'Kyoko'(V. vinifera) and 'Jingya'(V. vinifera), respectively. Both of them were selected by college of Horticulture, Henan University of Science & Technology. In this study, the botanical and biological characteristics, the variations of mineral elements, hormone, sugar and acid, as well as molecular identification were studied among the varieties ('98-2' and 'Luopuzaosheng') and their parents. The difference between the bud mutation varieties and their parents were also discussed. The results were as follows:
     1. There are some differences in botanical characters and biological characteristics between the bud mutation varieties (strain)and their maternal plants, such as the fruit size, the content of soluble solid and titratable acid, the phenophase, the respiration rate of fruit cluster and fruit grain, the ethylene release. Moreover, the most significant variation was fruit ripening period. The fruit developing period of the '98-2' was 36d shorter than 'Kyoko', while the 'Luopuzaosheng' was 20d shorter than Jingya.
     2. Theanalyis of the content variations of mineral elements of fruit in fruit developing period showed the content of other mineral elements in young fruits of 'Kyoko' was higher than '98-2' except for Ca. In Jingya's young fruit the content of Fe, Zn, N, P and K was higher than 'Luopuzaosheng', but other mineral elements were less than 'Luopuzaosheng'. After entering the fruit quickly expanding period, the content of the majority of mineral elements gradually decreased except for Mn due to the diluting effect. When the fruit matured, the content of Zn, Ca, Mg, P and K in '98-2' was higher than 'Kyoko' while other mineral elements was lower than 'Kyoko'. The content of Cu, Zn, Mg and P in 'Luopuzaosheng' was higher than 'Jingya' and the other mineral elements were lower than 'Jingya'.
     3. At the fruit developing period, the change trends of the content of IAA, GA3, ZR and ABA in flesh were similar which appear as a single peak profile. The content of IAA, GA3, ZR and ABA present the peak in 30 or 40 days after flowering at the beginning of the fruit slowly growth period. But the time of the peak value emerging has no relationship with the maturity period. The change trends of the content of IAA, GA3 and ZR in peel were similar which all have a significant peak. The peak values of the two bud mutation varieties (strain) were lower than their parents and the time of the peak valueemerging have relationship with the maturity period. The content of ABA in peel of '98-2' was higher than 'Kyoko', but 'Luopuzaosheng' was lower than 'Jingya'. Moreover the content of ABA was very high in the later stage of fruit developing period, but the continuous time of high content of ABA was different in different maturity period cultivars.
     4. At the fruit developing period, the change trends of the content of frutose, glucose and total sugar in flesh were different between '98-2' and 'Kyoko', but they were similar among 'Luopuzaosheng' and 'Jiangya'. The content of frutose, glucose and total sugar increased slowly during forty days after flowering and then increased rapidly until the fruit matutity. The content of frutose, glucose and total sugar began to decrease at 50d after flowering of'98-2'and'Jingya' and at 40d after flowering of 'Luopuzaosheng'. For 'Luopuzaosheng', the content of frutose, glucose and total sugar was higher than 'Jingya' in the later stage of fruit developing period.
     The variation of the content of frutose, glucose and total sugar were similar among the '98-2','Kyoko','Luopuzaosheng' and 'Jingya' in peel at the period of the fruit developing. During thirty days after flowering, the content of frutose, glucose and total sugar had little changes in peel of these four varieties(strain). Then they rose gradually till the fruit maturity. Furthermore the content of frutose, glucose and total sugar in peel of bud mutation were lower than their parents'
     The activity of the invertase reached the maximum at the beginning of the fruit sugar rapidly accumulating in the fruit developing period. This variations were similar between 'Luopuzaosheng' and 'Jingya', but there are great difference between '98-2' and 'Kyoko'.
     5. The content of the tartaric acid and malic acid was the most abundant in the fruit and the next was citric acid, the lowest was oxalic acid whether in bud mutation varieties(strain) or parents. The content of the malic acid was gradually increased with the fruit developing in the flesh of these four varieties(strain). Then it reached to the highest value in the middle period of berry fruit developing, and decreased in maturity. Meanwhile the content of the malic acid of bud mutation was lower than parents. In peel the content of the malic acid of '98-2' was higher than parents' at earlier stage and the change trend was the same as it in flesh in other phase. The contents of tartaric acid all showed downtrend whether in flesh or in peel from growth to maturity. Furthermore the contents of tartaric acid of bud mutation were lower than parents. The trend of content of total acid in flesh was similar to the trend of malic acid but in peel it was similar to the trend of tartaric acid.
     6. There are difference at DNA level between the two bud mutation varieties(strain) and their parents by using RAPD and SSR markers. The results showed there was a band (1300bp) amplied by RAPD prime S56 in 98-2 but not in Kyoho. A band (950bp) amplied by RAPD primer S234 was appeared only in Jingya but a band (1320bp) amplied by the same primer was appeared in Luopuzaosheng. SSR primers, VRZAG25 and VVS2 also amplified two distinct bands,510bp and 290bp, in each two varieties with the relationship of bud mutation (Kyoho and 98-2, Luopuzaosheng and Jingya). These results proved that they are not the same varieties and probably have the bud mutation relationship.
     7. The pollen shapes of '98-2','Kyoho','Jingya' and 'Luopuzaosheng' were similar. The '98-2" s pollen grain was spindly and 'Kyoho" s was dumpy and 'Jingya" s had slightly different with '98-2" s and 'Luopuzaosheng" s. Pollen germination percentage of '98-2' was lower than that of 'Kyoho' and 'Jingya' was higher than 'Luopuzaosheng'.
     8. Comparizing with the band patterns of peroxidase isoemzyme between '98-2' and 'Kyoho','98-2' had a P3 band but P6 band was absent and the P4 and P5 band were strong bands which illustrated that their genetic materials were not identical. The band patterns of isoemzyme between 'Luopuzaosheng' and 'Jingya' were completely identical.
引文
1. 白宝璋,孙存华,田文勋.植物生理学(实验教程)(第二版).北京:中国农业出版社,1998,59-61
    2. 蔡传杰,陈善娜.植物激素的研究进展.云南大学学报(自然科学版),2001,23(植物学专辑):99-101
    3. 曾柏全,甘霖,熊兴耀.冰糖橙及冰糖脐橙果实的总糖与总酸的变化规律.湖南农业大学学报(自然科学版),2003,29(4):343-344
    4. 陈发河,蔡慧农,冯作山,张维一,廖康.葡萄浆果发育过程中激素水平的变化.植物生理与分子生物学学报,2002,28(5):391-395
    5. 陈发河,于新,张维一,谭敦炎.无核白葡萄果柄结构与落粒关系的研究.新疆农业大学学报,2000,23(1):44-48
    6. 陈美霞,陈学森,慈志娟,史作安.杏果实糖酸组成及其不同发育阶段的变化.园艺学报,2006,33(4):805-808
    7. 邓秀新,郭文武,孙绪华.我国无核柑桔类型选育研究进展.园艺学报,1996,23(3):235-240
    8. 丁士林,朱秀珍,洪泽.猕猴桃过氧化物同工酶研究.安徽农业大学学报,1997,24(4):395-397
    9. 樊冬丽,秦艳芳,田展.棉种染色体倍性与叶片气孔性状的关系.山西农业大学学报(自然科学版),2003,23(1):7-10
    10.樊红柱,同延安,赵营,刘汝亮.苹果树体磷素动态规律与施肥管理.干旱地区农业研究,2007,25(1):73-77
    11.冯永庆,杨东生,沈元月,田瑞冬,秦岭.板栗短雄花序芽变花粉特性研究.北京农学院学报,2008,23(2):1-4
    12.甘霖,谢永红,吴正琴,夏先强.‘嘉平大枣’果实发育过程中糖、酸及维生素C含量的变化.园艺学报,2000,27(5):317-320
    1 3.高义民,同延安,马文娟.陕西关中葡萄园土壤养分状况分析与平衡施肥研究.西北农林科技大学学报(自然科学版),2006,34(9):41-44
    14.龚云池,徐季娥,吕瑞梨.果实中不同形态钙的含量及其变化的研究.园艺学报,1982,19(2):189-134
    15.龚云池,徐月娥,张淑珍,吕瑞江.鸭梨叶片和果实中钙素含量年周期变化的研究.园艺学报,1987,14(1):1-6
    16.顾曼如,束怀瑞,曲桂敏,姜远茂,苗良.红星苹果果实的矿质元素含量与品质关系.园艺学报,1992,19(4):301-306
    17.韩继成,赵胜建,郭紫娟.三倍体葡萄品种花粉形态及其坐果率的研究.果树学报,2005,22(5):561-563
    18.贺普超.葡萄学.北京:中国农业出版社,1999,181-185
    19.侯佳贤,崔龙高,玉江.果树芽变育种研究进展.园艺学进展(第七辑),中国园艺学会第七届青年学术讨论会,泰安,2006,273-277
    20.胡志群,王惠聪,胡桂兵.高效液相色谱测定荔枝果肉中的糖、酸和维生素C.果树学报,2005,22(5):582-585
    21.孔庆山.中国葡萄志.北京:中国农业科学技术出版社,2004,526-561
    22.李宝江.矿质元素含量与苹果风味品质及耐贮性的关系.果树科学,1995,12(3):141-145
    23.李怀福.巨峰系葡萄品种演化及分类的研究.园艺学报,2003,30(2):131-134
    24.李四俊,钟泽,刘项荣,解建庄,李广献.苹果无公害标准化施肥方案及配套专用肥研究.果树学报,2007,24(6):845-848
    25.李晓磊,沈向,孙凡雅,束怀瑞,郭翎,曹颖.苹果属观赏海棠品种花粉形态及分类研究.园艺学报,2008,35(8):1175-1182
    26.李兴军,李三玉,吕均良,汪国云.GA3对杨梅叶片木质素水平及其相关酶活性和成花的影响.园艺学报2001,28(2):156-158
    27.李秀根,杨健.花粉形态数量化分析在中国梨属植物起源、演化和分类中的应用.果树学报,2002,19(3):145-148
    28.李秀菊,刘用生,束怀瑞.不同成熟型苹果果实生长发育过程中几种内源植物激素含量变化的比较.植物生理学通讯,2000,35(1):7-10
    29.李志英.梨属间及-(60)Coγ射线辐射诱变朝鲜洋梨品系过氧化物酶同工酶的研究.果树科学,1991,8(2):83-86
    30.廖明安.金华梨芽变单系筛选及分子生物学鉴定研究.[硕士学位论文].重庆:西南农业大学,2003
    31.刘闯萍,王军.SSR标记及其在葡萄上的应用.果树学报,2008,25(1):93-101
    32.刘崇怀,孔庆山,潘兴.我国鲜食葡萄育种的种质基础与种质创新.果树科学,2002,19(4):256-261
    33.刘光栋,杨力,宋国菡,泉维洁,卢桂菊,韩秀香,邵良栋. 镁、钙肥对肥城桃品质影响及平衡施肥的研究.山东农业大学学报(自然科学版),2000,31(2):173-176
    34.刘剑锋,程云清,彭抒昂.梨果肉与种子中钙与内源激素含量变化关系研究.植物营养与肥料学报,2005,11(2):269-272
    35.刘林,许雪峰,王忆,等.不同反光膜对设施葡萄果实糖分代谢与品质的影响.果树学报,2008,5(2):178-181
    36.罗羽洧、解卫华、马凯.无花果花芽分化与内源激素含量的关系.西北植物学报,2007,27(7):1399-1404
    37.吕秀兰,张光伦,龚荣高,汪志辉,曾秀丽,苟琳.22个葡萄品种过氧化物同工酶研究.四川农业大学学报,2005,23(2):182-185
    38.马兵钢,牛建新,潘立忠,鲁晓燕,冯建荣.RAPD-PCR对梨属植物品种鉴定的研究.西北农业学报,2004,13(1):84-88
    39.马海燕.葡萄生长过程中内源激素含量变化的研究.[硕士学位论文].杨凌:西北农林科技大学,2007
    40.马焕普,刘志民.赤霉素与果树的生长发育.植物学通报,1998,15(1):27-36
    41.满书铎,丛佩华.我国苹果新品种选育进展.果树科学,1995,12(4):253-257
    42.牟蕴慧,甄灿福,周野,刘通.李芽变新品种‘龙园桃李’.园艺学报,2008,35(10):155
    43.宁允叶,熊庆娥,曾伟光.对‘早霞露’桃迟熟型芽变的研究.四川农业大学学报,2003,21(3):244-246
    44.宁允叶,熊庆娥,曾伟光.‘红阳’猕猴桃全红型芽变(86-3)的果实品质及花粉形态研究.园艺学报,2005,32(3):486-488
    45.牛立新,张延龙.中国野生葡萄花粉形态学研究.园艺学报,2000,27(5): 361-363
    46.潘照明.葡萄浆果的酸代谢生理.葡萄栽培与酿酒,1991,(1):1-3
    47.曲柏宏,严花淑,陈艳秋,朴日子,牛广才,郑东虎.同工酶分析在梨品种分类中的应用.延边大学农学学报,2003,25(1):86-91
    48.阮晓,王强,周疆明,郑春霞.香梨的果表突起和落果裂果与果实中内源激素之间的关系.植物生理学通讯,2001,37(3):221-221
    49.阮晓,王强,周疆明,郑春霞.香梨果实成熟衰老过程中4种内源激素的变化.植物生理学报,2000,26(5):402-406
    50.石荫坪.利用苹果花粉粒形态进行倍性鉴定.园艺学报,1998,25(2):133-138
    51.宋润刚,路文鹏,李昌禹,张雅凤,王军,屈慧鸽.山葡萄孢粉学的研究.特产研究,1996,(3):5-8
    52.仝月澳,周厚基.果树营养诊断法.北京:农业出版社,1982,127-130
    53.王贵元,夏仁学,曾祥国,吴强盛.外源脱落酸和赤霉素对红肉脐橙果肉糖含量的影响.应用生态学报,2007,18(11):2451-2455
    54.王海波,高东升,王孝娣,李疆.赤霉素和脱落酸与桃芽自然休眠诱导.果树学报2006,23(4):599-601
    55.王惠聪,黄辉白,黄旭明.荔枝果实的糖积累与相关酶活性.园艺学报,2003,30(1):1-5
    56.王同坤,马建军,朱京涛.山楂果实矿质元素含量的年周期变化规律.园艺学报,1994,21(2):201-202
    57.王西平,王跃进,张剑侠,徐炎,杨克强.葡萄早熟芽变品种‘早生高墨’的RAPD分析.西北植物学报,2003,23(3):473-476
    58.王永章,张大鹏.红富士苹果果实蔗糖代谢与酸性转化酶和蔗糖合成酶关系的研究.园艺学报,2001,28(3):259-261
    59.王玉华,范崇辉,沈向,曲桂敏,史继东.大樱桃花芽分化期内源激素含量的变化.西北农业学报,2002,11(1):64-67
    60.王祖华,陆振翔,郭洪.李、杏、梅亲缘关系及分类地位的同工酶研究.园艺学报,1991,18(2):97-101
    61.文涛,熊庆娥,曾伟光,刘远鹏.脐橙果实发育过程中有机酸合成代谢酶活性的变化.园艺学报,2001,28(2):161-163
    62.吴桂余,吴桂法,吴建华,韦军.梨新品种‘大果白酥’.园艺学报,2000,27(6):460
    63.45.吴红,常永义,郝燕,吴玉霞.利用RAPD标记研究部分葡萄品种的亲缘关系.果树学报,2008,25(6):932-936
    64.吴俊,钟家煌,徐凯,魏钦平,魏振林.外源GA3对藤稔葡萄果实生长发育及内源激素水平的影响.果树学报,2001,(4):209-212
    65.吴有梅,任建川,华雪增,刘愚.葡萄采后果粒脱落及保鲜贮藏.植物生理学报.1992,18(3):267-272
    66.吴月燕.藤稔葡萄芽变株系研究.果树科学,1999,16(2):119-122
    67.夏国海,张大鹏,贾文锁.IAA、GA和ABA对葡萄果实14C蔗糖输入与代谢的调控.园艺学报,2000,27(1):6-10
    68.肖璇,孙敏,王心燕,乔爱民,江波. ‘石硖’龙眼大果型桂花味芽变系的RAPD分析鉴定.园艺学报,2005,32(4):684-687
    69.肖艳,黄建昌,高平飞,黄兹海,王建彪.龙眼砧穗过氧化物酶同工酶及嫁接亲和力初探.西南农业大学学报,2001,23(4):70-72
    70.修德仁,吴德玲,许桂兰,张国良,吕湛,王树杞,卢明华.龙眼葡萄的营养系变异.园艺学报,1991,18(2):131-134
    71.闫树堂,徐继忠,陈海江.不同矮化中间砧红富士苹果内源激素与果实细胞分裂关系研究.河北农业大学学报,2005, (5):31-33
    72.闫忠业,伊凯,李作轩,刘志,王冬梅,杨锋.富士芽变系品种花粉形态初探.园艺学报,2006,33(6):1299-1302
    73.杨治元.巨峰系葡萄家谱研究.中外葡萄及葡萄酒,2005,(2):38-41
    74.杨治元.玫瑰香系葡萄品种系谱分析.中国果树,2006,(2):20-22
    75.于希志,徐秋萍,金锡凤.杏果实发育的研究.果树学报,1990,7(4):227-230
    76.袁晶,汪俏梅,张海峰.植物激素信号之间的相互作用.细胞生物学杂志,2005,27(4):325-328
    77.张承林.果实品质与钙索营养.果树科学,1996,13(2):119-123
    78.张大鹏,许雪峰,张子连,贾文锁.葡萄果实始熟机理的研究—缓慢生长期外施激素和环剥的效应.园艺学报,1997,24(1):1-7
    79.张国海,郭香凤,李秀珍,李学强,史国安,林芳立,夏仁学.极早熟葡萄新品种‘洛浦早生’.园艺学报,2005,32(3):558
    80.张国海,史国安,林芳立,张益民.极早熟葡萄新品种‘90-1’.园艺学报,2002,29(2):186
    81.张惠梅,胡喜来,方立红,张浚华.枣树过氧化物同工酶研究初探.河南农业科学,1997, (7):38-40
    82.张今今,王跃进,李荣旗.苹果短枝性状的RAPD分析.农业生物技术学报,2000,(3):285-288
    83.张凌媛,郭启高,李晓林,曾洪,谭健民,梁国鲁.枇杷气孔保卫细胞叶绿体数目与倍性相关性研究.果树学报,2005,22(3):229-233
    84.张绍玲.施氮量对不同树势红富十苹果生长和果实品质的影响.河南农业科学,1993, (5):28-30
    85.张文樾,王振国,郑德龙,宋诗斌.吉香葡萄选育报告.中外葡萄与葡萄酒,1990,(1):8-10
    86.章镇,俞宏,高志红,葛绍义,陶建敏,蔡斌华.梨新品种‘大果黄花’园艺学报,2000,27(1):74
    87.赵胜建,郭紫娟,赵淑云,张新忠,周利存.三倍体葡萄新品种‘红标无核’.园艺学报,2003,30(6):758
    88.赵胜建,郭紫娟.三倍体无核葡萄育种研究进展.果树学报,2004,21(4): 360-364
    89.赵树堂,关军锋,孟庆瑞,杨建民,张元慧.李果实发育过程中糖、酸、维生素C含量的变化.果树学报,2004,21(6):612-614
    90.赵新节.葡萄果实物质代谢与品质调控.中外葡萄与葡萄酒,2002,(6):21
    91.赵永红,李宪利,姜泽盛,王长健,杨富林.设施油桃果实发育过程中 有机酸代谢的研究.中国生态农业学报,2007,15(5):87-89
    92.赵智中,张上隆,陈昆松.蔗糖代谢相关酶在温州蜜柑果实糖积累中的作用.园艺学报,2001,28(2):112-118
    93.赵尊行,孙衍华,黄化成.山东苹果中可溶性糖、有机酸的研究.山东农业大学学报,1995,26,(3):355-360
    94.中国科学院上海植物生理研究所,上海市植物生理学会编.现代植物生理学实验指南.北京:科学出版社社,1998,283
    95.庄东红,宋娟娟.木槿属植物染色体倍性与花粉粒、叶片气孔器性状的关系.热带亚热带植物学报,2005,13(1):49-52
    96. Adam-Blondon A F, Roux C, Claux D, Butterlin G, Merdinoglu D, This P. Mapping 245 SSR markers on the Vitis vinifera genome:a tool for grape genetics, Theor Appl Genet,2004,109(5):1017-1027
    97. Bassil N, Postman JD (2010) Identification of European and Asian pears using EST-SSRs from Pyrus. Genet Resour Crop Evol,2010,57:357-370
    98. Bouzayen M, Latche A, Nath P, Pech J C. Mechanism of Fruit Ripening. Plant Develop Biol Biotech Perspect,2010,319-339
    99. Bowers J, Dangl G, Vignani R, Meredith C. Isolation and characterization of new polymorphic simple sequence repeat loci in grape (Vitis vinifera L.). Genome,1996,39(4):628-633
    100. Bramlage W J. Interactions of orchard factors and mineral nutrition on quality of pome fruit. Acta Hort,1993,326:15-28
    101. Carroll D E, Marcy J E. Chemical and physical changes during maturation of Muscadin grapes (Vitic Rolundifolia). Am J Enol Vitic,1982,33(3): 168-172
    102. Chern J L, Katayama T. Genetic analysis and geographical distribution of acid phosphatase isozyme cultivated rice (Oryza Aativa L.). Japan J Genetics,1982,(57):143-153
    103. Coombe B G, Hale C R. The hormone content of ripening grape berries and the effects of growth substance treatments. Plant Physiol,1976,51: 629-634
    104. Coombe B G. Research on development and ripening of the grape berry. Am J Enol Vitic,1992,43:101-110
    105. Coombe B G. The development of fleshy fruits. Annu Rew Plant Physiol, 1976,27:507-528
    106. Crane J C. Growth substances in fruit setting and development. Annu Rev Plant Physiol,1964,15:303-326
    107. Dali N, Michand D, Yelle S. Evidence for the involvement of sucrose phosphate in the pathway of sugar accumulation in sucrose-accumulation tomato fruits. Plant Physiol,1992,99:434-438
    108. Davies C, Robinson S. Sugar accumulation in grape berries, cloning of two putative vacuolar invertase cDNAs and their expression in grapevine tissues. Plant Physiol,1996,111:275-283
    109. Davies P J. The plant hormones:their nature, occurrence, and functions. Plant hormones,2010:1-15.
    110. Davis C, Robinson S P. Sugar accumulation in grape berries. Plant Physiol, 1996,96:225-230
    111. Drake S R, Larsen F E, Fellman J K. Maturity, storage quality, Carbohydrate, and mineral content of 'Goldapur' apples as in fluenced by rootstock. J Soc Hort Sci,1988,113:949-952
    112. Dreier L P, Hunter L J, Ruffner H P. Invertase activity grape berry development and cell compartmentation. Plant Physiol Biochem,1998,36: 865-872
    113. Du X Y, Zhang Q L, Luo Z R. Comparison of four molecular markers for genetic analysis in Diospyros L. (Ebenaceae). Plant Syst Evol,2009b, 281(1):171-181
    114. Du X, Zhang Q, Luo Z. Development of retrotransposon primers and their utilization for germplasm identification in Diospyros spp. (Ebenaceae). Tree Genet Genom,2009a,5(1):235-245
    115. Duchene E, Huard F, Dumas V, Schneider C, Merdinoglu D. The challenge of adapting grapevine varieties to climate change. Clim Res,2010, 41(3):193-204
    116. Failla O. Growth, development and mineral content of apple fruit in different water statua conditions. J Hort Sci,1992,67 (2):265-271
    117. Fallahi E, Simons B R. Interrelations among leaf and fruit mineral nutrients and fruit quality in 'Delicious' apples. J Tree Fruit Productions,1996, 1:15-25
    118. Fernandez L, Torregrosa L, Segura V, Bouquet A, Martinez-Zapater J M. Transposon-induced gene activation as a mechanism generating cluster shape somatic variation in grapevine. Plant J,2010,61(4):545-557
    119. Fowles G W. Acid in grape and wines:A review. J Wine Res,1992,3:25-41
    120. Franks, T., Botta, R., Thomas, M.R. Chimerism in grapevines:implications for cultivar identity, ancestry and genetic improvement. Theor Appl Genet, 2002,104,192-199
    121. Gambetta G A, Matthews M A, Shaghasi T H, McElrone A J, Castellarin S D. Sugar and abscisic acid signaling orthologs are activated at the onset of ripening in grape. Planta,2010,232(1):219-234
    122. Girard B, Kopp T G. Physiochemical characteristics of selected sweet cherry cultivars. J Agric Food Chem,1998,46:471-476
    123. Han X, Wang L, Liu Z, Jan D R, Shu Q. Characterization of sequence-related amplified polymorphism markers analysis of tree peony bud sports. Sci Horti,2008,115(3):261-267
    124. Hawker J S, Ruffner H P, Walker R R. The sucrose content of some Australian grape. Amer J Enol Viticul,1976,27:125-129
    125. Hawker J S. Changes in the activities of malic enzyme, malate dehydrogenase, phosphopyruvate carboxylase and pyruvate decarboxylase during development of a non-climacteric fruit (the grape). Phytochem, 1969,8:19-23
    126. Hong Y, Hnna S. Selection of a mutant from adventitious shoot formed in X-ray treated cherry leaves and differentiation of standard and mutant with RAPDs. Euphytica,1994,77:89-92
    127. Jahnke G, Majer J, Lakatos A, Molnar J G, Deak E, Stefanovits-Banyai E, Varga P. Isoenzyme and microsatellite analysis of Vitis vinifera L.varieties from the Hungarian grape germplasm. Sci Horti,2009,120(2):213-221
    128. Janice C, Morrison, Micela I. The influence of waterberry on the development and composation of thompson seedless graps. Am J EnoL Vitic,1990,41(4):301-305
    129. Lamikanra O, Inyang I D, Leong S. Distribution and effect of Grape maturity on organic acid content of red muscadine grape. J Agric Food Chem,1995,43:3026-3028
    130. Lecourieux F, Lecourieux D, Vignault C, Delrot S. A Sugar-Inducible Protein Kinase, VvSKl, Regulates Hexose Transport and Sugar Accumulation in Grapevine Cells. Plant Physiol,2010,152(2):1096-1096
    131. Marcucci M C, Sansavini S, Coampolini F. Distinguishing apple clones and cultivars by surface morphology and pollen physiology. J Amer Soc Hort Sci,1984,120 (5):706-709
    132. Miron D, Schafer A A. Sucrose phosphate synthase, Sucrose synthase and invertase activities in developing fruit of lycopersicom essulentum Mill and the sucrose accumulation lycopersicon hirsutun Huband Boupl. Plant Physiol,1991,95:623-627
    133.Nybom H. DNA fingerprints in sports of'Red Delicious'apples. HortScience,1990,25:1641-1642
    134. Riaz S, Garrison KE, Dangl GS, Boursiquot JM, Meredith CP. Genetic divergence and chimerism within ancient asexually propagated winegrape cultivars. J Am Soc Hort Sci,2002,127(4):508-514
    135. Ruffer H P, Huerlimann M, Skrivan R. Soluble invertase from grape berry: Purification, deglycosylation and antibody specifity. Plant Physiol Biochem,1995,33:25-31
    136. Sharma R R, Singh R. Gibberellic acid influences the production of malformed and button berries, and fruit yield and quality in strawberry (Fragaria X ananassa Duch.). Sci Hort,2009,119(4):430-433
    137. Stenkamp SHG, Becker MS, Hill BHE, Blaich R, Forneck A. Clonal variation and stability assay of chimeric Pinot Meunier (Vitis vinifera L.) and descending sports. Euphytica,2008,165(1):197-209
    138. Swanson CA, El-Shishiny EDH. Translocation of sugars in the Concord grape. Plant Physiol,1958,33:33-37
    139. Tanaka A, Shikazono N, Hase Y. Studies on Biological Effects of Ion Beams on Lethality, Molecular Nature of Mutation, Mutation Rate, and Spectrum of Mutation Phenotype for Mutation Breeding in Higher Plants. J Radiat Res,2010,51(3):223-233
    140. Tezcan F, Gultekin-Ozguven M, Diken T, Ozcelik B, Erim FB. Antioxidant activity and total phenolic, organic acid and sugar content in commercial pomegranate juices. Food Chem,2009,115(3):873-877
    141. This P, Jung A, Boccacci P, Borrego J, Botta R, Costantini L, Crespan M, Dangl GS, Eisenheld C, Ferreira-Monteiro F. Development of a standard set of microsatellite reference alleles for identification of grape cultivars. Theor Appl Genet,2004,109(7):1448-1458
    142. Thomas M, Scott N. Microsatellite repeats in grapevine reveal DNA polymorphisms when analysed as sequence-tagged sites (STSs). Theor Appl Genet,1993,86(8):985-990
    143. Ureta F, Boidron J N, Bounard J, Influence of dessechement delarofle on grape quality. Am J EnoL Vitic,1981,32(2):90-92
    144. Vazquez-Cruz M A, Torres-Pacheco I, Miranda-Lopez R, Cornejo-Perez O, Roque A, Osornio-Rios R R T, Guevara-Gonzalez R G. Potential of mathematical modeling in fruit quality. Afric J Biotech,2010, 9(3):260-267
    145. Viruel M A, Messeguer R, Devicente M C.A linkage map with RFLP and isozyme markers for almond. Theor Appl Genet,1995,91:964-971
    146. Wang H C, Huang H B, Huang X M. Sugar and acid compositions in the arils of Litchi chinensis Sonn.:cultivar differences and evidence for the absence of succinic acid. J Hort Sci & Biotech,2006,81(1):57-62
    147. Webster D H. Relationship between Mg, K and Ca of apple fruit. J Plant Nutri,1983,9:751-758
    148. Yamaki Y T. Organic acid in the juice of ciyrus fruits. J Jap Soc Hort Sci, 1989,58:587-594
    149. Ye G N, Soylemezoglu G, Weeden N F. Analysis of the relationship between grapevine cultivars, sports and clones via DNA fingerprint. BioTechniques,1996,20:368-370
    150. Zhang Y L, Zhang R G. Effects of ABA Content on the Development of Abscission Zone and Berry Falling After Harvesting of Grapes. Agric Sci Chin,2009,8(1):59-67
    150. Zhao G, Dai H, Chang L, Ma Y, Sun H, He P, Zhang Z. Isolation of two novel complete Ty1-copia retrotransposons from apple and demonstration of use of derived S-SAP markers for distinguishing bud sports of Malus domestica cv.Fuji. Tree Genet Genom,2009,6(1):149-1