血友病B及血管性血友病分子发病机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究目的
     血友病B(hemophilia B, HB)是凝血因子Ⅸ(factorⅨ, FⅨ)基因突变引起血浆FⅨ量的缺乏或质的缺陷所导致的一种X连锁隐性遗传性出血性疾病,在男性中的发病率约为1/30000,是一种严重危害人民健康的疾病。由于目前尚缺乏针对本病的根治措施,故开展基因诊断及携带者检出无疑是防止新的患儿出生、阻断有害基因传递、提高人口素质的一个有效手段。本研究旨在从基因水平对HB患者及携带者做出诊断,探讨HB的分子发病机制。
     方法
     1.采集3个无血缘关系的HB家系先证者及成员外周静脉血,提取基因组DNA。
     2.选择距离FⅨ2cM内的6个STR位点,采用多重PCR及荧光标记引物扩增各STR位点片段,检测先证者及其家系成员6个STR位点的基因多态性,进行家系遗传连锁分析。
     3.根据FⅨ基因序列,利用Primer 5软件共设计8对引物,采用PCR法对先证者及可疑携带者FⅨ基因8个外显子及其侧翼序列进行扩增,运用双脱氧链终止法在ABI 3700测序仪上对PCR产物进行测序,利用Chromas软件将测序结果与正常序列进行比对,寻找基因突变。
     结果
     1.联合6个STR位点对3个HB家系进行检测,根据先证者的基因型,共发现9名可疑携带者,她们均有一条与先证者同源的X染色体。但基因测序证实,家系1、3可疑携带者的FⅨ基因中并不存在与先证者相同的基因缺陷,结合先证者的临床和病史特点,考虑其基因缺陷可能由自发性突变产生。家系2可疑携带者的FⅨ基因中发现了与先证者相应位点相同的杂合突变,STR位点基因多态性检测结果与基因测序结果一致,说明先证者的基因缺陷遗传自其母亲。
     2.利用PCR法及基因测序技术,在3例先证者的FⅨ基因中均发现了相应的错义突变:家系1先证者外显子6发现G22119A(侧翼序列的剪切位点)点突变,家系2先证者外显子2发现G7932C(Glu8Asp)点突变,家系3先证者外显子8发现T32685C(Cys336Arg)点突变。G22119A发生在外显子6侧翼序列的剪切位点,使FⅨ不能被正常剪切,从而影响其正常生理功能。T32685C发生在外显子8,该部位编码丝氨酸蛋白酶催化区,存在FⅨ与FⅧ的结合位点,可能是由于氨基酸的改变影响了FⅨ蛋白在细胞内的合成与分泌,导致FⅨ功能缺陷。G7932C发生在外显子2,导致Glu突变为Asp,影响了FⅨ与Ca2+依赖性磷脂的结合。
     结论
     1. FⅨ基因缺陷是HB的分子发病机制。
     2.联合多个STR多态性位点对HB家系携带者进行间接诊断,是一种简便、有效、快捷的方法;但是,对于无家族史的散发家系来说,通过遗传连锁分析做出诊断时仍有可能出现误差。
     3.基因测序技术是诊断HB患者及携带者最直接、最精确的方法之一。
     研究目的
     血管性血友病(von Willebrand disease, vWD)是由于血管性血友病因子(von Willebrand factor, vWF)基因突变引起血浆中vWF数量减少或质量异常所导致的一组遗传性出血性疾病,呈常染色体遗传,发病率较高,约为10/10万。患者可有轻度或中度皮肤黏膜出血、鼻衄、胃肠道出血及外伤后出血不止等症状,女性常有月经过多。本研究从3例vWD患者的临床及基因诊断出发,探讨基因型与表现型的相关性,了解vWF蛋白结构与功能的关系,研究基因突变对vWF表达量及功能的影响,旨在从分子水平阐明vWD的发病机制。
     方法
     1.采集3例vWD患者外周静脉血,进行血浆vWF:Ag、FⅧ:C测定及RIPA实验和vWF多聚物分析,明确疾病性质及亚型。
     2.提取患者基因组DNA,应用PCR法扩增患者vWF基因全部52个外显子及其侧翼序列,产物经测序分析寻找突变位点。
     3.采用基于PCR的定点突变技术构建携带特定突变位点的突变型vWF质粒。
     4.以野生型质粒为对照,在COS-7细胞中表达突变型质粒,测定转染细胞上清液及裂解液中的vWF:Ag并进行统计学分析。
     结果
     1.与正常混合血浆比较,3例患者vWF:Ag、FⅧ:C、RIPA均不同程度降低。
     2.多聚物分析显示,患者1血浆vWF多聚物缺如,患者2 vWF大中分子量多聚物消失,患者3 vWF多聚物分布及形态正常。
     3.通过基因测序分析,在3例患者的vWF基因中均发现了相应的杂合性错义突变:患者1外显子37存在C6424T(L2142F)突变;患者2外显子28存在C4738G(L1580V)突变;患者3外显子26存在C3467T(T1156M)突变,其中C6424T(L2142F)在以往国际公开文献中未见报道。
     4.体外表达实验显示,与转染野生型pSVvWF细胞表达上清中的vWF:Ag比较,pSVvWF3467(T1156M)、pSVvWF4738(L1580V)及pSVvWF6424(L2142F)表达上清中的vWF:Ag均不同程度降低,差异有显著性(P值均<0.01)。与转染野生型pSVvWF细胞裂解液中的vWF:Ag比较,pSVvWF3467及pSVvWF4738裂解液中的vWF:Ag无明显变化(P值均>0.05);pSVvWF6424裂解液中的vWF:Ag显著降低,差异有显著性(P值<0.01)。共转染实验显示,pSVvWF3467(T1156M)+野生型pSVvWF表达上清中的vWF:Ag降低,裂解液中的vWF:Ag增加,差异有显著性(P值<0.01)。
     结论
     1. vWF基因突变是导致vWD发生的分子病理机制。
     2. T1156M突变具有显性抑制效应,影响了正常vWF的分泌;L1580V突变通过改变vWF的空间构象导致其对血浆中的vWF裂解酶异常敏感,属于GroupⅡ突变;L2142F突变导致vWF表达量降低,但降低程度与患者临床症状及实验室检查结果不符,推测患者为复合杂合子,其vWF基因的内含子区域或调控序列中可能存在其他未被发现的致病性突变。
Objective
     The hemophilia B (HB), which is caused by the mutations in the factorⅨgene, is known as an X-linked recessive disease and occurs in about 1:30000 male live births. At present, due to lacking of the eradicative therapy, the gene diagnosis and detection of the carriers, which is an effective method to prevent the infant patients to be born, block the transmission of harmful gene and improve the population quality, should be actively carrying out. The aim of this study is to diagnosis the propositi and carriers in the gene level and explore the molecule pathogenesy of HB.
     Methods
     1. The three unrelated HB families gave informed consent to be included in the study. The genome DNA were collected from each propositus and the family member.
     2. The polymorphisms of the six STR loci were detected by polymerase chain reaction with multiple reaction system and the fluorescently-labeled primers.
     3. For the propositi and doubtful carriers, all regions of FⅨgene, including all exons and the flanking sequences, were amplified by PCR using the primer sequences which were devised with Primer five. The products of PCR were sequenced by the dideoxy chain termination using ABI 3700 sequencer, the trial effect was compared with normal sequences of FⅨgene using Chromas for finding the mutations.
     Results
     1. 9 doubtful carriers were been found through the allele analysis. But confirmed by the direct sequencing, the doubtful carriers of the first and third family did not have the same gene defects as the propositi, the gene defects were spontaneous mutations. To the second family's carrier, the heterozygous mutation was found in the corresponding locus of the propositus, the gene defect of the propositus was transmitted from his mother.
     2. 3 missense mutations were identified in FⅨgene of the propositi when compared with normal sequence. G22119A was identified in exon 6 of the first family's propositus, it existed in the shearing situs of the flanking sequences, affected the normal physiologic function of FⅨ. G7932C (Glu8Asp) was identified in exon 2 of the second family's propositus, it impacted FⅨbinding with phospholipids. T32685C (Cys336Arg) was identified in exon 8 of the third family's propositus, it affected possibly the synthesis and secretion of FⅨintracellular.
     Conclusions
     1. The defect of FⅨgene is the molecular pathogenesis of HB.
     2. Combination analysis of multiple STR loci could be an effective and simple method for indirect diagnosis of the carriers in the HB family. However, there is possible to misdiagnose with the genetic linkage analysis for the families without the family history of HB.
     3. Gene sequencing is one of the straightest and rigorousest method for the diagnosis of HB.
     Objective
     The von Willbrand disease, which is known as a common inherited bleeding disorder with the prevalence about 10/100000, is caused by genetic defects in the von Willebrand factor (vWF), resulting in quantitative deficiencies or qualitative abnormalities of vWF. The patients have the symptoms of mucocutaneous bleeding, hemorrhinia, gastrointestinal bleeding and unremitting bleeding after injury, female suffers menorrhea often. The aim of this study is to explore the molecular pathogenesis of vWD, investigate the functional and quantitive changes of vWF protein resulting from gene mutations, research the relationship between phenotype and genetype.
     Methods
     1. The blood samples were collected from the three unrelated patients with vWD. Through detecting the vWF:Ag, FⅧ:C, RIPA and vWF multimers to determine the diagnosis and the subtype of vWD.
     2. The genome DNA were collected from each patient. All regions of vWF gene, including fifty-two exons and the flanking sequences, were amplified by PCR. The products of PCR were sequenced by the dideoxy chain termination, the trial effects were compared with normal sequences of vWF gene using Chromas for finding the mutations.
     3. The expression vectors, carrying the mutations found in the vWF gene of the patients, were constructed by site-directed mutagenesis. 4. Cos-7 cells were transfected with pSVvWF3467, pSVvWF4738, pSVvWF6424 and wild type plasmid. The recombinant proteins and normal vWF were detected by ELISA and analysed by SPSS 13.0.
     Results
     1. Comparing with pooled plasma, vWF:Ag、FⅧ:C、RIPA of the patients were decreased.
     2. The vWF multimers assay disclosed that the vWF multimers of the first patient was absence completely, the high molecular weight multimers was disappeared in the plasma of the second patient, the distribution and structure of vWF was normal in the plasma of the third patient.
     3. The heterozygous missense mutations were identified in vWF gene of the patients. C6424T (L2142F) mutation was identified in exon 37 of the first patient, C4738G (L1580V) mutation was identified in exon 28 of the second patient, C3467T (T1156M) mutation was identified in exon 26 of the third patient. The first one, a novel mutation, was not reported previously in the international literature.
     4. The expression experiment in vitro revealed that the antigen levels of vWF T1156M, vWF L1580V and vWF L2142F in media were lower than wild type vWF. In the corresponding transfected Cos-7 cells lysates, the antigen levels of vWF T1156M and vWF L1580V were similar to the level of wild type vWF, however, the antigen level of vWF L2142F was 32.7% of wild type vWF.
     Conclusions
     1. The defect of vWF gene is the molecular pathogenesy of vWD.
     2. The T1156M substitution had a definite effect on the level of vWF expression and secretion in vitro experiments, being substantially less than the secretion of wild type VWF. The space conformation of vWF was changed by the L1580V mutation, the change leaded that the protein had increased sensitiveness with the vWF-cleavring protease. The L2142F mutation resulted in a decreased expression of the recombinant vWF protein, however, the decreased degree is not consistent with the clinical symptom and the laboratory examination report of the patient. The result supposed that the patient might be with a complex heterozygote, there might be an undiscovered morbigenous mutation in the introns or the regulation sequence.
引文
1. Giannelli F, Green PM, High KA , et al. Haemophilia B: database of pointmutations and short additions and deletions-third edition. Nucleic Acids Res, 1992, 20: 2027-2063.
    2. Langdell RD, Wagner RH, Brinkhous KM. Effect of antihemophilic factor on one-stage clotting tests; a presunptive test for hemophilia and a simple one-stage antihemophilic factor assay procedure. J Lab Clin Med, 1953, 41: 637-647.
    3. Anson DS, Choo HK, Rees DJ, et al. The gene structure of human antihaemophilic factorⅨ. EMBO J, 1984, 3: 1053-1060.
    4. Yoshitake S, Shach BG, Foster DC, et al. Nucleotide sequence of the gene for human factor Ⅸ(anithemophiliac factor B). Biochemistry, 1985, 24: 3736-3750.
    5. Francisco V, Elisenda F, Carme A, et al. Factor IX gene sequencing by a simple and sensitive 15-hour procedure for haemophilia B diagnosis: identification of two novel mutations. Bri J Haematol, 2000, 111: 549-551.
    6. Lilicrap D. The molecular basis of haemophilia B. Haemophilia, 1998, 4: 350-357.
    7. Giannelli F, Green PM, Sommer SS, et al. Haemophilia B: database of point mutations and short additions and deletions-eighth edition. Nucleic Aci ds Res, 1998, 26: 265-268.
    8. Roberts HB. Molecular biology of haemophilia B. Thromb Haemost, 1993, 70: 1-9.
    9. Colman RW, Hirsh J, Marder VJ, et al. Hemostasis and Thrombosis-Basic Principles & Clinical Practice. 4th ed. Philidelphia: Lippincott Williams & Wilkins, 2001, 262-264, 831-834.
    10. Beutler E, Lichtman MA, Coller BS, et al. Williams Hematology. 5th ed. New York: McGraw-Hill Book Co, 1996, 1413-1581.
    11. Gannelli F, Green PM, Sommer SS, et al. Haemophilia B: database of point mutations and short additions and deletions, 7th edition. Nucleic Acids Res, 1997, 25: 133-135.
    12. Fiqueiredo MS, Bowen DJ, Silva Junior WA, et al. FactorⅨgene haplotypes in Brazilian blacks and characterization of unusual Ddel alleles. Br J Haematol, 1994, 87: 789-796.
    13. Peake IR, Lillicrap DP, Boulyjenkov V, et al. Report of a joint WHO/WFH meeting on the control of haemophilia: carrier detection and prenatal diagnosis. Blood Coagul Fibrinolysis, 1993, 4: 313-344.
    14. de la Salle C, WU Q, Baas MJ, et al. Common intragenic and estragenic polymorphisms of blood coagulation factorⅧandⅨare different in Chinese and Caucasian populations. Clin Genet, 1990, 38: 434-440.
    15. Chen SH, Wang NS, School J, et al. Haplotype analysis and polymorphic frequence data at two factorⅨloci in China population. Hum Hered, 1992, 42: 204-205.
    16.王宁遂,邓兵,朱静.一种FⅨ基因多态性在我国人群中检出.中华医学遗传性杂志,1994, 11: 217.
    17.毕作木,华宝来,杨仁池等.中国汉族人群凝血因子Ⅸ基因限制性片段长度多态性的研究.中国实验血液学杂志, 2002, 10: 247-250.
    18.周毓玲,晏家益,刘京春等.四个血友病乙家系携带者基因检测及产前诊断.贵阳医学院学报, 1998, 23: 8-10.
    19. Arveiler B, Oberle I, Vincent A, et al. Genetic mapping of the Xq27-q28 region: new RFLP markers useful for diagnostic application in Fragile-X and Hemophilia-B families. Am J Hum Genet, 1988, 42: 380-389.
    20. Gedeon AK, Holman K, Richards RI, et al. Characterization of new PCR based markers for mapping and diagnosis: AC dinucleotide repeat markers at the DXS237 (GMGX9) and DXS102 (cX38.1) loci. Am J Med Genet, 1992, 43: 255-260.
    21.包赟,卢大儒,施前等.中国人群DXS102座位多态性鉴定及其应用.中华医学遗传性杂志, 1998, 15: 27-30.
    22.刘湘帆,王学锋,樊绮诗等.联合多个微卫星DNA位点进行血友病B基因诊断.中华血液学杂志, 2002, 23: 147-150.
    23. Giannelli F, Green PM, High KA, et al. Haemophilia B: database of point mutations and short additions and deletions. Nucleic Aci ds Res, 1990, 18: 4053-4059.
    24. Green PM, Giannelli F, Sommer SS, et al. The haemophilia B mutation database-version 12. http://www. kcl. ac.uk/ip/petergreen/intro.html.
    25. Niceta M, Fabiano C, Sammarco P, et al. A novel nonsense mutation in exon 2 of the factor IX gene resulting in severe haemophilia B. Intern Emerq Med, 2006, 1: 318-320.
    26. Reitsma PH, BertinaRM, Ploos van Amstel JK, et al. The putative factorⅨgene promoter in hemophilia B Leyden. Blood, 1988, 72: 1074-1076.
    27. Reijnen MJ, Sladek FM, Bertina RM, et al. Disruption of a binding site for hepatocyte nuclear factor 4 results in hemophilia B Leyden. Proc Natl Acad Sci USA, 1992, 89: 6300-6303.
    28. Veltkamp JJ, Meilof J, Remmelts HG, et al. Another genetic variant of haemophilia B: haemophilia B Leyden. Scand J Haematol, 1970, 7: 82-90.
    29. Green PM, Mitchell VE, McGraw A, et al. Haemophilia B caused by a missense mutation in the prepeptide sequence of factorⅨ. Hum Mutat, 1993, 2: 103-107.
    30. Mahajan A, Sharma A, Chavali S, et al. Novel missense mutation in the coagulation factor Ⅸcatalytic domain associated with severe haemophilia B—FactorⅨDelhi. Haemophilia, 2004, 10: 550-552.
    31. Enjolras N, Plantier JL, Rodriguez MH, et al. Two novel mutations in EGF-like domains of human factorⅨdramatically impair intracellular processing and secretion. ThrombHaemost, 2004, 2: 1143-1154.
    32. Ketterling RP, Drost JB, Scaringe WA, et al. Reported in vivo splice-site mutations in the factorⅨgene: severity of splicing defects and a hypothesis for predicting deleterious splice donor mutations. Hum Mutat, 1999, 13: 221-231.
    33. AttaliO, Vinciguerra C, Trzeciak C, et al. FactorⅨGene Analysis In 70 Unrelated Patients with Haemophilia B: Description of 13 New Mutations. Thromb Haemost, 1999, 82: 1437-1442.
    34. Carmen E, Pilar C, Saturnino H, et al. Molecular analysis in hemophilia B families: identification of six new mutations in factorⅨgene. Haematologica, 2003, 88: 235-236.
    35. Kwon MJ, Yoo KY, Kim HJ, et al. Identification of mutations in the F9 gene including exon deletion by multiplex ligation-dependent probe amplification in 33 unrelated Korean patients with haemophilia B. Haemophilia, 2008, 14: 1069-1075.
    36. Espinos C, Casana P, Haya S, et al. Molecular analyses in hemophilia B families: identification of six new mutations in the factor IX gene. Haematologica, 2003, 88: 235-236.
    1. Sadler JE. A revised classification of von Willebrand disease. For the Subcommittee on von Willebrand Factor of the Scientific and Standardization Committee of the International Society on Thrombosis and Haemostasis. Thromb Haemost, 1994, 71: 520-525.
    2. Ginsburg D, Handin RI, Bonthron DT, et al. Human von Willebrand factor (vWF): Isolation of complementary DNA (cDNA) clones and chromosomal localization. Science, 1985, 228: 1401-1406.
    3. Mancuso DJ, Tuley EA, Westfield LA, et al. Structure of the gene for human von Willebrand factor. J Biol Chem, 1989, 264: 19514-19527.
    4. Sporn LA, Chavin SI, Marder VJ, et al. Biosynthesis of von Willebrand protein by human megacaryocytes. J Clin Invest, 1985, 76: 1102-1106.
    5. Wagner DD, Marder VJ. Biosynthesis of von Willebrand protein by human endothelial cells: Identification of a large precursor polypeptide chain. J Biol Chem, 1983, 258: 2065-2067.
    6. Lynch DC, Zimmerman TS, Collins CJ, et al. Molecular cloning of cDNA for human von Willebrand factor: authentication by a new method. Cell, 1985, 41: 49-56.
    7. Verweij CL, de Vries CJM, Distel B, et al. Construction of cDNA for human von Willebrand factor using antibody probes for colony screening and mapping of the chromosomal gene. Nucleic Acids Res, 1985, 13: 4699-4717.
    8. Sadler JE, Shelton-Inloes BB, Sorace JM, et al. Cloning and characterization of two cDNA coding for human von Willebrand factor. Proc Natl Acad Sci USA, 1985, 82: 6394-6398.
    9. Rodeghiero F, Castaman G, Dini E. Epidemiological investigation of the prevalence of von Willebrand's disease. Blood, 1987, 69: 454-459.
    10. Werner EJ, Broxson EH, Tucker EL, et al. Prevalence of von Willebrand disease in children: a multiethnic study. J Pediat, 1993, 123: 893-898.
    11. Nilsson IM. The history of von Willebrand disease. Haemophilia, 1999, 5: 7-11.
    12. Titani K, Kumar S, Takio K, et al. Amino acid sequence of human von Willebrand factor. Biochemistry, 1986, 25: 3171-3184.
    13. Mancuso DJ, Tuley UA, Westfield LA, et al. Human von Willebrand factor gene and pseudogene: structural analysis and differentiation by polymerase chain reaction. Biochemistry, 1991, 30: 253-269.
    14. Shelton-Inloes BB, Titani K, Sadler JE. cDNA sequences for human von Willebrand factor reveal five types of repeated domains and five possible protein sequence polymorphisms. Biochemistry, 1986, 25: 3164-3171.
    15. Mannucci FM. von Willebrand factor: a prima ballerina on two different stages. Semin Hematol, 2005, 42: 1-4.
    16. Marti T, R?sseler SJ, Titani K, et al. Identification of disulfidebridged substructures within human von Willebrand factor. Biochemistry, 1987, 26: 8099-8109.
    17. Voorberg J, Fontijn R, Calafat J, et al. Assembly and routing of von Willebrand factor variants: the requirements for disulfide-linked dimerization reside within the carboxy-terminal 151 amino acids. J Cell Biol, 1991, 113: 195-205.
    18. Katsumi A, Tuley EA, BodóI, et al. Localization of disulfide bonds in the cystine knot domain of human von Willebrand factor. J Biol Chem, 2000, 275: 25585-25594.
    19. Borchiellini A, Fijnvandraat K, Cate JW, et al. Quantitative analysis of von Willebrand factor propeptide release in vivo: effect of experimental endotoxemia and administration of 1-deamino-8-D-arginine vasopressin in humans. Blood, 1996, 88: 2951-2958.
    20. Chng WJ, Yip CY, Baliwag MB, et al. Differential effect of the ABO blood group on von Willebrand factor collagen binding activity and ristocetin cofactor assay. Blood Coagul Fibrinolysis, 2005, 16: 75-78.
    21. Sadler JE. Von Willebrand factor. J Biol Chem, 1991, 226: 22777-22780.
    22. Girma JP, Meyer D, Verweij CL, et al. Structure-function relationship of human von Willebrand factor. Blood, 1987, 70: 605-611.
    23. Fressinaud E, Meyer D. Von Willebrand factor and platelet interaction with the vessel wall. Blood Coagul Fibrinolysis, 1991, 2: 333-340.
    24. http://vwf.group.shef.ac.uk/sequences.html
    25. Sadler JE, Mannucci PM, Berntorp E, et al. Impact, diagnosis and treatment of von Willebrand disease. Thromb Haemost, 2000, 84: 160-174.
    26. Goodeve A, Eikenboom J, Castaman G, et al. Phenotype and genotype of a cohort of families historically diagnosed with type 1 von Willebrand disease in the European study, Molecular and Clinical Markers for the Diagnosis and Management of Type 1 von Willebrand Disease (MCMDM-1VWD). Blood, 2007, 109: 112-121.
    27. James PD, Notley C, Hegadorn C, et al. The mutational spectrum of type 1 von Willebrand disease: Results from a Canadian cohort study. Blood, 2007, 109: 145-154.
    28. BodóI, Katsumi A, Tuley EA, et al. Type 1 von Willebrand disease mutation Cys1149Arg causes intracellular retention and degradation of heterodimers: a possible general mechanism for dominant mutations of oligomeric proteins. Blood, 2001, 98: 2973-2979.
    29. Tjernberg P, Vos HL, Castaman G, et al. Dimerization and multimerization defects of von Willebrand factor due to mutated cysteine residues. Thromb Haemost, 2004, 2: 257-265.
    30. Lethagen S, Isaksson C, Schaedel C, et al. Von Willebrand’s disease caused by compound heterozygosity for a substitution mutation (T1156M) in the D3 domain of the von Willebrand factor and a stop mutation (Q2470X). Thromb Haemost, 2002, 88: 421-426.
    31.谢飞,王鸿利,王学锋.遗传性血管性血友病7例实验诊断和分子发病机制研究.诊断学理论与实践, 2006, 5: 384-389.
    32. Bowen DJ, Collins PW. An amino acid polymorphism in von Willebrand factor correlates with increased susceptibility to proteolysis by ADAMTS13. Blood, 2004, 103: 941-947.
    33. James PD, Paterson AD, Notley C, et al. Genetic linkage and association analysis in type 1 von Willebrand disease: results from the Canadian Type 1 VWD Study. Thromb Haemost, 2006, 4: 783-792.
    34. O’Brien LA, James PD, Othman M, et al. Willebrand factor haplotype associated with type 1 von Willebrand disease. Blood, 2003, 102: 549-557.
    35. Gallinaro L, Sartorello F, Pontara E, et al. Combined partial exon skipping and cryptic splice site activation as a new molecular mechanism for recessive type 1 von Willebrand disease. Thromb Haemost, 2006, 96: 711-716.
    36. Lyons SE, Bruck ME, Bowie EJW, et al. Impaired intracellular transport produced by a subset of typeⅡA von Willebrand disease mutations. J Biol Chem, 1992, 267: 4424-4430.
    37.王迎春,张敬宇,万海英等.血管性血友病因子Ala737→Glu突变体的构建和表达.中华血液学杂志, 2000, 21: 256-259.
    38. Hilbert L, Federici AB, Baronciani L, et al. A new candidate mutation, G1629R, in a patient with type 2A von Willebrand's disease: basic mechanisms and clinical implications. Haematologica, 2004, 89: 1128-1133.
    39. Schneppenheim R, Budde U, Obser T, et al. Expression and characterization of von Willebrand factor dimerization defects in different types of von Willebrand disease. Blood, 2001, 97: 2059-2066.
    40. Englender A, Lattuada A, Mannucci PM, et al. Analysis of Arg834Gln and Val902Glu type 2A von Willebrand disease mutations: studies with recombinant von Willebrand factor and correlation with patient characteristics. Blood, 1996, 87: 2788-2794.
    41. James PD, O’Brien LA, Hegadorn CA, et al. A novel type 2A von Willebrand factor mutation located at the last nucleotide of exon 26 (3538GPA) causes skipping of 2 nonadjacent exons. Blood, 2004, 104: 2739-2745.
    42. Ruggeri ZM, Pareti FI, Mannucci PM, et al. Heightened interaction between platelets and factorⅧ/von Willebrand factor in a new subtype of von Willebrand's disease. N Engl J Med, 1980, 302: 1047-1051.
    43. Randi AM, Rabinowitz I, Mancuso DJ, et al. Molecular basis of von Willebrand disease typeⅡB. Candidate mutations cluster in one dissulfide loop between proposed platelet glycoproteinⅠb binding sequences. J Clin Invest, 1991, 87: 1220-1226.
    44. Cooney KA, Nichols WC, Bruck ME, et al. The molecular defect in typeⅡB vonWillebrand disease. Identification of four potential missence mutations within the putative GpⅠb binding domain. J Clin Invest, 1991, 87: 1227-1233.
    45. Dumas JJ, Kumar R, McDonagh T, et al. Crystal struction of the wild-type von Willebrand factor A1-glycoproteinⅠbαcomplex reveals conformation differences with a complex bearing von Willebrand disease mutations. J Biol Chem, 2004, 279: 23327-23334.
    46. Shen MC, Lin JS, Lin DS, et al. A first Taiwanese Chinese family of type 2B von Willebrand disease with R1306W mutation. Thromb Res, 2003, 112: 291-295.
    47. Facey DA, Favaloro EJ, Koutts J, et al. Identification and characterization of a novel mutation in von Willebrand factor causing type 2B von Willebrand's disease. Br J Haematol, 1999, 105: 538-541.
    48. Hilbert L, Gaucher C, Abgrall JF, et al. Identification of new type 2B von Willebrand disease mutations: Arg543Gln, Arg545Pro and Arg578Leu. Br J Haematol, 1998, 103: 877-884.
    49. Rabinowitz I, Tuley EA, Mancuso DJ, et al. von Willebrand disease type B: a missense mutation selectively abolishes ristocetin-induced von Willebrand factor binding to platelet glycoproteinⅠb. Proc Natl Acad Sci USA, 1992, 89: 9846-9849.
    50. Ribba AS, Loisel I, Lavergne JM, et al. Ser968Thr mutation within the A3 domain of von Willebrand factor (VWF) in two related patients leads to a defective binding of VWF to collagen. Thromb Haemost, 2001, 86: 848-854.
    51. Mazurier C, Goudemand J, Hilbert L, et al. Type 2N von Willebrand disease: clinical manifestations, pathophysiology, laboratory diabnosis and molecular biology. Best Pract Res Clin Haematol, 2001, 14: 337-347.
    52. Ginsburg D, Sadler JE. von Willebrand disease: a database of point mutations, insertions, and delations. For the Consortium on von Willebrand Factor Mutations and Polymorphisms, and the Subcommittee on von Willebrand Factor of the Scientific and Standardization Committee of the International Society on Thrombosis and Haemostasis. Thromb Haemost, 1993, 69: 177-184.
    53. Allen S, Abuzenadah AM, Blagg JL, et al. Two novel type 2N von Willebrand disease-causing mutations that result in defective factorⅧbinding, multimerization, and secretion of von Willebrand factor. Blood, 2000, 95: 2000-2007.
    54. Hilbert L, Jorieux S, Proulle V, et al. Two novel mutations, Q1053H and C1060R, located in the D3 domain of von Willebrand factor, are responsible for decreased FⅧ-binding capacity. Br J Haematol, 2003, 120: 627-632.
    55. Hilbert L, D'Oiron R, Fressinaud E, et al. First identification and expression of a type 2N von Willebrand disease mutation (E1078K) located in exon 25 of von Willebrand factorgene. J Thromb Haemost, 2004, 2: 2271-2273.
    56.阮长耿,顾建明,傅建新等. 2N型血管性血友病临床表现与基因突变.中华血液学杂志, 1996, 17: 116-120.
    57. Eikenboom JC. Congenital von Willebrand disease type 3: clinical manifestations, pathophysiology and molecular biology. Best Pract Res Clin Haematol, 2001, 14: 365-379.
    58. Baronciani L, Cczzi G, Canciani MT, et al. Molecular defects in type 3 von Willebrand disease: updated results from 40 multiethnic patients. Blood Cells Mol Dis, 2003, 30: 264-70.
    59.李震宇,王泳,万海英等. 3型血管性血友病的基因突变与临床研究.中华血液学杂志, 1998, 19: 122-124.
    60. Gadisseur AP, Vrelust I, Vangenechten I, et al. Identification of a novel candidate splice site mutation (0874 + 1G > A) in a type 3 von Willebrand disease patient. Thromb Haemost, 2007, 98: 464-466.
    1. Lillicrap D. The molecular basis of haemophilia B. Haemophilia, 1998, 4(4):350-357.
    2. Giannelli F, Green PM, Sommer SS, et al. Haemophilia B: database of point mutations and short additions and deletions-eighth edition. Nucleic Aci ds Res, 1998, 26 (1):265-268.
    3. Giannelli F, Green PM, High KA, et al. Haemophilia B: database of point mutations and short additions and deletions. Nucleic Aci ds Res, 1990, 18(14):4053-4059.
    4. Green PM, Giannelli F, Sommer SS, et al. The haemophilia B mutation database-version 12. http://www. kcl. ac.uk/ip/petergreen/intro.html.
    5. Niceta M, Fabiano C, Sammarco P, et al. A novel nonsense mutation in exon 2 of the factor IX gene resulting in severe haemophilia B. Intern Emerq Med, 2006, 1(4):318-320.
    6. Reitsma PH, BertinaRM, Ploos van Amstel JK, et al. The putative factorⅨgene promoter in hemophilia B Leyden. Blood, 1988, 72(3):1074-1076.
    7. Reijnen MJ, Sladek FM, Bertina RM, et al. Disruption of a binding site for hepatocyte nuclear factor 4 results in hemophilia B Leyden. Proc Natl Acad Sci USA, 1992, 89(14):6300-6303.
    8. Veltkamp JJ, Meilof J, Remmelts HG, et al. Another genetic variant of haemophilia B: haemophilia B Leyden. Scand J Haematol, 1970, 7(2):82-90.
    9. Green PM, Mitchell VE, McGraw A,et al. Haemophilia B caused by a missense mutation in the prepeptide sequence of factorⅨ. Hum Mutat, 1993, 2(2):103-107.
    10. Sugimoto M, Miyata T, Kawabata S, et al. FactorⅨKawachinagano: impaired function of the Gla-domain caused by attached propeptide region due to substitution of arginine by glutamine at position-4. Brit J Haemat, 1989, 72(2):216-221.
    11. Mahajan A, Sharma A, Chavali S, et al. Novel missense mutation in the coagulation factor Ⅸcatalytic domain associated with severe haemophilia B- FactorⅨDelhi. Haemophilia, 2004, 10(5):550-552.
    12. Ketterling RP, Drost JB, Scaringe WA, et al. Reported in vivo splice-site mutations in the factorⅨgene: severity of splicing defects and a hypothesis for predicting deleterious splice donor mutations. Hum Mutat, 1999, 13 (3):221-231.
    13. Fiqueiredo MS, Bowen DJ, Silva Junior WA, et al. FactorⅨgene haplotypes in Brazilian blacks and characterization of unusual Ddel alleles. Br J Haematol, 1994, 87(4):789-796.
    14. Peake IR, Lillicrap DP, Boulyjenkov V, et al. Report of a joint WHO/WFH meeting on the control of haemophilia: carrier detection and prenatal diagnosis. Blood Coagul Fibrinolysis, 1993, 4:313-344.
    15. de la Salle C, WU Q, Baas MJ, et al. Common intragenic and estragenic polymorphisms of blood coagulation factorⅧandⅨare different in Chinese and Caucasian populations. Clin Genet, 1990, 38(6):434-440.
    16. Chen SH, Wang NS, School J, et al. Haplotype analysis and polymorphic frequence data at two factorⅨloci in China population. Hum Hered, 1992, 42:204-205.
    17.王宁遂,邓兵,朱静.一种FⅨ基因多态性在我国人群中检出.中华医学遗传性杂志, 1994, 11:217.
    18.毕作木,华宝来,杨仁池等.中国汉族人群凝血因子Ⅸ基因限制性片段长度多态性的研究.中国实验血液学杂志, 2002, 10(3):247-250.
    19.周毓玲,晏家益,刘京春等.四个血友病乙家系携带者基因检测及产前诊断.贵阳医学院学报, 1998, 23(1):8-10.
    20.刘湘帆,王学锋,樊绮诗等.联合多个微卫星DNA位点进行血友病B基因诊断[J].2002,23(3):147-150.
    21.张思仲.人类基因组单核苷酸多态性及其医学应用[J].中华医学遗传学杂志,1999,16(2):119.
    22. AttaliO, Vinciguerra C, Trzeciak C, et al. FactorⅨGene Analysis In 70 Unrelated Patients with Haemophilia B: Description of 13 New Mutations. Thromb Haemost, 1999, 82: 1437-1442.
    23. Carmen E, Pilar C, Saturnino H, et al. Molecular analysis in hemophilia B families: identification of six new mutations in factorⅨgene. Haematologica, 2003, 88: 235-236.
    24. Kwon MJ, Yoo KY, Kim HJ, et al. Identification of mutations in the F9 gene including exon deletion by multiplex ligation-dependent probe amplification in 33 unrelated Korean patients with haemophilia B. Haemophilia, 2008, 14(5):1069-1075.
    1. Andrews RK, Berndt MC. Platelet physiology and thrombosis. Thromb Res,2004,114(5-6):447-453.
    2. Sadler JE, Shelton-Inloes BB, Sorace JM, et al. Cloning and characterization of two cDNA coding for human von Willebrand factor. Proc Natl Acad Sci USA, 1985, 82: 6394-6398.
    3. Titani K, Kumar S, Takio K, et al. Amino acid sequence of human von Willebrand factor. Biochemistry, 1986, 25: 3171-3184.
    4. Mancuso DJ, Tuley UA, Westfield LA, et al. Human von Willebrand factor gene and pseudogene: structural analysis and differentiation by polymerase chain reaction. Biochemistry, 1991, 30: 253-269.
    5. Shelton-Inloes BB, Titani K, Sadler JE. cDNA sequences for human von Willebrand factor reveal five types of repeated domains and five possible protein sequence polymorphisms. Biochemistry, 1986, 25: 3164-3171.
    6. Mannucci FM. von Willebrand factor: a prima ballerina on two different stages. Semin Hematol, 2005, 42: 1-4.
    7. Marti T, R?sseler SJ, Titani K, et al. Identification of disulfidebridged substructures within human von Willebrand factor. Biochemistry, 1987, 26: 8099-8109.
    8. Voorberg J, Fontijn R, Calafat J, et al. Assembly and routing of von Willebrand factor variants: the requirements for disulfide-linked dimerization reside within the carboxy-terminal 151 amino acids. J Cell Biol, 1991, 113: 195-205.
    9. Katsumi A, Tuley EA, BodóI, et al. Localization of disulfide bonds in the cystine knot domain of human von Willebrand factor. J Biol Chem, 2000, 275: 25585-25594.
    10. Borchiellini A, Fijnvandraat K, Cate JW, et al. Quantitative analysis of von Willebrand factor propeptide release in vivo: effect of experimental endotoxemia and administration of 1-deamino-8-D-arginine vasopressin in humans. Blood, 1996, 88: 2951-2958.
    11. Chng WJ, Yip CY, Baliwag MB, et al. Differential effect of the ABO blood group on von Willebrand factor collagen binding activity and ristocetin cofactor assay. Blood Coagul Fibrinolysis, 2005, 16: 75-78.
    12. Sadler JE. Von Willebrand factor. J Biol Chem, 1991, 226: 22777-22780.
    13. Girma JP, Meyer D, Verweij CL, et al. Structure-function relationship of human von Willebrand factor. Blood, 1987, 70: 605-611.
    14. Sadler JE, Moake JL, Miyata T, et al. Recent advances in thrombotic thrombocytopenic purpura. Hematology(Am Soc Hematol Educ Program), 2004,407-423.
    15. Rodeghiero F, Castaman G, Dini E. Epidemiological investigation of the prevalence of von Willebrand's disease. Blood, 1987, 69: 454-459.
    16. Werner EJ, Broxson EH, Tucker EL, et al. Prevalence of von Willebrand disease in children: a multiethnic study. J Pediat, 1993, 123: 893-898.
    17. Sadler JE, Mannucci PM, Berntorp E, et al. Impact, diagnosis and treatment of von Willebrand disease. Thromb Haemost, 2000, 84: 160-174.
    18. Goodeve A, Eikenboom J, Castaman G, et al. Phenotype and genotype of a cohort of families historically diagnosed with type 1 von Willebrand disease in the European study, Molecular and Clinical Markers for the Diagnosis and Management of Type 1 von Willebrand Disease (MCMDM-1VWD). Blood, 2007, 109: 112-121.
    19. James PD, Notley C, Hegadorn C, et al. The mutational spectrum of type 1 von Willebrand disease: Results from a Canadian cohort study. Blood, 2007, 109: 145-154.
    20. Lyons SE, Bruck ME, Bowie EJW, et al. Impaired intracellular transport produced by a subset of typeⅡA von Willebrand disease mutations. J Biol Chem, 1992, 267: 4424-4430.
    21. Hilbert L, Federici AB, Baronciani L, et al. A new candidate mutation, G1629R, in a patient with type 2A von Willebrand's disease: basic mechanisms and clinical implications. Haematologica, 2004, 89: 1128-1133.
    22. Ruggeri ZM, Pareti FI, Mannucci PM, et al. Heightened interaction between platelets and factorⅧ/von Willebrand factor in a new subtype of von Willebrand's disease. N Engl J Med, 1980, 302: 1047-1051.
    23. Randi AM, Rabinowitz I, Mancuso DJ, et al. Molecular basis of von Willebrand disease typeⅡB. Candidate mutations cluster in one dissulfide loop between proposed platelet glycoproteinⅠb binding sequences. J Clin Invest, 1991, 87: 1220-1226.
    24. Cooney KA, Nichols WC, Bruck ME, et al. The molecular defect in typeⅡB von Willebrand disease. Identification of four potential missence mutations within the putative GpⅠb binding domain. J Clin Invest, 1991, 87: 1227-1233.
    25. Dumas JJ, Kumar R, McDonagh T, et al. Crystal struction of the wild-type von Willebrand factor A1-glycoproteinⅠbαcomplex reveals conformation differences with a complex bearing von Willebrand disease mutations. J Biol Chem, 2004, 279: 23327-23334.
    26. Rabinowitz I, Tuley EA, Mancuso DJ, et al. von Willebrand disease type B: a missense mutation selectively abolishes ristocetin-induced von Willebrand factor binding to platelet glycoproteinⅠb. Proc Natl Acad Sci USA, 1992, 89: 9846-9849.
    27. Mazurier C, Goudemand J, Hilbert L, et al. Type 2N von Willebrand disease: clinical manifestations, pathophysiology, laboratory diabnosis and molecular biology. Best Pract Res Clin Haematol, 2001, 14: 337-347.
    28. Ginsburg D, Sadler JE. von Willebrand disease: a database of point mutations, insertions, and delations. For the Consortium on von Willebrand Factor Mutations and Polymorphisms, and the Subcommittee on von Willebrand Factor of the Scientific and Standardization Committee of the International Society on Thrombosis and Haemostasis. Thromb Haemost,1993, 69: 177-184.
    29. Sadler JE. A revised classification of von Willebrand disease. For the Subcommittee on von Willebrand Factor of the Scientific and Standardization Committee of the International Society on Thrombosis and Haemostasis. Thromb Haemost, 1994, 71: 520-525.
    30. Eikenboom JC. Congenital von Willebrand disease type 3: clinical manifestations, pathophysiology and molecular biology. Best Pract Res Clin Haematol, 2001, 14: 365-379.
    31. Baronciani L, Cczzi G, Canciani MT, et al. Molecular defects in type 3 von Willebrand disease: updated results from 40 multiethnic patients. Blood Cells Mol Dis, 2003, 30: 264-70.
    32. Lip GY, Blann A. von Willebrand factor: a marker of endothelial dysfunction in vascular disorders? Cardiovasc Res, 1997, 34: 255-265.
    33. Wiman B, Andersson T, Hallqvist J, et al. Plasma levels of tissue plasminogen activator/plasminogen activator inhibitor-1 complex and von Willebrand factor are significant risk markers for recurrent myocardial infarction in the Stockholm Heart Epidemiology Program (SHEEP) study. Arterioscler Thromb Vasc Biol, 2000, 20: 2019-2023.
    34. Montalescot G, Philippe F, Ankri A, et al. Early increase of von Willebrand factor predicts adverse outcome in unstable coronary artery disease: beneficial effects of enoxaparin. French Investigators of the ESSENCE Trial. Circulation, 1998, 98: 294-299.
    35. Makin AJ, Blann AD, Chung NA, et al. Assessment of endothelial damage in atherosclerotic vascular disease by quantification of circulating endothelial cells. Relationship with von Willebrand factor and tissue factor. Eur Heart J, 2004, 25: 371-376.
    36. Lee KW, Lip GY, Tayebjee M, et al. Circulating endothelial cells, von Willebrand factor, interleukin-6, and prognosis in patients with acute coronary syndromes. Blood, 2005, 105: 526-532.
    37. Kozuka K, Kohriyama T, Nomura E, et al. Endothelial and platelet markers and adhesion molecules in acute ischemic stroke -sequential chang and differences in stroke subtype. Atherosclerosis, 2002, 161: 161-168.
    38. Dai K, Gao W, Ruan C. The SmaⅠpolymorphism in the von Willebrand factor gene associated with acute ischemic stroke. Thromb Res, 2001, 104: 389-395.
    39. Lacquemant C, Gaucher C, Delorme C, et al. Association between high von willebrand factor levels and the Thr789Ala vWF gene polymorphism but not with nephropathy in type I diabetes. The GENEDIAB Study Group and the DESIR Study Group. Kidney Int, 2000, 57: 1437-1443.