马铃薯晚疫病菌对甲霜灵抗性治理对策研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
植物病原菌抗药性是植物病害化学防治中的突出问题。甲霜灵是目前防治马铃薯晚疫病中应用最为普遍的杀菌剂。本文通过检测马铃薯晚疫病菌对包括甲霜灵在内的6种内吸性杀菌剂的抗性;筛选防治晚疫病高效、与甲霜灵之间无交抗关系及抗药性风险较低的药剂;筛选对抗甲霜灵菌株增效的药剂组合;研究药剂交替使用后对晚疫病菌对甲霜灵抗性发展的影响,制订了马铃薯晚疫病菌对甲霜灵抗性治理的用药策略。主要研究结果如下:
     1.对薯片夹叶分离法进行了改进,使分离成功率升至100%。测定了马铃薯晚疫病菌在RSA①、RSA②和CA三种培养基上的菌落扩展和产孢能力显示,晚疫病菌在RSA①和CA上生长较快,RSA②次之;产孢量依次为RSA①>CA>RSA②,RSA①较适合马铃薯晚疫病菌的培养。晚疫病菌在CA上的菌落扩展速度与在RSA①上相当,且CA原料易得、制作简便,可用于测定药剂对晚疫病菌菌丝生长的抑制作用及离体条件下检测马铃薯晚疫病菌对杀菌剂敏感性。
     2.采用菌丝生长速率法(在含区分剂量药剂的CA平板上)和叶盘漂浮法分别检测了2007~2009年采自我国北方五省的马铃薯晚疫病菌对甲霜灵的抗性(分别为380个菌株和227个菌株),发现抗性频率分别为80%和74%,表明上述地区晚疫病菌对甲霜灵已普遍产生了抗性。
     3.采用叶盘漂浮法检测2007~2009年采自我国北方五省的马铃薯晚疫病菌对精甲霜灵、霜脲氰、烯酰吗啉、氟吗啉和嘧菌酯的敏感性,并建立了晚疫病菌对霜脲氰、烯酰吗啉、氟吗啉和嘧菌酯的敏感基线,结果显示:(1)精甲霜灵对96株晚疫病菌的EC50值为0.002 9~395.867 5μg/mL,其中抗性菌株占54.2%,中间型菌株占44.8%,敏感菌株仅占1.0%。(2)晚疫病菌对霜脲氰的敏感基线为(0.673 6±0.090 2)μg/mL,110株晚疫病菌中70%的菌株已对霜脲氰产生了抗药性,其中高抗菌株占1.8%,抗性水平最高达1 024倍。(3)晚疫病菌对烯酰吗啉、氟吗啉和嘧菌酯的敏感基线分别为(0.215 5±0.011 9)μg/mL、(0.337 4±0.019 9)μg/mL和(0.218 8±0.011 1)μg/mL,并且敏感菌株占优势,频率分别为92.2%、93.7%和88.4%,仅有少量低抗菌株存在,未检测到中抗及高抗菌株。(4)田间存在对甲霜灵和霜脲氰的双抗菌株(MRCRDSAS型)、对甲霜灵和嘧菌酯的双抗菌株(MRCSDSAR型)及对甲霜灵、霜脲氰和嘧菌酯的三抗菌株(MRCRDSAR型)频率分别为78.0%、1.1%和3.3%。
     4.采用叶盘法测定了19种杀菌剂对抗甲霜灵菌株的毒力,结果表明嘧菌酯?苯醚甲环唑、嘧菌酯、烯酰吗啉、双炔酰菌胺、吡唑醚菌酯、吡唑醚菌酯?代森联和唑胺菌酯有较强的抑制作用,其EC90值均小于10μg a.i/mL,其次为氟菌?霜霉威、嘧菌酯?百菌清、烯酰?锰锌、噁唑菌酮?锰锌、代森锰锌、霜脲?锰锌、噁唑菌酮?霜脲氰、百菌清和氢氧化铜,其EC90值在10~100μg a.i/mL之间,氟啶胺、霜霉威和丙森锌的相对防效较差,其EC90值均大于100μg a.i/mL。
     5.在河北围场县克勒沟镇围字村进行的田间药效试验结果表明,氟菌?霜霉威和双炔酰菌胺对马铃薯晚疫病具有良好的防效(88.9%和82.7%),显著高于霜脲?锰锌、烯酰吗啉、嘧菌酯、代森锰锌和百菌清的防效;在河北崇礼县狮子沟原种场进行的田间药效试验结果表明,氟菌?霜霉威对马铃薯晚疫病具有较好的防效(93.8%),其次为霜脲?锰锌和烯酰吗啉(84.7%和80.2%),且显著高于代森锰锌、嘧菌酯和百菌清的防效。
     6.初步评估了马铃薯晚疫病菌对双炔酰菌胺和唑胺菌酯的抗药性风险:(1)早期田间抗性检测结果显示,232株晚疫病菌中对双炔酰菌胺敏感的菌株占94.4%,低抗菌株占5.6%,未检测到中抗及高抗菌株;双炔酰菌胺与甲霜灵、霜脲氰和嘧菌酯之间不存在交互抗药性关系,但与烯酰吗啉和氟吗啉之间存在交互抗药性关系;田间抗双炔酰菌胺菌株的抗药性不能稳定遗传,且其适合度指数显著低于敏感菌株,表明晚疫病菌对双炔酰菌胺具有较低的抗性风险。(2)早期田间抗性检测结果表明,127株晚疫病菌中对唑胺菌酯敏感的菌株占91.3%,低抗菌株占8.7%,未检测到中抗及高抗菌株;唑胺菌酯与甲霜灵、霜脲氰和烯酰吗啉之间不存在交互抗药性关系,但与嘧菌酯之间存在交互抗药性关系;田间抗唑胺菌酯菌株的抗药性能稳定遗传,其适合度指数与敏感菌株相当,表明晚疫病菌对唑胺菌酯具有较高的抗性风险。
     7.采用脱叶法检测药剂混配的联合毒力,以Horsfall法与Wadley法评价药剂混用是否具有增效作用,结果表明,化合物A与吡唑醚菌酯、百菌清分别以5:5和4:6混配,对抗甲霜灵菌株有明显的增效作用,增效系数分别2.8和2.0;化合物B与百菌清、代森锰锌分别以9:1和3:7混配,对抗甲霜灵菌株亦有增效作用,增效系数分别为1.6和2.2。
     8.田间交替喷施72%霜脲?锰锌WP(1 080 g a.i./hm2)、68%精甲霜?锰锌WG(1 224 g a.i./hm2)、68.75%氟菌?霜霉威(SC 1 031 g a.i./hm2)和50%烯酰吗啉WP(375 g a.i./hm2)对马铃薯晚疫病具有良好的防控作用(防效90%以上)。检测交替用药地区晚疫病菌对甲霜灵及嘧菌酯的敏感性,发现交替用药可延缓晚疫病菌群体对甲霜灵和嘧菌酯的抗性发展。
     9.根据田间抗药性检测、替代甲霜灵的高效低抗药性风险药剂筛选、对甲霜灵抗性菌株增效药剂组合筛选、交替用药对甲霜灵抗性发展影响的研究结果,制定了马铃薯晚疫病菌对甲霜灵抗性治理的用药策略,即选用双炔酰菌胺、烯酰吗啉、唑胺菌酯、嘧菌酯等与甲霜灵之间无交抗关系的药剂以及氟菌?霜霉威交替使用,或将化合物A与吡唑醚菌酯、百菌清混用,化合物B与百菌清、代森锰锌混用;限制每个生长季节甲霜灵?锰锌或精甲霜灵?锰锌使用次数不超过2次。
Resistance to fungicides in plant pathogens is outstanding problem in chemical control of palnt diseases. Metalaxyl is now the fungicide used most widely for control potato late blight. In the thesis, the management strategy of resistance in Phytophthora infestans was established through testing sensitivity to 6 systemic fungicides including metalaxyl, screening the fungicides with high control efficacy to potato late blight, no positively correlated resistance with metalaxyl and low risk of rensistance, screening the fungicide combinations synergistic against metalaxyl-resistant isolates of P. infestans, and studies on effects on the development of resistance to metalaxyl in P. infestans. The major result were reviewed as followed.
     1. The isolation method of potato slices claping leaves infected by late blight was improved, which made the ratio of successfully isolation up to 100%. The colonial spreading and sporulation of P. infestans on 3 media (RSA①, RSA②and CA) was tested. The result showed that P. infestans grows faster on paltes of RSA①and CA than on plates of RSA②. The sporulation capacity is biggest on plates of RSA①than on plates of CA and RSA②. So, RSA①is more suitable for cultivation of P. infestans. Besides, speed of colonial extension of P. infestans on CA is almost the same as that on RSA①, and the raw material of CA is easily acquired, so CA can be used for testing inhibitory activity of fungicides against mycelial growth and in vitro testing sensitivity to fungicides in P. infestans.
     2. Sensitivity to metalaxyl in 380 isolates and 227 isolates collected from five provinces of northern China during 2007~2009 with mycelaial growth rate on CA amended with metalaxyl of discriminatory concentration and leaf disc floating test, respectively, the result showed that the percentages of metalaxyl-resistance isolates of P. infestans was 80% and 74%, respectively. It suggests that metalaxyl-resistance of P. infestans occurred widely in the detected areas.
     3. Sensitivity to mefenoxam, cymoxanil, dimethomorph, flumorph and azoxystrobin of P. infestans collected from five provinces of northern China during 2007~2009 was tested through leaf disc floating test. The result showed that (1) EC50 values of mefenoxam in 96 field isolates of P. infestans were 0.002 9~395.867 5μg/mL, mefenoxam-resistant isolates accounts for 54.2%, intermediate isolates accounts for 44.8%, only 1.0% is sensitive isolates. (2) The baseline-sensitivity to cymoxanil of P. infestans was (0.673 6±0.090 2)μg/mL. 70% were resistant to cymoxanil among in 110 field isolates, 1.8% is high-resistant to cymoxanil with resistance level up to 1 024 folds. (3) The baseline-sensitivity of dimethomorph, flumorph and azoxystrobin to P. infestans was (0.215 5±0.011 9)μg/mL, (0.337 4±0.019 9)μg/mL and (0.218 8±0.011 1)μg/mL, respectively. Isolates sensitive to dimethomorph, isolates sensitive to flumorph and isolates sensitive to azoxystrobin were dominated in the population of P. infestans, account for 92.2%, 93.7% and 88.4%, respectively. A few isolates lowly resistant to the three fungicides exist, no moderately or highly resistant isolates were detected. (4) Isolates double resistant to metalaxyl and cymoxanil (MRCRDSAS) , or double resistant to metalaxyl and azoxystrobin (MRCSDSAR) or triple resistant to metalaxyl, cymoxanil and azoxystrobin (MRCRDSAR) exist in the field, accounting for 78.0%, 1.1% and 3.3%, respectively.
     4. The fungitoxicity of 19 fungicides to P. infestans was assessed by a leaf disc spray test. The result showed that azoxystrobin-difenoconazole, azoxystrobin, dimethomorph, mandipropamid, pyraclostrobin, pyraclostrobin-metiram and pyrametostrobin showed higher toxicity to metalaxyl-resistant isolates, Theirs EC90 values were lower than 10μg/mL. EC90 values of fluopicolide-propamocarb, azoxystrobin-chlorothalonil, dimethomorph-mancozeb, famoxadone-mancozeb, mancozeb, cymoxanil-mancozeb, famoxadone-cymoxanil, chlorothalonil and cupric hydroxide were 10~100μg/mL. And fluazinam, propamocarb, propineb showed a lower toxicity to metalaxyl-resistance isolates, theirs EC90 values were higher than 100μg/mL.
     5. The result of the trial on control efficacy done in Weichong showed that: control efficacy of fluopicolide-propamocarb and mandipropamid to potato late blight in field was 88.9% and 82.7%, respectively, which was significantly higher that of cymoxanil-mancozeb, dimethomorph, azoxystrobin, mancozeb and chlorothalonil. The result of the trial on control efficacy done in Chongli showed that control efficacy of fluopicolide-propamocarb to potato late blight in field was 93.8%, control efficacy of cymoxanil-mancozeb and dimethomorph was 84.7% and 80.2%, respectively, which was significantly higher that of mancozeb, azoxystrobin and chlorothalonil.
     6. The resistance risk of mandipropamid and pyrametostrobin to P. infestans was preliminarily assessed. (1) The result of early detection of resistance to mandipropamid showed that among 232 isolates, sensitive isolates account for 94.4%, lowly resistant isolates account for 5.6%, no moderately resistant or highly reisitant isolates were found. No positively correlated cross resistance between mandipropamid, metalaxyl and cymoxanil, but positively correlated cross resistance between mandipropamid, dimethomorph and flumorph. Resistance to mandipropamid of resistant isolates from the fields not stable and their fitness index were significantly lower than the sensitive isolates. These suggests that P. infestans has a lower risk of resistance to mandipropamid. (2) The result of early detection of resistance to pyrametostrobin showed that among 127 isolates, sensitive isolates account for 91.3%, 8.7% is lowly resistant isolates, no moderately resistant or highly reisitant isolates are found. No positively correlated cross resistance exists between pyrametostrobin, metalaxyl, cymoxanil and dimethomorph, but positively correlated cross resistance exists between pyrametostrobin and azoxystrobin. Resistance to pyrametostrobin can keep stable of resistant isolates, and their fitness index were not significantly different from that of the sensitive isolates. It suggested that P. infestans has a high risk of resistance to pyrametostrobin.
     7. The joint fungitoxicity of fungicides was tested by detached leaf spray test and whether the synergistic action exists between fungicides was judged by Horsfall formula and Wadley formula. The results showed that synergistic effects (SR 2.8 and 2.0) against metalaxyl isolates exist between compound A and pyraclostrobin and between compound A and chlorothalonil as mixing suspension of compound A and pyraclostrobin at ratio of 5:5, and the mixing suspension of compound A and chlorothalonil at ratio of 4:6 were applied to the detached leaves of potato. Synergistic action (SR 1.6 and 2.2) to metalaxyl-resistant isolates exists while mixing suspension of compound B and chlorothalonil at ratio of 9:1 and mixing suspension of compound B and mancozeb at ratio of 3:7 were applied to the detached leaves of potato.
     8. Alternate application of cymoxanil-mancozeb 72 WP (1 080 g a.i./hm2) , mefenoxam-mancozeb WG (1 224 g a.i./hm2), fluopicolide-propamocarb 68.75 SC (1 031 g a.i./hm2) and dimethomorph 50 WP (375 g a.i./hm2) in demonstration plots exhibited good control efficacy (>90%). And development of resistance to metalaxyl or azoxystrobin in the population of P. infestans was delayed through detecting the sensitivity to metalaxyl or azoxystrobin in the alternate application areas in the population of P. infestans. 9 Based on the results of detection of field resistance to fungicides, screening of fungicides with high control efficacy, low risk of resistance to the novel fungicides, screening of fungicide combinations synergistic to metalaxyl-resistant isolates, and studies on effects of alternate application of fungicides with different modes of action on development of resistance to fungicides, a strategy of management strategy of resistance to metalaxyl in P. infestans was established, that is, selecting and applying novel fungicides (such as mandipropamid, dimethomorph, pyrametostrobin, azoxystrobin, fluopicolide-propamocarb) without positive correlated cross resistance with metalaxyl in alternation, or applying the mixing suspension of compound A with pyraclostrobin or chlorothalonil, or the mixing suspension of compound B with chlorothalonil or mancozeb;limiting metalaxyl-mancozeb or mefenoxam-mancozeb within the 2 applications per season of growth.
引文
[1]屈冬玉,金黎平,谢开云.中国马铃薯产业10年回顾[M].北京:中国农业科学技术出版社, 2010, 76-106.
    [2] Erwin D C, Roberio O K. Phytophthora diseases world wide[M]. Saint Paul MN, USA: APS Press, 1996, 562.
    [3]许志刚.普通植物病理学[M].北京:中国农业出版社, 2002, 56.
    [4]张志铭.马铃薯晚疫病的研究进展与综合防治[J].植保技术与推广, 2002, 22(5): 38-39.
    [5] Fry W E,Goodwin S B. Re-emergence of Potato and Tomato Late Blight in the United States [J].Plant Disese, 1997, 81(12): 1349-1357.
    [6] http://www.cipotato.org/publications/cip-newsletter.asp
    [7]朱杰华,张志铭.马铃薯晚疫病菌(Phytophthora infestans)A2交配型的研究进展[J].河北农业大学学报, 1999, 22(4):94-98.
    [8]林传光,黄河,王高才,等.马铃薯晚疫病的田间动态观察及防治试验[J].植物病理学报, 1995, 29(11) 31-44.
    [9]唐洪明.马铃薯育种-马铃薯抗晚疫病育种[J].马铃薯杂志, 1987, 1(1): 55-60.
    [10]何卫,王军,杨艳丽,等.我国马铃薯晚疫病研究概况[A].中国作物学会马铃薯专业委员会1999年年会论文集[C].哈尔滨:东北农业大学出版社, 1999: 261-265.
    [11]袁军海.我国马铃薯晚疫病的发生与防治[J].南京农专学报, 2003, 2: 46-50.
    [12]红华.农业部: 2008年马铃薯晚疫病防治方案[J].农村实用技术, 2008, 5: 31.
    [13]王晓辉,张忠敏.马铃薯晚疫病的发病特点及综合防治技术[J].现代化农业, 2009, 1: 24-25.
    [14] Cohen Y, Coffey M D. Systemic fungicides and the control of oomycetes[J]. Annual Review of Phytopathology, 1986, 24: 311-338.
    [15] Smith L P. Potato blisht forecasting by 90 percent humidity criteria[J]. Plant Pathology, 1956, 5: 83-87.
    [16]谢开云,车兴壁, Duranllo C,等.比和时马铃薯晚疫病预警系统及其在我国的应用[J].中国马铃薯, 2001, 2: 67-71.
    [17]谢成君.用模糊综合决策模型预测马铃薯晚疫病流行程度[J].马铃薯杂志, 1984, 1: 23-25.
    [18]谢成君,宋杰.马铃薯晚疫病流行程度的灰色预测初探[J].马铃薯杂志, 1996, 10(3): 162-163.
    [19]王金生.分子植物病理学[M].北京:中国农业出版社, 1999, 17-22.
    [20]李先平,何云昆,赵志坚,等.马铃薯抗晚疫病育种研究进展[J].中国马铃薯, 2001, 15(5): 290-295.
    [21]宋伯符,谢开云. CIP的全球晚疫病防治倡议与我国的参与[J].马铃薯杂志, 1997, 11: 51-58.
    [22] Helgeson J P, Pohlman J D, Austin S, et al. Somatic hybrids between Solenum bulbocastanum and potato: a new source to late blight[J]. Theor Appl Genet, 1998, 96: 738-74.
    [23] Liu D, Raghothama K G, Hasegawa P M, et al. Osmotin overexpression in potato delaysdevelopment of disease symptoms[J]. Proc. Natl. Acad. Sci. USA, 1994, 91: 1888-1892.
    [24]甄伟,陈溪,梁浩博,等.转基因马铃薯中病原诱导GO基因的表达及其对晚疫病的抗性[J].科学通报, 2000, 45: 1071-1075.
    [25]金红,罗智敏,陈峥,等.马铃薯抗晚疫病基因工程育种研究[J].华北农学报, 2005, 20(1): 46-51.
    [26]丁海滨,卢扬,邓禄军.马铃薯晚疫病发病机理及防治措施[J].贵州农业科学, 2006, 34(5): 76-81.
    [27]李成军.黑龙江省马铃薯晚疫病发生发展规律及防治[J].中国农学通报, 2000, 6: 71-72.
    [28] Fry W E .Goodwin S B. Re-emergence of potato and tomato late blight in the United States [J]. Plant Disease, 1997, 12: l349-l357.
    [29]蒋继志,史鹃,赵丽坤,等.几种植物提取物诱导马铃薯对致病疫霉的抗性[J].植物病理学报, 2000, 31(2): 145-151.
    [30]曹克强, Ariena H C van Bruggen.几种植物提取物和天然产物对马铃薯晚疫病菌的抑制作用[J].河北农业大学学报, 2001, 24(2): 90-96.
    [31]王树桐,曹克强,胡同乐,等.知母提取物对马铃薯晚疫病菌的抑制作用及防病效果[J].植物病理学报, 2006, 36(3): 267-272.
    [32] Sehwinn F J, Margot P. Control with chemicals[A]. Ingram D S, Williams P H . Phyrophthora infestans,the cause of late blight of potato, Advances in Plant Pathology(vol.7)[C]. London: Academic Press, 1991, 225-265.
    [33] Fernandez E N, Navia O, Gandarillas A. Basis of strategies for chemical control of Potato late blight developed by PROINP in Bolivia[J]. Fitopatologa, 2000, 35(3): 137-149.
    [34]从心黎,李灿辉,陈善娜,等.马铃薯晚疫病化学防治农药应用概述[J].农药,2005, 44(5): 198-201.
    [35]王文桥.气传霜霉和疫霉对噁霜灵、烯酰吗啉和霜脲氰抗性风险研究[D]. 2000,北京:中国农业大学.
    [36]林孔勋.杀菌剂毒理学[M].北京:中国农业出版社, 1995, 101-140.
    [37] Cohen Y, Coffey M D. Systemic fungicides and the control of oomycetes[J]. Annual Review of Phytopathology, 1986, 24: 311-338.
    [38] Ziogas, B N, Davidse, L C. Studies on the mechanism of action of cymoxanil in Phytophthora infestans[J]. Pesticide Biochemistry and Physiology, 1987, 29: 89-96.
    [39] FRAC Code List : Fungicides sorted by mode of action[EB/OL]. http://www.frac.info/frac/index.htm, 2009.
    [40] Albert G, Curtze J, Drandarevski C A. Dimethomorph(CME 151), a novel curative fungicide[A]. Brighton Crop Protection Conference-Pest and Disease[C]. Brighton, UK. Farnham: British Crop Protection Council, 1988, 1:17-24.
    [41] Reuveni M. Activity of the new fungicide benthiavalicarb against Plasmopara vitivola and its efficacy in controlling downy mildew in grapevines[J]. European Journal of Plant Pathology, 2003, 09: 234-251.
    [42] Huggenberger F, Lamberth C, Iwanzik W. Mandipropamid, a new fungicide against oomycete pathogens[M]. Proceedings of the BCPC international congress, Glasgow, UK, 2005: 87-92.
    [43] Yuan S K, Liu X L,Gu B G, et al. Induction and characterization of laboratory mutant of Phytophthora capsici resistant to dimethomorph and flumorph[J]. Agrichemicals Science China, 2005, 4(10): 752-759.
    [44] Yuan S K, Liu X L, Si N G, et al. Sensitivity of Phytophthora infestans to flumorph : in vitro determination of baseline sensitivity and the risk of resistance[J]. Plant Pathology, 2006, 55: 258-263.
    [45] Gisi U, Lamberbth C, Mehl A, et al. Carboxylic acid amide (CAA) fungicides[M]. Kramer W, Schirmer U. Modern Crop Protection Compounds, Wiley-VCH, Weinheim, 2007: 651-671.
    [46] Jende G. The cell wall of the oomycete Phytophthora infestans as a target of fungicides[D]. Bonn: Bonn university, 2001.
    [47]袁善奎,刘亮,刘西莉. 5种杀菌剂对马铃薯晚疫病菌几个不同发育阶段的影响[A].中国植物病害化学防治研究第四卷[C],北京:中国农业科技出版社, 2004: 85-92.
    [48]朱书生,卢晓红,陈磊,等.羧酸酰胺类(CAAs)杀菌剂研究进展[J].农药学学报, 2010, 12(1): 1-12.
    [49]朱书生,刘西莉,李建强,等.新型杀菌剂氟吗啉在黄瓜植株内的吸收传导行为[J].高等学校化学学报, 2006, 27(10): 1887-1890.
    [50]黄青春,叶钟音.烯酰吗啉(DMM)的特性及其作用机制[J].农药科学与管理, 2000, 21(5): 27-31.
    [51]迟会伟,刁杰,聂开晟,等.新型杀菌剂双炔酰菌胺[J].农药, 2007, 46(1): 52-54.
    [52]王丽,朱杰华,王文桥,等.新杀菌剂对马铃薯晚疫病菌室内毒力测定[A].粮食安全与植保科技创新[C].北京:中国农业科学技术出版社, 2009, 774-777.
    [53]韩秀英,李宏民,马志强,等.新杀菌剂AF-12946对马铃薯晚疫病的毒力与控制效果[A].中国植物病害化学防治研究[C].北京:中国农业科学技术出版社, 2008, 6: 73-76.
    [54]闫晓静,金淑惠,陈馥衡,等. Strobilurin类杀菌剂作用靶标的研究进展[J].农药学学报, 2006, 8(4): 299-305.
    [55]乔桂双.五种Strobilurin类杀菌剂对黄瓜霜霉病菌生物活性及其抗性风险[D].保定:河北农业大学, 2009.
    [56] Guo Z, Miyoshi H, Komyoji T. Uncoupling activity of a newly developed fungicide fluazinam, [3-chloro-N-(3-chloro-2,6-dinitro-4-trifluoromethylphenyl)-5-trifluoromethyl-2-pyridinamine][J]. Biochemical Biophysics Abstract, 1991 ,1056: 89-92.
    [57] Komyoji T, Sugimoto K, Suzuki K. Effect of fluazinam, a new fungicide on infection processes of several plant pathogenic fungi[J]. Annals of the Phytopathological Society of Japan, 1995, 61(2): 145-149.
    [58] Yuan H Z, Qi S H, Jin M. Control of downy mildew of cucumber with propamocarb aqueous solution[J]. Plant Protection. 1999. 25(3): 45-46.
    [59] Reiter B, Wenz M, Buschhaus H, et al. Effect of propamocarb hydrochloride on Phytophthorainfestans in vitro and in potato and tomato[J]. Gesunde Pflanzen, 1995, 47(2): 43-50.
    [60] Lazzari V, Arcangeli G, Gualco A, et al. Fluopicolide: a new effective active ingredient against oomycetes in grapes and vegetables[J]. Giornate Fitopato Logiche, 2008, 135-140.
    [61] Toquin V, Barja F, Sirven C, et al. A new mode of action for fluopicolide: modification of the cellular localization of a spectrin-like protein[J]. Pflanzenschutz-Nachrichten Bayer. 2006, 59: 171-184.
    [62]刘长令.世界农药大全—杀菌剂卷[M].北京:化学工业出版社, 2006: 203-205.
    [63] Takeshi O, Terumasa K, Shigeru M. Development of a novel fungicide, cyazofamid[J]. Pesticide Science, 2004, 29: 136-138.
    [64]刘国容,严乐恩.当前农业病害抗性发展动向和对策[J].农药科学与管理, 1995, 3: 22-26.
    [65] Dewaad M A, Georgopoulos S G, Hollomon D W, et al. Chemical control of plant diseases: problem and prospects[J]. Phytopathology, 1993, 31: 403-421.
    [66]陈玉峰.马铃薯晚疫病菌对啥菌醋的抗性风险评估及抗性分子机制研究[D].合肥:安徽农业大学, 2008.
    [67] Bradshaw N J, Vaughan T B. The effect of phenylamide fungicides on the control of potato late blight (Phytophthora infestans) in England and Wales from 1978 to 1992[J]. Plant Pathology. 1996, 45: 249-269.
    [68] Davides L C, Looijen D, Turkensteen L J, et al. Occurrence of metalaxyl-resistant strains of Phytophthora infestans in Dutch potato fields[J]. Plant Pathology. 1981, 87: 65-68.
    [69] Dawn E F, Paul B S, Jean B R. Characterrization of isolates of Phytophthora infestans from tomato and potato in North Carolina from 1993 to 1995[J]. Plant Disease, 1998, 83(7): 633-638.
    [70] Hermansen A, Hannukkala A, Nerstad R, et al. Variation in populations of Phytophthora infestans in Finland and Norway: mating type, metalaxyl resistance and virulence phenotype[J]. Plant Pathology. 2000, 49(1): 11-22.
    [71] Day J P, Wattier R A M, Shaw D S, et al. Phenotypic and genotypic diversity in Phytophthora infestans on potato in Great Britain, 1995-98[J]. Plant Pathology, 2004, 53(3): 303-315.
    [72] Deahl K L, Pagani M C, Vilaro F L. Characteristics of Phytophthora infestans isolates from Uruguay[J]. European Journal of Plant Pathology, 2003, 109: 277-281.
    [73] Reis A, Smart C D, Fry W E, et al. Characterization of isolates of Phytophthora infestans from southern and southeastern Brazil from 1998 to 2000[J]. Plant Disease, 2003, 87(8): 896-900.
    [74] Byung-Sup Kim, Xuan-Zhe Zhang, Eun-Kyoung Chung, et al. Sensitivity of Phytophthora infestans Isolates to fungicides metalaxyl and ethaboxam in Korea[J]. Plant Pathology, 2003, 19(3): 143-147.
    [75] Gisi U, Hermann D, Ohl L, et al. Sensitivity profiles of Mycosphaerella graminicola and Phytophthora infestans populations to different classes of fungicides[J]. Pesticide Science, 1997, 51: 209-298.
    [76]王文桥,马志强,张小风,等.致病疫霉抗药性、交配型和适合度[J].植物病理学报, 2002, 32(3): 278-283.
    [77]朱杰华,杨志辉,李川,等.马铃薯晚疫病菌抗甲霜灵菌株和敏感菌株在种薯上越冬能力的比较[J].河北农业大学学报, 2002, 25(2): 61-64.
    [78]朱小琼,车兴璧,国立耘,等.六省市致病疫霉交配型及其对几种杀菌剂的敏感性[J].植物保护, 2004, 30(4): 20-23.
    [79]陈庆河,翁启勇,谢世勇,等.福建省致病疫霉交配型分布及对甲霜灵的抗药性[J].植物保护学报, 2004, 31(2): 151-156.
    [80]杨志辉,桂秀梅,朱杰华,等.马铃薯晚疫病菌对甲霜灵的抗性及与霜脲氰和霜霉威交互抗药性的研究[J].中国农学通报, 24(5) 335-338.
    [81]赵志坚,曹继芬,李灿辉,等.云南致病疫霉交配型、甲霜灵敏感性、mtDNA单倍型及其群体演替研究[J].中国农业科学, 2007, 40(4): 727-734.
    [82]姚国胜,吕国杨,志辉朝,等.马铃薯晚疫病菌对甲霜灵敏感性及交配型测定[J].华化农学报, 2007, 22(增刊): 260-262.
    [83]毕朝位,车兴壁,马金成,等.致病疫霉对甲霜灵抗性及抗性水平测定[J].西南农业大学学报, 2002, 4(4): 307-309.
    [84]袁善奎,赵志华,刘西莉,等.马铃薯晚疫病菌对甲霜灵和霜脲氰的敏感性检测[J].农药学学报, 2005, 7(3): 237-241.
    [85] Hamlen R A, PowerR J. Distribution of sensitivity responses to cymoxanil within global populations of Phytophthora infestans[J]. Pest Management Science, 1998, 53(1): 101-103.
    [86] Perez W, Lara J, Forbes G A. Resistance to metalaxyl-M and cymoxanil in a dominant clonal lineage of Phytophthora infestans in Huánuco, Peru, an area of continuous potato production.[J] European Journal of Plant Pathology, 2009, 125(1): 87-95.
    [87]王文桥,刘国容,张小风,等.葡萄霜霉病菌和马铃薯晚疫病菌对三种杀菌剂的抗药性风险研究[J].植物病理学报, 2000, 30(1): 48-52.
    [88] Guillino M L, Mescalchin E, Mezzalama M. Sensitivity to cymoxanil in populations of Plasmopara viticola in northern Italy[J]. Plant Pathology, 1997, 46(5): 729-736.
    [89] Stein J M, Kirk W W. The generation and quantification of resistance to dimethomorph in Phytophthora infestans[J]. Plant Disease. 2004. 88(9): 930-934.
    [90] Rubin A E, Gotlied D, Gisi U, et al. Mutagenesis of Phytophthora infestans for resistance against carboxylic acid amide and phenylamide fungicides[J]. Plant Disease, 2008, 92(5): 675-683.
    [91] FRAC. CAA working group reports[EB/OL].(2005). Http:‖www.frac.info.
    [92] Zhu S S, Liu P F, Liu X L, et al. Assessing the risk of Pseudoperonospora cubensis to the fungicide flumorph in vitro[J]. Pest Management Science, 2008, 64: 255-261.
    [93] Zhu S S, Liu X L, Wang Y, et al. Resistance of Pseudoperonospora cubensis to flumorph on cucumber in plastic houses[J]. Plant Pathology, 2007, 56: 967-975.
    [94] Gisi U, Blum M, Moulin F, et al. Molecular and genetic aspects of CAA mode of action and resistance[J]. Phytopathology, 2009, 99(6): 169.
    [95] Blum M, Boehler M, Randall E, et al. Mandipropamid target the cellulose synthase-like PiCesA3 to inhibit cell wall biosynthesis in the oomycete plant pathogen, Phytophthora infestans[J].Molecular Plant Pathology, 2010, 11(2): 227-243.
    [96] Gisi U, Sierotzki H, Cook A, et al. Mechanisms influencing the evolution of resistance to Qo inhibitor fungicides[J]. Pest Management Science, 2002, 58: 850-867.
    [97] FRAC Publications: Pathogen Risk List [EB/OL]. http://www.frac.info/frac/index.htm, 2005-12.
    [98] Chin M K, Chavaillaz D, Kaesbohrer M, et al. Characterizing resistance risk of Erysiphe graminis f. sp. tritici to strobilurins[J]. Crop Protection, 2001, 20(2): 87-96.
    [99] Ishii H, Fraaije A B, Sugiyama T, et al. Occurrence and molecular characterization of strobilurin resistance in cucumber powdery mildew and downy mildew[J]. Phytopathology2001, 91(12): 1166-1171.
    [100] Ma Z, Felts D, Michailides T J. Resistance to azoxystrobin in Alternaria isolates from pistachio in California[J] . Pesticide Biochemistry and Physiology, 2003, 77: 66-74.
    [101] Gullino M L, Minuto A, Gilardi G, et al. Efficacy of azoxystrobin and other strobilurins against Fusarium wilts of carnation, cyclamen and Paris daisy[J]. Crop Protection, 2002, 21: 57-61.
    [102] Farber R B, Chin K M, Leadbitter N. Sensitivity of Venturia inaequalis to trifloxystrobin [J]. Pest Management Science, 2002, 58: 261-267.
    [103] Sierotzki H, Wullschleger J, Gisi U. Point mutation in cytochrome b gene conferring resistance to strobilurin fungicides in Erysiphe graminis f.sp.tritici field isolates [J]. Pestcide Biochemistry and Physiology, 2000, 68(2): 107-112.
    [104] Beresford R, Park H, Brown G, et al. Strategies to avoid resistance development to strobinlurin and related fugicides in New Zealand[A]. Proceedings of the 52th New Zealand Plant Protection Conference[C]. Rotorua: New Zealand Plant Protection Society, 1999. 179-182.
    [105]陈良华,杨志辉,丁明亚,等.河北、吉林两省马铃薯晚疫病菌对3种杀菌剂的敏感性测定[J].中国农学通报, 2009,25(13): 171-174.
    [106]沈江卫,杨志辉,朱杰华,等.马铃薯晚疫病菌对嘧菌酯和精甲霜灵的敏感性测定[J].农药, 2008,47(6): 457-461.
    [107]朱志峰.马铃薯晚疫病菌对嘧菌酯的敏感性基线的建立及其抗性风险初探[D].长春:吉林农业大学, 2007.
    [108] Dekker J, Georgopoulos S G. Fungicide resistance in crop protection[M], Wageningen: Centre for Agricultural Publishing and Documentation, 1982: 128-138.
    [109] Daggett S S, Gotz E, Therrien C D. Phenotypic changes in population of Phytophthora infestans from eastern Germany[J]. Phytopathology, 1993, 83: 319-323.
    [110] Holmes S J I, Channon A.G. Studies on metalaxyl-resistant Phytophthora infestans in potato crops in south-west Scotland[J]. Plant Pathology, 1984, 33: 347-357.
    [111] Goodwin S B, Sujkowski L S, Fry W E. Widespread distribution and probable origin of resistance of resistance to metalaxyl in clonal genotypes of Phytophthora infestans in the United States and Western Canada[J]. Phytopathology, 1996, 86: 793-800.
    [112] Cohen Y, Samoucha Y . Cross-resistance to four systemic fungicides in metalaxyl-resistent strains of phytophthora infestans and Pseudoperonospora cubensis[J]. Plant Diseases, 1984, 68:137-139.
    [113] Diriwachter G, Sozzi D, Ney C, et al. Cross-resistance in phytophthora infestans and Plasmopara. viticola against different phenylamides and unrelated fungicides[J]. Crop Protection, 1987, 6(4): 250-255.
    [114] Gisi U, Cohen Y. Resistance to phenylamide fungicide:a case study with Phytophthora infestans involving mating type and race structure[J]. Annual Review Phytopathology, 1996, 34: 549-572.
    [115]王芊.番茄灰霉病菌抗药性及抗药性控制研究[D].哈尔滨:东北农业大学, 2007.
    [116] Brent K J, Hollomon D W. Fungicide resistance in crop pathogens: how can it be managed[M] FRAC Monograph No. 1, Fungicide Resistance Action Committee, 2007.
    [117] Felsenstein F G. Sensitivity of Erysiphe graminis f. sp tritici to demethylation-inhibiting fungicides in Europe[A]. Heaney S,Slawson D,Hollomon DW, et al. FungieideResistanee, British Crop Protection Council[C], Farnham, Surrey, 1994, 35-42.
    [118] Kendall S J, HollomonD W, Stormonth D A.Towards the rational use of triazole mixtures for cereal disease control[A]. Proeeedings 1994 Brighton Crop Proteetion Conferenee[C]. 1994, 549-558.
    [119]王文桥,刘国容.卵菌对内吸性杀菌剂的抗药性及对策[J].植物病理学报, 1996, 26(4): 294-296.
    [120]杨志辉,张志铭,朱杰华,等.致病疫霉(Phytophthora infestans)对杀菌剂抗药性研究进展[J].河北农业大学学报, 2001, 24(1): 104-106.
    [121] SamouehaY, GisiU. Use of two or three way mixtures to prevent build-up of resistance to Phenylamide fungicides in Phytophthora and aplasmopara. Phytopathology, 1987, 77: 1405-1409.
    [122] Cohen Y, Samoucha Y. Competition between oxadixyl sensitive and resistant field isolate of Phytophthora infestans on fungicide-treated potato crops[J].Crop Protection, 1990, 9: 15-20.
    [123] Sander P L, Houser W J, Parish P J, et al. Reduced rate fungicide mixtures to delay fungicide resistance and to control selected turfgrass diseases[J]. Plant Disease, 1985, 69: 939-943.
    [124] Dovas C,Skylakakis G, Georgopoulos S G. The adaptability of the benomy-resistant population of Cercospora beticola in Northern Greece[J]. Phytopathology, 1976, 66: 1452-1456.
    [125] Delp C J. Coping with resistance to plant disease control agents[J]. Plant Disease, 1980, 64: 652-657.
    [126] Josepovits G, Dobrovolszky A. A novel mathematical approach to the prevention of fungicide resistance[J]. Pesticide Science, 1985,16: 17-22.
    [127]肖厚贞,方佳,王绥通,等.药剂干扰对芒果炭疽病时间和空间生态位的影响[J].安徽农业科学, 2009, 37(23): 11049-11050.
    [128]成家壮.多硫胶悬剂的设计及药效研究[J].广州化工, 1986, 2: 6-10.
    [129]成家壮,韦小燕,黄玉梅.硫与三环唑混配对抑制稻瘟病菌的协同增效作用[J].农药学学报, 2000, 2(2): 35-40.
    [130]梁伟伶,台莲梅,靳学慧,等.马铃薯早疫病菌室内杀菌剂筛选及配比试验[J].植物保护,2009, 35(4): 168-171.
    [131]李恒奎,周明国,王建新,等.氰烯菌酯防治小麦赤霉病及治理多菌灵抗药性研究[J].农药, 2006, 45(2): 92-94.
    [132]王建新,周明国,陆悦健,等.小麦赤霉病菌抗药性群体动态及其治理药剂[J].南京农业大学学报, 2002, 25 (1): 43-47.
    [133]朱桂宁,黄福新,刘志明,等.几种杀菌剂对致病疫霉抗甲霜灵菌株的活性测定[J].农药, 47(3): 231-233.
    [134]洪锡午.应用苯基酰胺类杀菌剂防治卵菌病害的技术策略[J].农药, 1999,农药, 38(3): 3-6.
    [135]黄大昉,王侠周,淑芝甜.菜褐斑病菌对苯并咪唑类杀菌剂抗药性的研究[J].植物保护学报, 1982, 9(2): 131-135.
    [136]罗汝南,黄健坤,戚佩坤.柑桔绿霉对苯并咪唑类杀菌剂抗药性的研究[J].植物保护学报, 1985, 12(4): 267-274.
    [137]毕朝位,黎艳平,罗国全.致病疫霉(Phytophthora infestans)的分离与培养方法[J].中国农学通报, 2005, 21(10): 306-308.
    [138] Oyarzun P J, Pozo A, Ordonez M E, et al. Host specificity of Phytophthora infestans on tomato and potato in Ecuador. Phytopathology, 1998, 88(3): 265-271.
    [139] Schwinn F, Sozzi D. Recommended methods for the detection and measurement of resistance of plant pathogens to fungicides: Method for fungicide resistance in late blight of patato[J]. FAO Plant Protection Bulletin 30: 69-71.
    [140] Schwinn F, Sozzi D. Determination of the sensitivity of Phytophthora infestans to phenylamides: a leaf dise method[J]. EPPO Bulletin, 1992, 22: 306-308.
    [141] Gerorgopoulos S.G., Dekker, J. Detection and measurement of fungicide resistance general principles -FAO Method No.24[J]. FAO Plant Protection Bulletin, 1982, 30(2): 39-42.
    [142]李恒奎,陈长军,王建新,等.禾谷镰孢菌对氰烯菌酯的敏感性基线及室内抗药性风险初步评估[J].植物病理学报, 2006, 36(3): 273-278.
    [143]林传光.几种疫霉在营养上对于氮、钙和有机物的要求及浓度关系的研究[J].微生物学报, 1965, 11(4): 11.
    [144] Forbes G A. Laboratory manual for P.infestans works at CIP-Quito, Potato late blight control in China[A]. Proceeding of a workshop held in Beijing[C]. Beijing: China Agriculture Publishing Company, 1993: 149-157.
    [145] Caten C E, Jinks L L. Spontaneous variability of Phytophthora infestans I. cultural variation[J]. Canadian Journal of Botany, 1968, 46: 329-348.
    [146]陈宏宇.大豆疫霉根腐病菌Phytophthora sojae同工酶及RAPD标记研究[D].哈尔滨:东北农业大学, 2001.
    [147]王晓敏.辣椒疫霉菌孢子诱导技术及辣椒抗疫病的机制研究[D].陕西:西北农林科技大学. 2006.
    [148]王英华,国立耘,朱小琼,等.马铃薯晚疫病菌在内蒙古和甘肃的交配型分布及对几种杀菌剂的敏感性[J].中国农业大学学报, 2003, 8(1): 78-82.
    [149] Georgopoulos S G, Skylakakis R G. Genetic variability in the fungi and the problem of fungicide resistance[J].Crop Protection, 1986, 5: 229-305.
    [150] Perez W, Lara J, ForbesG A. Resistance to metalaxyl-M and cymoxanil in a dominant clonal lineage of Phytophthora infestans in Huanuco, Peru, an area of continuous potato production[J]. Plant Pathology, 2009, 125(1): 87-95.
    [151]沈江卫.马铃薯晚疫病菌SSR基因型分析及对嘧菌酯和精甲霜灵的敏感性测定[D].保定:河北农业大学, 2008.
    [152]袁善奎,刘西莉,刘亮,等.马铃薯晚疫病菌对烯酰吗啉的敏感性基线及其室内抗药突变体的研究[J].植物病理学报, 2005, 35(6): 545-551.
    [153] Katan T, Elad Y, Yunis H. Resistance to diethofencarb(NPC) in benomyl-resistant field isolates of Botrytis cinerea[J]. Plant Pathology, 1989, 38: 86-92.
    [154] Elad Y, Yunis H, Katan T. Multiple fungicide resistance to benzimidazoles, dicarboximedes and diethofencarb in field isolates of Botrytis cinerea in Isnae[J]. Plant Pathology, 1992, 41: 41-46.
    [155]丁中,刘峰,王会利,等.番茄灰霉菌的多重抗药性研究[J].山东农业大学学报(自然科学版), 2001, 32 (4): 452-456.
    [156] Kato M, Mizubti E S, Goodwin S B. Sensitivity to protectant fungicides and pathogenic fitness of clonal lineages of Phytophthora infestans in the United State[J]. Phytopathology, 1997, 87: 973-978.
    [157] Russell P E. Fungicide resistance: Occurrence and management[J]. Agricultural Science, 1995, 124: 317-323.
    [158] Sedegui M, Carroll R B, Morehart A L. Comparison of assays for measuring sensitivity of Phytophthora infestans isolates to fungicides[J]. Plant Disease, 1999, 1167-1169.
    [159]刘春艳,郝永娟,王勇,等.氟吡菌胺?霜霉威(银法利)悬浮剂对番茄晚疫病和黄瓜霜霉病的防治效果[J].中国蔬菜, 2008, (1): 26-27.
    [160]苑凤瑞. 25﹪嘧菌酯悬浮剂防治马铃薯晚疫病田间药效试验[J].农药科学与管理, 2005, 26(7): 18-19.
    [161]王文桥,马志强,张小风,等.植物病原菌对杀菌剂抗性风险评估[J].农药学学报, 2001, 3(1): 6-11.
    [162] Staub T, Sozzi D. Fungicide resistance: a continuing challenge[J]. Plant Disease, 1984, 68: 1026-1031.
    [163]孟润杰.新杀菌剂唑胺菌酯对黄瓜白粉菌生物活性及其抗药性风险评估[D].保定,河北农业大学, 2009.
    [164] Brent K J, Hollommon D W. Fungicide resistance: The assessment of risk[M]. FRAC Monograph NO.2, Brussels: GCPF, 1999, 1-48.
    [165]王丽,朱杰华,王文桥,等.新型杀菌剂对马铃薯晚疫病菌室内毒力测定[A].粮食安全与植保科技创新[C].北京:中国农业科学技术出报社, 2009, 774-777.
    [166]孟润杰,王文桥,刘长令,等. 4种制剂化新化合物对温室黄瓜白粉病的防治效果[J].农药, 2009, 48(2): 96-98.
    [167]孟润杰,王文桥,刘长令,等.唑胺菌酯对黄瓜白粉病的作用方式及其内吸传导性[J].植物保护学报, 2009, 36(3): 287-288.
    [168]乔桂双,王文桥,韩秀英,等.两种候选甲氧基丙烯酸酯类杀菌剂对黄瓜霜霉病的作用方式[J].植物保护学报, 2009, 36(2): 173-178.
    [169]夏烨,周益林,段霞瑜,等.小麦白粉病菌对烯肟菌酯的敏感基线及烯肟菌酯和三唑酮的交互抗性[J].植物病理学报, 2004, 34(4): 382-384.
    [170] Tooley P W, Sweigard J A, Fry W E. Fitness and virulence of Phytophthora infestans isolates from sexual and asexual populations[J]. Phytopathology, 1986, 76(11): 1209-1212.
    [171] Kadish D, Cohen Y. Fitness of Phytophthora infestans isolates from metalaxyl-sensitive and -resistant populations [J]. Phytopathology, 1988, 78(7): 912-915.
    [172] Kadish D, Cohen Y. Competition between metalaxyl-sensitive and metalaxyl-resistant isolates of Phytophthora infestans in the absence of metalaxyl[J]. Plant Pathology, 1988, 37(4): 558-564.
    [173]马建英.灰霉病菌对啶菌噁唑的敏感性及抗药性风险评估[D].保定:河北农业大学, 2009.
    [174]韩丽娟,顾中言,王强,等.农药复配与复配农药[M].南京:江苏科学技术出版社, 1994: 44-45.
    [175]陈福良,郑裴能,王仪.农药混陪室内毒力测定的一种实验技术[J].农药科学与管理, 1997, 64(4): 30-31.
    [176]王文桥,马志强,韩秀英,等.霜脲氰和代森锰锌对马铃薯晚疫病菌的离体活性及混合增效作用[J].农药学学报, 2002 4(1): 28-33.
    [177] Gisi U. Synergistic interaction of funficides mixtures. Phytopathology, 1996, 86(11): 1273-1279.
    [178]庄占兴,葛尧伦,贾学杰,等.腈菌唑与三唑酮复配防治小麦白粉病试验研究[J].植物保护, 2000, 6: 15-17.
    [179]陈福良.灭蝇灵Ⅱ号乳油和水乳剂的研制[J].中国媒介生物学籍控制杂志, 1996, 7(5): 384-385.
    [180]马志强,张小风,韩秀英,等.黄瓜霜霉病菌对甲霜灵的抗药性治理[J].植物保护学报, 2005, 32(2): 223-224.