高活性多孔磷钙基载药复合骨支架的制备及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
每年有大量病人因骨产品的缺口而忍受着骨相关疾病困扰。自然骨有自我愈合的能力,但是骨缺损过大时不能自我愈合就需要进行手术移植,现在临床治疗手段包括主要自体骨和异体骨移植,但自体骨会造成新的创伤及感染,而异体骨存在着免疫排斥及疾病感染的风险,因此人工骨支架得到了科研者的关注。理想的人工骨支架需要一定的孔隙率、力学性能和细胞附着性能,并且可以提供力学性能稳定性确保骨移植后在缺损部位完成骨修复过程。本课题选择磷钙基材料制备骨支架,因为自然骨中的无机成分主要为类骨磷酸钙,此外磷酸钙具有良好的成骨作用。首先对多相磷酸钙合成和相形成条件进行了系统研究,选择合适制备方法制备出具有良好力学性能和生物学性能的多孔磷钙基支架,并对支架的物化性能和生物学性能进行了系统表征,最后对支架的成骨性能进行了评估,其主要研究内容和结果如下:
     1.通过湿化学方法合成的羟基磷灰石(HA)主要为针状,而合成的磷酸三钙(TCP)为无规则颗粒。常温下主要为无定形态,在800℃温度以上煅烧后变为p-TCP。湿化学方法可以制备多相磷酸钙,可通过pH值、钙磷比和煅烧温度控制多相磷酸钙的相组成。煅烧温度在600-800℃主要为缺钙性磷灰石(CDA)相,在1200℃为多相。多相磷酸钙在pH为6.5和10.5时,随钙磷比的增加结晶度呈增加趋势,主要为HA和p-TCP两相。pH在7.5-9.5之间,钙磷比在1.55时,多相磷酸钙除了HA和β-TCP相的存在外有CDA相存在;钙磷比在1.60和1.75时,多相磷酸钙具有较好的结晶度,存在三种以上的相成分;钙磷比在1.65和1.70时,多相磷酸钙主要有HA和CDA相。多相磷酸钙在未煅烧条件下主要针状形貌,随煅烧温度增加,颗粒形貌发生变化,在600℃为棒状,在800℃下为类椭圆状,在120℃下变为无规则相貌。
     2.双相磷酸钙中HA/(HA+β-TCP)比值主要受反应条件中pH值和钙磷比影响。随着pH值的增加,双相磷酸钙中的HA含量增加,反之,β-TCP含量降低。在相同pH值的条件下,钙磷比为1.65时,双相磷酸钙中的HA含量最高;钙磷比接近1.65时,双相磷酸钙中的HA含量越高;偏离1.65时,双相磷酸钙中的HA含量越低。
     3.采用乳化发泡法结合循环冷冻解冻方法制备BCP/PVA支架,可以通过PVA含量调节控制支架的孔径尺寸(50-700μm)、孔隙率(73-87%)、力学性能(0.19-0.26MPa)、降解速率以及生物学性能。随着PVA含量增加,BCP/PVA支架的孔隙率、力学性能、降解速率及细胞相容性呈现降低趋势。当PVA含量为30%,BCP/PVA支架的孔径尺寸在300-500μm之间,且压缩强度最大。此外,BCP/PVA支架在模拟体液中pH变化幅度较小,保持在7.18-7.36之间。BCP/PVA支架对成骨细胞的繁殖没有抑制作用,随着PVA含量的降低,成骨细胞在支架表面的繁殖呈增加趋势,且间充质干细胞可以在PVA含量为30%的BCP/PVA支架上附着和繁殖。综上所述,制备出的BCP/PVA支架可以满足松质骨组织工程的要求。
     4.采用PU泡沫复制法可以制备孔径尺寸在300-700μm的孔连通结构BCP支架,可通过选择不同ppi的PU泡沫控制BCP支架的孔径尺寸。采用HA/PLLA纳米复合物对多孔BCP支架进行涂层,未改变支架的孔径尺寸和孔连通结构,可以填补BCP支架孔壁的断裂裂纹并在孔壁上形成高分子基纤维,以提高支架的力学性能。对BCP支架进行涂层后,孔隙率有所降低,仍保持在93%以上,但压缩强度从0.31MPa提高到3.35-3.95MPa之间,可以满足松质骨压缩强度(0.02-4MPa)的要求。此外,对BCP支架涂层后,降低了支架在模拟体液中的降解速率,模拟体液的pH也没有较大幅度变化,保持在6.8-7.4之间,在30天后保持在7.4左右。采用HA/PLLA纳米复合物对多孔BCP支架进行多次涂层后减低了支架的孔隙率,但压缩强度进一步得到了提高,随涂层次数的增加,孔隙率呈降低趋势,压缩强度呈增加趋势。通过MTT实验表明,随着涂层次数的增加,支架的细胞相容性呈增加后降低趋势,其中HA/PLLA纳米复合物三次涂层的BCP多孔支架细胞相容性最好,对此组的支架进行肌肉植入实验,通过HE染色分析,发现在前期出现炎症细胞,随着时间的增加,炎症细胞消失,并出现了类骨磷灰石层和纤维组织层,表明支架具有良好的生物相容性。
     5.在单倍模拟体液环境下,随着仿生沉积时间增加,HA/PLLA纳米复合物涂层BCP支架的失重比呈降低后又增加的趋势,前期以支架降解为主,后期以磷酸钙矿化物沉积为主。支架孔壁上首先有氯化钠晶体出现,后氯化钠在SBF溶液中溶解,支架孔壁表面形成纳米级磷酸钙矿化物颗粒,并伴随有针状矿化物的出现;在沉积后期,在支架表面形成均匀的沉积物涂层。在过饱和模拟体液环境下,支架的仿生沉积速度得到了提高,磷酸钙矿化物很快沉积在支架孔壁表面,随着沉积时间的增加,在支架孔壁上的沉积物形貌变得均匀,和单倍SBF环境下较为相似。对仿生沉积改性后的支架经过低温冷冻处理,在-20℃下,支架在孔壁上形成了尺寸为3-5μm大小的微孔,磷酸钙中的钙离子被镁和钾离子置换,形成生物活性类骨磷灰石。
     6.通过双乳液法制备出的线性PLGA-mPEG共聚物载药微球尺寸在5-10μm,尺寸大小分布比较均匀。通过紫外分光光度计检测分析,可以确定BSA和万古霉素的标准曲线,对于BSA含量低于200mg/L时在221.6nm的拟合度较好,含量高于100mg/L时在278nm的拟合度较好;对于万古霉素,在280nm吸光度有较好的拟合度。可以通过控制共聚物的LA/GA摩尔比控制共聚物降解速率,并进一步控制共聚物载药微球的释放速率,并通过不同LA/GA摩尔比的共聚物载两种药物实现两种药物在不同阶段的控制释放。此外,制备出的载药微球可以良好地附着在HA/PLLA纳米复合物涂层BCP多孔支架上。
     7.对制备出的HA/PLLA纳米复合物涂层BCP支架进行毒理性试验分析,此类支架在毒性测试中未表现出明显毒性性质,在急性毒性分级标准中为无毒性,符合国家医疗器械生物学评价标准。通过肌肉植入实验,实验动物在术后未出现活动异常,且支架在动物体内随着时间增加会形成类骨磷灰石层和纤维组织层,而对周围的肌肉组织表现出生物惰性,可知支架具有良好的生物相容性。通过骨缺损修复实验,支架植入后,在缺损部位新骨逐级形成,支架被吸收降解,在密质骨的中心区域,成熟的骨组织附近有大量的骨单位形成,新骨和周围骨组织在后期紧密连接在一块难以区分,说明制备的支架具有良好的成骨性能和骨修复效果。
Every year, millions of people are suffering from bone defects arising from trauma, tumor or bone related diseases and of course several are dying due to insufficiency of ideal bone tissue. Biologically produced bone structures are known for self healing. However, large bone defects do not heal spontaneously and require surgical intervention for restoration, and the current therapies include autografts, allografts. Nonetheless, autografts maybe associated with donor shortage and donor site morbidity whereas allografts may have the risk of disease transmission and immune response. The aforesaid limitations and the expected shortage of bone grafts for surgical procedures, motivated materials scientists to find suitable bioactive materials, such as three-dimensional (3D) porous scaffold designed with the required porosity, mechanical strength and a favorable environment for bone cell attachment, to provide mechanical stability in the defect region and launch tissue regeneration with specific living cells. With the rapid development of bone biomaterials, great progress has been made in the last decade. However, as advancements are made, new challenges also emerge, which comes from the bone defect clinical requirements on the bone substitutes, In this paper, the multiphasic calcium phosphate was systematic studied, then the porous scaffold with good mechanical strength and biological properties based on calcium phosphate matrix was prepared with suitable preparation method, the properties of scaffold in vitro and in vivo were studied last, the main achievements were summarized as follows:
     1. The HA paricles was needle-like prepared by wet chemistry, and the TCP paricle was irregular shapes, furthermore, TCP was amorphous state at room temperature, and transform to P-TCP after800℃sintering. The multiphasic calcium phosphate could be prepared by wet chemistry with controlling of pH, Ca/P, and sintering temperature. The sintering temperature was at600-800℃, the calcium-deficient apatite (CDA) powder was obtained, and the multiphasic calcium phosphate powder was obtained at1200℃. While the pH at6.5and10.5, the crystallinity degree of calcium phosphate was increased with the increase of Ca/P ratio, basically composed of HA and β-TCP phase. While the pH at7.5-9.5, the CDA phase was existed except for HA and β-TCP at1.55of Ca/P ratio, furthermore, the more three calcium phosphate phase was found while the Ca/P ratio was at1.60and1.75with good crystallinity, and the calcium phosphate was composed of HA and CDA phase while the Ca/P ratio was at1.65and1.70. The multiphasci calcium phosphate particle was needle-like, and the paricles morphology was changed with the increase of sintering temperature, rodlike at600℃, elliptical at800℃, and irregular at1200.
     2. The HA/(HA+β-TCP) ratio in biphasic calcium phosphate was mainly controlled by pH and Ca/P ratio. With the increase of pH, the HA concentration of BCP was increased with the decrease of β-TCP concentration. At the same pH conditions, the BCP possess the highest HA concentration while the Ca/P ratio at1.65, furthermore, while the Ca/P ratio was close to1.65, the BCP powder with high HA concentration could be obtained.
     3. A well-developed BCP/PVA scaffold with interconnectivity, porosity, and moderate compressive strength as well as good biocompatibility was fabricated by emulsion foam freeze-drying method for bone tissue engineering. The pore size (50-700μm), porosity (73-87%), and compressive strength (0.19-0.26MPa) could be controlled by weight ratio of BCP/PVA. Furthermore, the prepared scaffolds showed the lower variation of pH values (approximately7.18-7.36) in SBF solution, and an increase of porosity led to the increase of the biodegradation rate for BCP/PVA scaffolds. In addition, the BCP/PVA porous scaffold has good cytocompatibility, showing no negative effects on cells growth and proliferation. The porous structure, hydrophilicity, and mechanical strength of the BCP/PVA porous scaffold can meet essential requirements for bone tissue engineering and regeneration.
     4. The3-D porous HA/PLLA nanocomposites coated BCP scaffolds with interconnectivity, high compressive strength and improved bioactivity has been fabricated and tested for repairing the large necrotic lesions in the loading-bearing region of rabbit femoral head using tissue-engineering technology. The compressive strength of BCP scaffold was increased to3.35-3.95MPa by HA/PLLA nanocomposites coating. Furthermore, based on unchanging interwork porous structure, the microstructure of pore wall on coated scaffold was formed, which lead to promote cell adhesion and proliferation. In addition, the developed scaffolds showed the capacity of bone regeneration combined with hBMSCs for large necrotic lesions in the rabbit femoral head. This study suggests a new strategy for use of nanocomposites coated scaffolds combined with hBMSCs, which can support cell adhesion and bone regeneration effectively and constantly for load-bearing bone tissue engineering application.
     5. A well-developed BCP scaffolds coated with multi-layer of HA/PLLA nanocomposites with interconnectivity, high porosity, and moderate compressive strength as well as good biocompatibility were fabricated for bone tissue engineering. After coated with HA/PLLA nanocomposites, the scaffolds maintained the BCP framework structure, and the porous network structure of scaffolds remained unchanged, however, the compressive strength was increased with the increase coating layer number of HA/PLLA nanocomposites. The prepared scaffolds showed the lower variation of pH values in SBF solution, and an increase of coating layer number led to the decrease of the biodegradation rate at different days. Moreover, the multi-layer coating scaffolds had good cytocompatibility, showing no negative effects on cells growth and proliferation. Furthermore, the bone-like apatite layer was built obviously in the interface of scaffold after21days post-implantation in SD-rat muscle. In conclusion, the BCP scaffold coated with multi-layer of HA/PLLA nanocomposites could be a candidate as an excellent substitute for damaged or defect bone in bone tissue engineering.
     6. Bioactive BCP scaffold coated with HA/PLLA nanomposites were prepared and modified by immersing in simulated body fluid to obtain the biomineralized materials for bone tissue engineering. The formation of mineralites was observed by SEM analysis, however, differ from literature, the NaCl apatite was identified by surface analyses at first stage and then Ca-P apatite with colloidal HA nanoparticles appeared and growed after increasing immersion time in SBF, subsequently, the bone-like apatite was detected until28days. At supersaturated SBF conditions, the deposition rate of scaffold was improved, and the deposition morphology of scaffold was similar to1×SBF fluid. The scaffold modified by biomimetic method was treated by low temperature freeze at-20℃, the micropore was formed on the pore wall, the micropore size was about3-5μm, furthermore, the calcium ion was substituted by magnesium and potassium ion in calcium phosphate to form the biological bone-like apatite.
     7. The linear PLGA-mPEG microspheres loaded with different drugs was prepared by multiple emulsion method. Through UV spectrophotometer, the standard curves of BSA and vancomycin was comfirmed. The copolymer degradation rate could be controlled by controlling of LA/GA molar ratio, to the control the release rate of drugs loaded on the kind of compolymer microspheres. Furthermore, the types of drugs could be loaded on the PLGA-mPEG microspheres, and the sequential control release of two drugs could be achieved.
     8. Through the toxicology test analysis, the BCP scaffold coated with HA/PLLA nanocomposites possess nontoxic properties, accord with medical apparatus and instruments standards. While the scaffolds were implanted in muscle, the experiments animal have not showed any abnormal activities, and the bone-like apatite layer was built obviously in the interface of scaffold. After the bone defect repair experiments, the new bone was formed gradually in the interface of scaffold while the scaffold was implanted in the bone defect part, at the same time, part of scaffold was degraded. There were still a few of unabsorbed scaffolds observed at some areas after2months postsurgery. They were mainly on the sides of newly formed radius and some of them were wrapped with new bone callus. The scaffolds were destroyed into small separated pieces and wrapped with invaded fibrous tissues. Most of them were hard to be distinguished except some areas. The coated scaffolds appeared to be osteoconductive and supported osteointegration and bone deposition, and also showed the osteophilicity, thus promoting medullary bone formation along the implants.
引文
[1]. Sergey V. Dorozhkin. Biphasic, triphasic and multiphasic calcium orthophosphates. Acta Biomaterialia,2012,8:963-977.
    [2]. Sheeny K. Lan Levengood, Michael J. Poellmann, Sherrie G. Clark, David A. Ingram, Mervin C. Yoder, Amy J. Wagoner Johnson. Human endothelial colony forming cells undergo vasculogenesis within biphasic calcium phosphate bone tissue engineering constructs. Acta Biomaterialia,2011,7:4222-4228.
    [3].金黎明,刘万顺,韩雪芹,田文杰,赵小菁,范圣第。骨缺损的治疗研究进展。山东医学,2006,46:80-81.
    [4]. Kokubo S, Fujimoto R, Yokota S, et al. Bone regeneration by recombinant human bone morphogenetic protein-2 and a novel biodegradable carrier in a rabbit ulnar defect model. Biomaterials,2003,24(9):1643-1651.
    [5].赵宝东,赵洪涛,赵艳,等.TGF-β促进骨折愈合的实验研究.锦州医学院学报,2001,22(2):4-6.
    [6]. Inui K, Maeda M, Sano A, et al. Local application of basic fibroblast growth factor minipellet induces the healing of segmental bony defects in rabbits.Calcif Tissue Int,1998,63 (6):490-525.
    [7]. Breitbart AS, Grande DA,Mason JM, et al. Gene-enhanced tissue engineering: applications for bone healing using cultured periosteal cells transdued retrovirally with the BMP-7 gene. Ann Plast Surg,1999,42(5):488-495.
    [8]. Saha K, Pollock JF, Schaffer DV, Healy KE. Designing synthetic materials to control stem cell phenotype. Curr Opin Chem Biol 2007,11:381-387.
    [9]. Zhang LJ, Ramsaywack S, Fenniri H, Webster TJ. Enhanced osteoblast adhesion on self-assembled nanostructured hydrogel scaffolds. Tissue Eng Part A 2008, 14:1353-1364.
    [10]. Lim JY, Shaughnessy MC, Zhou ZY, Noh H, Vogler EA, Donahue HJ. Surface energy effects on osteoblast spatial growth and mineralization. Biomaterials 2008, 29:1776-1784.
    [11]. Chen VJ, Smith LA, Ma PX. Bone regeneration on computerdesigned nano-fibrous scaffolds. Biomaterials 2006,27:3973-3979.
    [12]. Woo KM, Chen VJ, Ma PX. Nano-fibrous scaffolding architecture selectively enhances protein adsorption contributing to cell attachment. J Biomed Mater Res Part A 2003,67:531-537.
    [13]. Woo KM, Yu B, Jung HM, Lee YK. Comparative evaluation of different crystal-structured calcium sulfates as bone-filling materials. J Biomed Mater Res Part B Appl Biomater 2009,91B:545-554.
    [14]. Khang D, Lu J, Yao C, Haberstroh KM, Webster TJ. The role of nanometer and sub-micron surface features on vascular and bone cell adhesion on titanium, Biomaterials 2008,29:970-983.
    [15]. Kay S, Thapa A, Haberstroh KM, Webster TJ. Nanostructured polymer/nanophase ceramic composites enhance osteoblast and chondrocyte adhesion. Tissue Eng 2002,8:753-761.
    [16]. Vance RJ, Miller DC, Thapa A, Haberstroh KM, Webster TJ. Decreased fibroblast cell density on chemically degraded poly-lactic-co-glycolic acid, polyurethane, and polycaprolactone. Biomaterials 2004,25:2095-2103.
    [17]. Irvine DJ, Hue KA, Mayes AM, Griffith LG. Simulations of cell-surface integrin binding to nanoscale-clustered adhesion ligands. Biophys J 2002,82:120-132.
    [18]. Prabhakaran MP, Ghasemi-Mobarakeh L, Ramakrishna S. Eleetrospun composite nanofibers for tissue regeneration. J Nanosci Nanotechnol 2011,11:3039-3057.
    [19]. Zhang H. Eleetrospun poly (lactic-co-glycolic acid)/multiwalled carbon nanotubes composite scaffolds for guided bone tissue regeneration. J Bioact Compat Polym 2011,26:16-23.
    [20]. Zoccola M, Aluigi A, Vineis C, Tonin C, Ferrero F, Piacentino MG. Study on cast membranes and electrospun nanofibers made from keratin/fibroin blends. Biomacromolecules 2008,9:2819-2825.
    [21]. Zou D, Zhang Z, He J, Zhu S, Wang S, Zhang W, Zhou J, Xu Y, Huang Y, Wang Y, Han W, Zhou Y, You S, Jiang X. Repairing critical-sized calvarial defects with BMSCs modified by a constitutively active form of hypoxia-inducible factor-lalpha and a phosphate cement scaffold. Biomaterials 2011,32:9707-9718.
    [22]. Jang JH, Castano O, Kim HW. Electrospun materials as potential platforms for bone tissue engineering. Adv Drug Deliv Rev 2009,61:1065-1083.
    [23]. Matsuno T, Hashimoto Y, Adachi S, Omata K, Yoshitaka Y, Ozeki Y, Umezu Y, Tabata Y, Nakamura M, Satoh T. Preparation of injectable 3D-formed beta-tricalcium phosphate bead/alginate composite for bone tissue engineering. Dent Mater J 2008,27:827-834.
    [24]. McManus MC, Boland ED, Koo HP, Barnes CP, Pawlowski KJ, Wnek GE, Simpson DG, Bowlin GL. Mechanical properties of electrospun fibrinogen structures. Acta Biomater 2006,2:19-28.
    [25]. Arcangeli E, Kon E, Delcogliano M, Giardino R, Fini M, Tampieri A, Pressato D, Marcacci M. Nanocomposite biomimetic scaffold in knee osteochondral defect regeneration:An animal study. J Appl Biomater Biomech 2009,7:52-62.
    [26]. Khadka A, Li JH, Li YB, Gao Y, Zuo Y, Ma YQ. Evaluation of hybrid porous biomimetic nano-hydroxyapatite/polyamide 6 and bone marrow-derived stem cell construct in repair of calvarial critical size defect. J Craniofac Surg 2011, 22:1852-1858.
    [27]. Schneider OD, Weber F, Brunner TJ, Loher S, Ehrbar M, Schmidlin PR, Stark WJ. In vivo and in vitro evaluation of flexible, cottonwool-like nanocomposites as bone substitute material for complex defects. Acta Biomater 2009,5:1775-1784.
    [28], Arimura H, Ouchi T, Kishida A, Ohya Y. Preparation of a hyaluronic acid hydrogel through polyion complex formation using cationic polylactide-based microspheres as a biodegradable cross-linking agent. J Biomater Sci Polym Ed 2005, 16:1347-1358.
    [29]. Gupta V, Aseh A, Rios CN, Aggarwal BB, Mathur AB. Fabrication and characterization of silk fibroin-derived curcumin nanopartieles for cancer therapy. Int J Nanomed 2009,4:115-122.
    [30]. Anderson HC, Garimella R, Tague SE. The role of matrix vesicles in growth plate development and biomineralization. Front Biosci 2005,10:822-837.
    [31]. Weiner, S., H. D. Wagner. The material bone:structure-mechanical function relations. Annual Review of Materials Science 1998,28:271-298.
    [32]. Serre, C. M., et al. Influence of magnesium substitution on a collagen-apatite biomaterial on the production of a calcifying matrix by human osteoblasts. J. Biomed. Mater. Res.1998,42(4):626-633.
    [33]. Bouler, J. M., R. Z. LeGeros, G. Daculsi. Biphasic calcium phosphates:influence of three synthesis parameters on the HA/beta-TCP ratio. J. Biomed. Mater. Res. 2000,51(4):680-684.
    [34]. El Briak-BenAbdeslam, H. E., et al. Dry mechanochemical synthesis of hydroxyapatites from dicalcium phosphate dihydrate and calcium oxide:a kinetic study. J. Biomed. Mater. Res.2003,67A(3):927-937.
    [35]. Bourges, X., et al. Synthesis and general properties of silated-hydroxypropyl ethylcellulose in prospect of biomedical use. Adv. Colloid. Interface. Sci.2002, 99(3):215-228.
    [36]. Ambrosio, A. M., et al. A novel amorphous calcium phosphate polymer ceramic for bone repair:I. Synthesis and characterization. J. Biomed. Mater. Res.2001, 58(3):295-301.
    [37]. Kumar, T. S. S., I. Manjubala, J. Gunasekaran. Synthesis of carbonated calcium phosphate ceramics using microwave irradiation. Biomaterials.2000,21(16):1623 -1629.
    [38]. Cook PJ, Shergold JH, Davidson DF, Eds. Phosphate deposits of the world: phosphate rock resources. Cambridge University Press:Cambridge MA USA 2005, 2:600.
    [39]. Zhang JZ, Guo L, Fischer CJ. Abundance and chemical speciation of phosphorus in sediments of the Mackenzie river delta, the Chukchi sea and the Bering sea: importance of detrital apatite. Aquat Geochem 2010,16:353-371.
    [40]. Omelon SJ, Grynpas MD. Relationships between polyphosphate chemistry, biochemistry and apatite biomineralization. Chem Rev 2008,108:4694-4715.
    [41]. Shepperd J. The early biological history of calcium phosphates. In:Epinette JA, Manley MT, (Eds.) Fifteen years of clinical experience with hydroxyapatite coatings in joint arthroplasty. Springer, France 2004,3-8.
    [42]. Berzelius J. Ueber basische phosphorsaure kalkerde. Ann Chem Pharmac 1845, 53:286-288.
    [43]. Warington R Jr. Researches on the phosphates of calcium, and upon the solubility of tricalcic phosphate. J Chem Soc 1866,19:296-318.
    [44]. Fresenius R. Ueber die Bestimmung der Phosphorsaure im Phosphorit nebst Mittheilung der Analysen des Phosphorits und Staffelits aus dem Lahnthal. Z Anal Chem 1867,6:403-9.
    [45]. Church AH. New analyses of certain mineral arseniates and phosphates.1. Apatite; 2. Arseniosiderite; 3. Childrenite; 4. Ehlite; 5. Tyrolite; 6. Wavellite. J Chem Soc 1873,26:101-111.
    [46]. LWJ. On a fine specimen of apatite from Tyrol, lately in the possession of Mr. Samuel Henson. Nature 1883,27:608-609.
    [47]. Glaser C. Bemerkungen zu der Abhandlung des Herrn Carl Mohr uber die quantitative Bestimmung der zuruckgegangenen Phosphorsaure und der Phosphorsaure im Dicalciumphosphat. Z Anal Chem 1885,24:180.
    [48]. Dreesmann H. Ueber Knochenplombierung. Beitr Klin Chir 1892,9:804-810.
    [49]. Cameron FK. The action of water upon the phosphates of calcium. J Am Chem Soc 1904,26:1454-1463.
    [50]. Cameron FK, Seidell A. The phosphates of calcium. Ⅰ. J Am Chem Soc 1905, 27:1503-1512.
    [51]. Cameron FK, Bell JM. The phosphates of calcium. Ⅱ. J Am Chem Soc 1905, 27:1512-1514.
    [52]. Cameron FK, Bell JM. The phosphates of calcium, Ⅲ; Superphosphate. J Am Chem Soc 1906,28:1222-1229.
    [53]. Cameron FK, Bell JM. The phosphates of calcium. Ⅳ. J Am Chem Soc 1910, 32:869-873.
    [54]. Bassett H Jr. The phosphates of calcium. Part Ⅳ. The basic phosphates. J Chem Soc 1917,111:620-642.
    [55]. LeGeros RZ. Calcium phosphates in oral biology and medicine. Monographs in Oral Science. Karger, Basel 1991,15:201.
    [56], Elliott JC. Structure and chemistry of the apatites and other calcium orthophosphates. Studies in inorganic chemistry; Elsevier:Amsterdam, Netherlands 1994,18:389.
    [57]. Amjad Z, Ed. Calcium phosphates in biological and industrial systems. Kluwer Academic Publishers:Boston MA USA 1997,529.
    [58]. Brown PW. Phase relationships in the ternary system CaO-P2O5-H2O at 25℃.J Am Ceram Soc 1992,75:17-22.
    [59]. Martin RI, Brown PW. Phase equilibria among acid calcium phosphates. J Am Ceram Soc 1997,80:1263-1266.
    [60]. Carayon MT, Lacout JL. Study of the Ca/P atomic ratio of the amorphous phase in plasma-sprayed hydroxyapatite coatings. J Solid State Chem 2003,172:339-350.
    [61]. Dorozhkin SV. Calcium orthophosphates. J Mater Sci 2007,42:106110-95.
    [62]. Chow LC. Next generation calcium phosphate-based biomaterials. Dent Mater J 2009,28:1-10.
    [63]. Ishikawa K. Bone substitute fabrication based on dissolution-precipitation reactions. Materials 2010,3:1138-1155.
    [64]. Fernandez E, Gil FJ, Ginebra MP, Driessens FCM, Planell JA, Best SM. Calcium phosphate bone cements for clinical applications. Part I:Solution chemistry. J Mater Sci Mater Med 1999,10:169-176.
    [65]. Pan HB, Darvell BW. Calcium phosphate solubility:the need for re-evaluation. Cryst Growth Des 2009,9:639-645
    [66]. Boonchom B. Parallelogram-like microparticles of calcium dihydrogen phosphate monohydrate (Ca(H2PO4)2-H2O) obtained by a rapid precipitation route in aqueous and acetone media. J Alloy Comp 2009,482:199-202.
    [67]. Koster K, Heide H, Konig R. Resorbierbare Calciumphosphatkeramik im Tierexperiment unter Belastung. Langenbecks Arch Chir 1977,343:173-181.
    [68]. Driessens FCM, Boltong MG, Bermudez O, Planell JA, Ginebra MP, Fernandez E. Effective formulations for the preparation of calcium phosphate bone cements. J Mater Sci Mater Med 1994,5:164-170.
    [69]. Huan Z, Chang J. Novel bioactive composite bone cements based on the P-tricalcium phosphate-monocalcium phosphate monohydrate composite cement system. Acta Biomater 2009,5:1253-1264.
    [70]. Dorozhkin SV. Calcium orthophosphates in nature, biology and medicine. Materials 2009,2:399-498
    [71]. Budavari S, O'Neil MJ, Smith A, Heckelman PE, Kinneary JF, Eds. The Merck Index:an encyclopedia of chemicals, drugs and biologicals. Chapman & Hall:USA 1996,12:1741.
    [72]. Stein HH, Kadzere CT, Kim SW, Miller PS. Influence of dietary phosphorus concentration on the digestibility of phosphorus in monocalcium phosphate by growing pigs. J Anim Sci 2008,86:1861-1867.
    [73]. O'Neill WC. The fallacy of the calcium-phosphorus product. Kidney Int 2007, 72:792-796.
    [74]. LeGeros RZ. Formation and transformation of calcium phosphates:relevance to vascular calcification. Z Kardiol 2001,90:116-125.
    [75]. Becker A, Epple M, Mttller KM, Schmitz I. A comparative study of clinically well-characterized human atherosclerotic plaques with histological, chemical and ultrastructural methods. J Inorg Biochem 2004,98:2032-2038.
    [76]. Driessens FCM, Planell JA, Boltong MG, Khairoun I, Ginebra MP. Osteotransductive bone cements. Proc Inst Mech Eng H:J Eng Med 1998, 212:427-435.
    [77]. Takagi S, Chow LC, Ishikawa K. Formation of hydroxyapatite in new calcium phosphate cements. Biomaterials 1998,19:1593-1599.
    [78]. Yamamoto H, Niwa S, Hori M, Hattori T, Sawai K, Aoki S, et al. Mechanical strength of calcium phosphate cement in vivo and in vitro. Biomaterials 1998, 19:1587-1591.
    [79]. Desai TR, Bhaduri SB, Tas AC. A self-setting, monetite (CaHPO4) cement for skeletal repair. Ceram Eng Sci Proc 2006,27:61-69.
    [80]. Sturgeon JL, Brown PW. Effects of carbonate on hydroxyapatite formed from CaHPO4 and Ca4(PO4)2O. J Mater Sci Mater Med 2009,20:1787-1794.
    [81]. Chen G, Li W, Yu X, Sun K. Study of the cohesion of TTCP/DCPA phosphate cement through evolution of cohesion time and remaining percentage. J Mater Sci 2009,44:828-834.
    [82]. Ogose A, Hotta T, Kawashima H, Kondo N, Gu W, Kamura T, et al. Comparison of hydroxyapatite and beta tricalcium phosphate as bone substitutes after excision of bone tumors. J Biomed Mater Res B Appl Biomater 2005,72:94-101.
    [83]. Horch HH, Sader R, Pautke C, Neff A, Deppe H, Kolk A. Synthetic, pure-phase beta-tricalcium phosphate ceramic granules (Cerasorb) for bone regeneration in the reconstructive surgery of the jaws. Int J Oral Maxillofac Surg 2006,35:708-713.
    [84]. Ogose A, Kondo N, Umezu H, Hotta T, Kawashima H, Tokunaga K, et al. Histological assessment in grafts of highly purified beta-tricalcium phosphate (OSferion) in human bones. Biomaterials 2006,27:1542-1549.
    [85]. Kamitakahara M, Ohtsuki C, Miyazaki T. Review paper:Behavior of ceramic biomaterials derived from tricalcium phosphate in physiological condition. J Biomater Appl 2008,23:197-212.
    [86]. Liu Y, Pei GX, Shan J, Ren GH. New porous betatricalcium phosphate as a scaffold for bone tissue engineering. J Clin Rehabil Tiss Eng Res 2008, 12:4563-4567.
    [87]. Epstein NE. Beta tricalcium phosphate:observation of use in 100 posterolateral lumbar instrumented fusions. Spine J 2009,9:630-638.
    [88]. Jokic B, Jankovic-Castvan I, Veljovic DJ, Bucevac D, Obradovic-Djuricic K, Petrovic R, et al. Synthesis and settings behavior of a-TCP from calcium deficient hyroxyapatite obtained by hydrothermal method. J Optoelectron Adv Mater 2007, 9:1904-1910.
    [89]. Langstaff SD, Sayer M, Smith TJN, Pugh SM. Resorbable bioceramics based on stabilized calcium phosphates. Part Ⅱ:Evaluation of biological response. Biomaterials 2001,22:135-150.
    [90]. Sayer M, Stratilatov AD, Reid JW, Calderin L, Stott MJ, Yin X, et al. Structure and composition of siliconstabilized tricalcium phosphate. Biomaterials 2003, 24:369-382.
    [91]. Reid JW, Pietak AM, Sayer M, Dunfield D, Smith TJN. Phase formation and evolution in the silicon substituted tricalcium phosphate/apatite system. Biomaterials 2005,26:2887-2897.
    [92]. Reid JW, Tuck L, Sayer M, Fargo K, Hendry JA. Synthesis and characterization of single-phase silicon substituted α-tricalcium phosphate. Biomaterials 2006, 27:2916-2925.
    [93]. Dorozhkin SV. Amorphous calcium (ortho)phosphates. Acta Biomater 2010, 6:4457-75.
    [94]. Sinyaev VA, Shustikova ES, Levchenko LV, Sedunov AA. Synthesis and dehydration of amorphous calcium phosphate. Inorg Mater 2001,37:619-622.
    [95]. Elliott JC. Recent studies of apatites and other calcium orthophosphates. In:Les materiaux en phosphate de calcium. Aspects fondamentaux/Calcium phosphate materials. Fundamentals. Bres E, Hardouin P, Eds. Sauramps Medical:Montpellier, France 1998,25-66.
    [96]. Keller L, Dollase WA. X-ray determination of crystalline hydroxyapatite to amorphous calcium-phosphate ratio in plasma sprayed coatings. J Biomed Mater Res 2000,49:244-249.
    [97]. Carayon MT, Lacout JL. Study of the Ca/P atomic ratio of the amorphous phase in plasma-sprayed hydroxyapatite coatings. J Solid State Chem 2003,172:339-350.
    [98]. Kumar R, Cheang P, Khor KA. Phase composition and heat of crystallization of amorphous calcium phosphate in ultra-fine radio frequency suspension plasma sprayed hydroxyapatite powders. Acta Mater 2004,52:1171-1181.
    [99]. Peters F, Schwarz K, Epple M. The structure of bone studied with synchrotron X-ray diffraction, X-ray absorption spectroscopy and thermal analysis. Thermochim Acta 2000,361:131-138.
    [100]. O'Neill WC. The fallacy of the calcium-phosphorus product. Kidney Int 2007, 72:792-796.
    [101]. LeGeros RZ. Formation and transformation of calcium phosphates:relevance to vascular calcification. Z Kardiol 2001,90:116-125.
    [102]. Becker A, Epple M, Muller KM, Schmitz I. A comparative study of clinically well-characterized human atherosclerotic plaques with histological, chemical and ultrastructural methods. J Inorg Biochem 2004,98:2032-2038.
    [103]. Schiller C, Siedler M, Peters F, Epple M. Functionally graded materials of biodegradable polyesters and bonelike calcium phosphates for bone replacement. Ceram Transact 2001,114:97-108.
    [104]. Linhart W, Peters F, Lehmann W, Schilling AF, Schwarz K, Amling M, et al. Biologically and chemically optimized composites of carbonated apatite and polyglycolide as bone substitution materials. J Biomed Mater Res 2001, 54:162-171.
    [105]. Tadic D, Beckmann F, Schwarz K, Epple M. A novel method to produce hydroxylapatite objects with interconnecting porosity that avoids sintering. Biomaterials 2004,25:3335-3340.
    [106]. Tadic D, Epple M. Amorphous calcium phosphates as bone substitution materials. Eur J Trauma 2002,28:136-137.
    [107]. Sinha A, Nayar S, Agrawal A, Bhattacharyya D, Ramachandrarao P. Synthesis of nanosized and microporous precipitated hydroxyapatite in synthetic polymers and biopolymers. J Am Ceram Soc 2003,86:357-359.
    [108]. Mayer I, Jacobsohn O, Niazov T, Werckmann J, Iliescu M, Richard-Plouet M, et al. Manganese in precipitated hydroxyapatites. Eur J Inorg Chem 2003,1445-1451.
    [109]. Bres EF, Duhoo T, Leroy N, Lemaitre J. Evidence of a transient phase during the hydrolysis of calciumdeficient hydroxyapatite. Zeitschrift fuer Metallkunde/Mater. Res Adv Tech 2005,96:503-506.
    [110]. Lecomte A, Gautier H, Bouler JM, Gouyette A, Pegon Y, Daculsi G, et al. Biphasic calcium phosphate:a comparative study of interconnected porosity in two ceramics. J Biomed Mater Res B Appl Biomater 2008,84:1-6.
    [111]. Daculsi G, Baroth S, LeGeros RZ.20 years of biphasic calcium phosphate bioceramics development and applications. Ceram Eng Sci Proc 2010,30:45-58.
    [112]. Lobo SE, Arinzeh TL. Biphasic calcium phosphate ceramics for bone regeneration and tissue engineering applications. Materials 2010,3:815-826.
    [113]. Bourgeois B, Laboux O, Obadia L, Gauthier O, Betti E, Aguado E, et al. Calcium-deficient apatite:a first in vivo study concerning bone ingrowth. J Biomed Mater Res A 2003,65:402-408.
    [114]. Liu TY, Chen SY, Liu DM, Liou SC. On the study of BSA-loaded calcium-deficient hydroxyapatite nanocarriers for controlled drug delivery. J Control Release 2005,107:112-121.
    [115]. Mathew M, Takagi S. Structures of biological minerals in dental research. J Res Natl Inst Stand Technol 2001,106:1035-1044.
    [116]. Godiebel C, Simon P, Buder J, Tlatlik H, Kniep R. Phase formation and morphology of calcium phosphate-gelatine-composites grown by double diffusion technique:the influence of fluoride. J Mater Chem 2004,14:2225-2230.
    [117]. Prymak O, Sokolova V, Peitsch T, Epple M. The crystallization of fluoroapatite dumbbells from supersaturated aqueous solution. Cryst Growth Des 2006, 6:498-506.
    [118]. Tlatlik H, Simon P, Kawska A, Zahn D, Kniep R. Biomimetic fluorapatite-gelatine nanocomposites:prestructuring of gelatine matrices by ion impregnation and its effect on form development. Angew Chem Int Ed Engl 2006,45:1905-1910.
    [119]. Simon P, Zahn D, Lichte H, Kniep R. Intrinsic electric dipole fields and the induction of hierarchical form developments in fluorapatite-gelatine nanocomposites:a general principle for morphogenesis of biominerals? Angew Chem Int Ed Engl 2006,45:1911-1915.
    [120]. Wu YJ, Tseng YH, Chan JCC. Morphology control of fluorapatite crystallites by citrate ions. Cryst Growth Des 2010,10:4240-4242.
    [121]. Nikcevic I, Jokanovic V, Mitric M, Nedic Z, Makovec D, Uskokovic D. Mechanochemical synthesis of nanostructured fluorapatite/fluorhydroxyapatite and carbonated fluorapatite/fluorhydroxyapatite. J Solid State Chem 2004, 177:2565-2574.
    [122]. Cheng K, Weng W, Qu H, Du P, Shen G, Han G, et al. Sol-gel preparation and in vitro test of fluorapatite/hydroxyapatite films. J Biomed Mater Res B Appl Biomater 2004,69:33-37.
    [123]. Rodriguez-Lorenzo LM, Hart JN, Gross KA. Influence of fluorine in the synthesis of apatites. Synthesis of solid solutions of hydroxy-fluorapatite. Biomaterials 2003, 24:3777-3785.
    [124]. Dahm S, Risnes S. A comparative infrared spectroscopic study of hydroxide and carbonate absorption bands in spectra of shark enameloid, shark dentine, and a geological apatite. Calcif Tissue Int 1999,65:459-465.
    [125]. Kniep R, Simon P. Fluorapatite-gelatine nanocomposites:self-organized morphogenesis, real structure and relations to natural hard materials. Top Curr Chem 2006,270:73-125.
    [126]. Bogdanov BI, Pashev PS, Hristov JH, Markovska IG. Bioactive fluorapatite-containing glass ceramics. Ceram Int 2009,35:1651-1655.
    [127]. Savarino L, Fini M, Ciapetti G, Cenni E, Granchi D, Baldini N, et al. Biologic effects of surface roughness and fluorhydroxyapatite coating on osteointegration in external fixation systems:an in vivo experimental study. J Biomed Mater Res A 2003,66:652-661.
    [128]. Vitkovic M, Noaman MSM, Palou MT, Jantova S. Potential applications of fluorhydroxyapatite as biomaterials in medicine. Cent Eur J Chem 2009, 7:246-251.
    [129]. Chaari K, Ayed FB, Bouaziz J, Bouzouita K. Elaboration and characterization of fluorapatite ceramic with controlled porosity. Mater Chem Phys 2009, 113:219-226.
    [130]. Bibby JK, Bubb NL, Wood DJ, Mummery PM. Fluorapatite-mullite glass sputter coated Ti6A14V for biomedical applications. J Mater Sci Mater Med 2005, 16:379-385.
    [131]. Yoon BH, Kim HW, Lee SH, Bae CJ, Koh YH, Kong YM, et al. Stability and cellular responses to fluorapatite-collagen composites. Biomaterials 2005, 26:2957-2963.
    [132]. Alberius-Henning P, Adolfsson E, Grins J, Fitch A. Triclinic oxy-hydroxyapatite. J Mater Sci 200,36:663-668.
    [133]. van't Hoen C, Rheinberger V, Holand W, Apel E. Crystallization of oxyapatite in glass-ceramics. J Eur Ceram Soc 2007,27:1579-1584.
    [134]. de Leeuw NH, Bowe JR, Rabone JAL. A computational investigation of stoichiometric and calcium-deficient oxy-and hydroxy-apatites. Faraday Discuss 2007,134:195-214.
    [135]. Nakano T, Kaibara K, Umakoshi Y, Imazato S, Ogata K, Ehara A, et al. Change in microstructure and solubility improvement of HAp ceramics by heat-treatment in a vacuum. Mater Trans 2002,43:3105-3111.
    [136]. Kiba W, Imazato S, Takahashi Y, Yoshioka S, Ebisu S, Nakano T. Efficacy of polyphasic calcium phosphates as a direct pulp capping material. J Dent 2010, 38:828-837.
    [137]. Ellinger RF, Nery EB, Lynch KL. Histological assessment of periodontal osseous defects following implantation of hydroxyapatite and biphasic calcium phosphate ceramics:a case report. Int J Periodontics Restorative Dent 1986,3:22-33.
    [138]. Yue W, Roeder RK. Micromechanical model for hydroxyapatite whisker reinforced polymer biocomposites. J Mater Res 2006,21 "2136-2145
    [139]. Converse GL, Roeder RK. Tensile properties of hydroxyapatite whisker reinforced polyetheretherketone. Mater Res Soc Symp Proc 2005,898:44-49.
    [140]. Mizutani Y, Hattori M, Okuyama M, Kasuga T, Nogami M. Preparation of porous composites with a porous framework using hydroxyapatite whiskers and poly(L-lactic acid) short fibers. Key Eng Mater 2006,311:1079-1082
    [141]. Choi WY, Kim HE, Kim MJ, Kim UC, Kim JH, Koh YH. Production and characterization of calcium phosphate (CaP) whisker-reinforced poly(e-caprolactone) composites as bone regenerative. Mater Sci Eng C 2010, 30:1280-1284
    [142]. Watanabe T, Ban S, Ito T, Tsuruta S, Kawai T, Nakamura H. Biocompatibility of composite membrane consisting of oriented needle-like apatite and biodegradable copolymer with soft and hard tissues in rats. Dent Mater J 2004,23:609-612
    [143]. Li H, Chen Y, Xie Y. Photo-cross-linking polymerization to prepare polyanhydride/needle-like hydroxyapatite biodegradable nanocomposite for orthopedic application. Mater Lett 2003,57:2848-2854
    [144]. Peng Q, Weng J, Li X, Gu Z. Manufacturing porous blocks of nano-composite of needle-like hydroxyapatite crystallites and chitin for tissue engineering. Key Eng Mater 2005,288-289
    [145]. Bonfield W, Grynpas MD, Tully AE, Bowman J, Abram J. Hydroxyapatite reinforced polyethylene-a mechanically compatible implant material for bone replacement. Biomaterials 1981,2:185-189
    [146]. Dalby MJ, di Silvio L, Davies GW, Bonfield W. Surface topography and HA filler volume effect on primary human osteoblasts in vitro. J Mater Sci Mater Med 2000,12:805-810
    [147]. di Silvio L, Dalby MJ, Bonfield W. Osteoblast behaviour on HA/PE composite surfaces with different HA volumes. Biomaterials 2002,23:101-107
    [148]. Dalby MJ, Kayser MV, Bonfield W, di Silvio L. Initial attachment of osteoblasts to an optimised HAPEXTM topography. Biomaterials 2002,23:681-690
    [149]. Dalby MJ, di Silvio L, Gurav N, Armaz B, Kayser MV, Bonfield W. Optimizing HAPEXTM topography influences osteoblast response. Tissue Eng 2002, 8:453-467
    [150]. Zhang Y, Tanner KE, Gurav N, di Silvio L. In vitro osteoblastic response to 30 vol% hydroxyapatite-polyethylene composite. J Biomed Mater Res A 2007, 81:409-417
    [151]. Rea SM, Best SM, Bonfield W.-Bioactivity of ceramicpolymer composites with varied composition and surface topography. J Mater Sci Mater Med 2004, 15:997-1005
    [152]. Rea SM, Brooks RA, Schneider A, Best SM, Bonfield W. Osteoblast-like cell response to bioactive composites-surface-topography and composition effects. J Biomed Mater Res B Appl Biomater 2004,70:250-261
    [153]. Bonner M, Ward IM, McGregor W, Tanner KE, Bonfield W. Hydroxyapatite/polypropylene composite:a novel bone substitute material. J Mater Sci Lett 2001,20:2049-2052
    [154]. Suppakarn N, Sanmaung S, Ruksakulpiwa Y, Sutapun W. Effect of surface modification on properties of natural hydroxyapatite/polypropylene composites. Key Eng Mater 2008,363:511-514
    [155]. Nazhat SN, Joseph R, Wang M, Smith R, Tanner KE, Bonfield W. Dynamic mechanical characterization of hydroxyapatite reinforced polyethylene:effect of particle size. J Mater Sci Mater Med 2000,11:621-628
    [156]. Wang M, Porter D, Bonfield W. Processing, characterization and evaluation of hydroxyapatite reinforced polyethylene composites. Br Ceram Trans 1994, 93:91-95.
    [157]. Homaeigohar SS, Shokrgozar MA, Khavandi A, Sadi AY. In vitro biological evaluation of β-TCP/HDPE-a novel orthopedic composite:a survey using human osteoblast and fibroblast bone cells. J Biomed Mater Res A 2008,84:491-499
    [158]. Sadi AY, Homaeigohar SSh, Khavandi AR, Javadpour J. The effect of partially stabilized zirconia on the mechanical properties of the hydroxyapatite-polyethylene composites. J Mater Sci Mater Med 2004,15:853-858
    [159]. Nath S, Bodhak S, Basu B. HDPE-A12O3-HAp composites for biomedical applications:processing and characterizations. J Biomed Mater Res B Appl Biomater 2009,88:1-11.
    [160]. Downes RN, Vardy S, Tanner KE, Bonfield W. Hydroxyapatite-polyethylene composite in orbital surgery. Bioceramics 1991,4:239-246.
    [161]. Dornhoffer HL. Hearing results with the dornhoffer ossicular replacement prostheses. Laryngoscope 1998,108:531-536.
    [162]. Thomas V, Dean DR, Vohra YK. Nanostructured biomaterials for regenerative medicine. CurrNanosci 2006,2:155-177.
    [163]. Mathieu LM, Bourban PE, Manson JAE. Processing of homogeneous ceramic/polymer blends for bioresorbable composites. Compos Sci Technol 2006, 66:1606-1614.
    [164]. Redepenning J, Venkataraman G, Chen J, Stafford N. Electrochemical preparation of chitosan/hydroxyapatite composite coatings on titanium substrates. J Biomed Mater Res A 2003,66:411-416.
    [165]. Rhee SH, Tanaka J. Synthesis of a hydroxyapatite/collagen/chondroitin sulfate nanocomposite by a novel precipitation method. J Am Ceram Soc 2001, 84:459-461.
    [166]. Uskokovic PS, Tang CY, Tsui CP, Ignjatovic N, Uskokovic DP. Micromechanical properties of a hydroxyapatite/poly-L-lactide biocomposite using nanoindentation and modulus mapping. J Eur Ceram Soc 2007,27:1559-1564.
    [167]. Pramanik N, Biswas SK, Pramanik P. Synthesis and characterization of hydroxyapatite/poly(vinyl alcohol phosphate) nanocomposite biomaterials. Int J Appl Ceram Technol 2008,5:20-28.
    [168]. Bigi A, Boanini E, Gazzano M, Rubini K. Structural and morphological modifications of hydroxyapatitepolyaspartate composite crystals induced by heat treatment. Cryst Res Technol 2005,40:1094-1098.
    [169]. Gong XH, Tang CY, Hu HC, Zhou XP. Improved mechanical properties of HIPS/hydroxyapatite composites by surface modification of hydroxyapatite via in situ polymerization of styrene. J Mater Sci Mater Med 2004,15:1141-1146.
    [170]. Wang L, Weng L, Song S, Sun Q. Mechanical properties and microstructure of polyetheretherketone-hydroxyapatite nanocomposite materials. Mater Lett 2010, 64:2201-2204.
    [171]. Gu SY, Zhan H, Ren J, Zhou XY. Sol-gel synthesis and characterisation of nano-sized hydroxyapatite powders and hydroxyapatite /poly(D,L-lactide-co-glycolide) composite scaffolds. Polymers & Polym Compos 2007,15:137-144.
    [172]. Aboudzadeh N, Imani M, Shokrgozar MA, Khavandi A, Javadpour J, Shafieyan Y, et al. Fabrication and characterization of poly(D,L-lactide-co-glycolide) /hydroxyapatite nanocomposite scaffolds for bone tissue regeneration. J Biomed Mater Res A 2010,94:137-145.
    [173]. Li H, Chang J. pH-compensation effect of bioactive inorganic fillers on the degradation of PLGA. Compos Sci Technol 2005,65:2226-2232.
    [174]. Shikinami Y, Okuno M. Bioresorbable devices made of forged composites of hydroxyapatite (HA) particles and poly L-lactide (PLLA). Part II:practical properties of miniscrews and miniplates. Biomaterials 2001,22:3197-3211.
    [175]. Hasegawa S, Tamura J, Neo M, Goto K, Shikinami Y, Saito M, et al. In vivo evaluation of a porous hydroxyapatite/poly-D,L-lactide composite for use as a bone substitute. J Biomed Mater Res A 2005,75:567-579.
    [176]. de Bruijn JD, Shankar K, Yuan H, Habibovic P. Osteoinduction and its evaluation. In:Kokubo T, editor. Bioceramics and their clinical applications. Cambridge: Woodhead Publishing Limited; 2008,199-219.
    [177]. Ginebra MP, Traykova T, Planell JA. Calcium phosphate cements as bone drug delivery systems:a review. J Control Release 2006,113:102-110.
    [178]. Ruhe PQ, Hedberg EL, Padron NT, Spauwen PH, Jansen JA, Mikos AG. RhBMP-2 release from injectable poly(DL-lactic-co-glycolic acid) /calcium-phosphate cement composites. J Bone Joint Surg Am 2003,85:75-81.
    [179]. Ruhe PQ, Boerman OC, Russel FGM, Spauwen PHM, Mikos AG, Jansen JA. Controlled release of rhBMP-2 loaded poly(DL-lactic-co-glycolic acid)/calcium phosphate cement composites in vivo. J Control Release 2005,106:162-171.
    [180]. Plachokova A, Link D, van den Dolder J, van den Beucken J, Jansen JA. Bone regenerative properties of injectable PGLA-CaP composite with TGF-bl in a rat augmentation model. J Tissue Eng Regen Med 2007,1:457-464.
    [181]. Habraken WJEM, Wolke JGC, Mikos AG, Jansen JA. PLGA microsphere/calcium phosphate cement composites for tissue engineering:in vitro release and degradation characteristics. J Biomater Sci Polym E 2008,19:1171-188.
    [182]. Habraken WJEM, de Jonge LT, Wolke JGC, Yubao L, Mikos AG, Jansen JA. Introduction of gelatine microspheres into an injectable calcium phosphate cement. J Biomed Mater Res A 2008,87:643-655.
    [183]. Link DP, van den Dolder J, van den Beucken J, Wolke JGC, Mikos AG, Jansen JA. Bone response and mechanical strength of rabbit femoral defects filled with injectable CaP cements containing TGF-bl loaded gelatine microparticles. Biomaterials 2008,29:675-682.
    [184]. Hesaraki S, Zamanian A, Moztarzadeh F. The influence of the acidic component of the gas-foaming porogen used in preparing an injectable porous calcium phosphate cement on its properties:acetic acid versus citric acid. J Biomed Mater Res B 2008, 86:208-216.
    [185]. del Real RP, Wolke JGC, Vallet-Regi M, Jansen JA. A new method to produce macropores in calcium phosphate cements. Biomaterials 2002,23:3673-8360.
    [186]. Montufar EB, Gil C, Traykova T, Ginebra MP, Planell JA. Foamed betatricalcium phosphate scaffolds. Key Eng Mater 2008,361-363.
    [187]. Markovic M, Takagi S, Chow LC. Formation of macropores in calcium phosphate cements through the use of mannitol crystals. Key Eng Mater 2001,192-195.
    [188]. Takagi S, Chow LC. Formation of macropores in calcium phosphate cement implants. J Mater Sci Mater Med 2002,12:135-139.
    [189]. Barralet JE, Grover L, Gaunt T, Wright AJ, Gibson IR. Preparation of macroporous calcium phosphate cement tissue engineering scaffold. Biomaterials 2002, 23:3063-3072.
    [190]. Fernandez E, Vlad MD, Gel MM, Lopez J, Torres R, Cauich JV, et al. Modulation of porosity in apatitic cements by the use of a-tricalcium phosphate-calcium sulphate dihydrate mixtures. Biomaterials 2005,26:3395-3404.
    [191]. Cama G, Barberis F, Botter R, Cirillo P, Capurro M, Quarto R, et al. Preparation and properties of macroporous brushite bone cements. Acta Biomater 2009, 5:2161-2168.
    [192]. Xu HHK, Quinn JB. Calcium phosphate cement containing resorbable fibers for short-term reinforcement and macroporosity. Biomaterials 2002,23:193-202.
    [193]. Xu HHK, Eichmiller FC, Giuseppetti AA. Reinforcement of a self-setting calcium phosphate cement with different fibers. J Biomed Mater Res 2000,52:107-114.
    [194]. Xu HHK, Eichmiller FC, Barndt PR. Effects of fiber length and volume fraction on the reinforcement of calcium phosphate cement. J Mater Sci Mater Med 2001, 12:57-65.
    [195]. Zuo Y, Yang F, Wolke JGC, Li Y, Jansen JA. Incorporation of biodegradable electrospun fibers into calcium phosphate cement for bone regeneration. Acta Biomater 2010,6:1238-1247.
    [196]. Xu HHK, Quinn JB, Takagi S, Chow LC, Xu HHK, Quinn JB, et al. Synergistic reinforcement of in situ hardening calcium phosphate composite scaffold for bone tissue engineering. Biomaterials 2004,25:1029-1037.
    [197]. Xu HHK, Simon CG. Self-hardening calcium phosphate cement-mesh composite: reinforcement, macropores, and cell response. J Biomed Mater Res A 2004, 69:267-278.
    [198]. Xu HHK, Simon Jr CG. Fast setting calcium phosphate-chitosan scaffold: mechanical properties and biocompatibility. Biomaterials 2005,26:1337-1348.
    [199]. Xu HHK, Weir MD, Burguera EF, Fraser AM. Injectable and macroporous calcium phosphate cement scaffold. Biomaterials 2006,27:4279-4287.
    [200]. Habraken WJEM, Wolke JGC, Mikos AG, Jansen JA. Injectable PLGA microsphere/calcium phosphate cements:physical properties and degradation characteristics. J Biomater Sci Polym E 2006,17:1057-1074.
    [201]. Link DP, van den Dolder J, van den Beucken J, Habraken WJEM, Soede A, Boerman OC, et al. Evaluation of an orthotopically implanted calcium phosphate cement containing gelatine microparticles. J Biomed Mater Res A 2009, 90:372-379.
    [202]. del Real RP, Ooms E, Wolke JGC, Vallet-regi M, Jansen JA. In vivo bone response to porous calcium phosphate cement. J Biomed Mater Res A 2003,65A:30-36.
    [203]. Almirall A, Larrecq G, Delgado JA, Martinez S, Planell JA, Ginebra MP. Fabrication of low temperature macroporous hydroxyapatite scaffolds by foaming and hydrolysis of an a-TCP paste. Biomaterials 2004,25:3671-3680.
    [204]. Hesaraki S, Sharifi D. Investigation of an effervescent additive as porogenic agent for bone cement macroporosity. Biomed Mater Eng 2007,17:29-38.
    [205]. Ginebra MP, Delgado JA, Harr I, Almirall A, Del Valle S, Planell JA. Factors affecting the structure and properties of an injectable self-setting calcium phosphate foam. J Biomed Mater Res A 2007,80:351-361.
    [206]. Del Valle S, Muale z F, Gonzalez A, Planell JA, Ginebra MP. In vivo evaluation of an injectable macroporous calcium phosphate cement. J Mater Sci Mater Med 2007, 18:353-361.
    [207]. Monrufar EB, Traykova T, Gil C, Harr I, Almirall A, Aguirre A, et al. Foamed surfactant solution as a template for self-setting injectable hydroxyapatite scaffolds for bone regeneration. Acta Biomater 2010,6:876-885.
    [208]. Sarda S, Nilsson M, Balcells M, Fernandez E. Influence of surfactant molecules as air-entraining agent for bone cement macroporosity. J Biomed Mater Res A 2003, 65:215-221.
    [209]. Bohner M, van Lenthe GH, Grunenfelder S, Hirsiger W, Evison R, Muller R. Synthesis and characterization of porous b-tricalcium phosphate blocks. Biomaterials 2005,26:6099-6105.
    [210]. Qi X, Ye J, Wang Y. Alginate/poly (lactic-co-glycolic acid)/calcium phosphate cement scaffold with oriented pore structure for bone tissue engineering. J Biomed Mater Res A 2009,89:980-987.
    [211]. Panzavolta S, Fini M, Nicoletti A, Bracci B, Rubini K, Giardino R, et al. Porous composite scaffolds based on gelatine and partially hydrolyzed a-tricalcium phosphate. Acta Biomater 2009,5:636-643.
    [212]. Miao X, Hu Y, Liu J, Wong AP. Porous calcium phosphate ceramics prepared by coating polyurethane foams with calcium phosphate cements. Mater Lett 2004, 58:397-402.
    [213]. Miao X, Lim WK, Huang X, Chen Y. Preparation and characterization of interpenetrating phased TCP/HA/PLGA composites. Mater Lett 2005, 59:4000-4005.
    [214]. Charriere E, Lemaitre J, Zysset Ph. Hydroxyapatite cement scaffolds with controlled macroporosity:fabrication protocol and mechanical properties. Biomaterials 2003,24:809-817.
    [215]. Li X, Li D, Lu B, Tang Y, Wang L, Wang Z. Design and fabrication of CAP scaffolds by indirect solid free form fabrication. Rapid Prototyping J 2005, 11:312-318.
    [216]. Li X, Li D, Lu B, Wang L, Wang Z. Fabrication and evaluation of calcium phosphate cement scaffold with controlled internal channel architecture and complex shape. Proc Inst Mech Eng H 2007,221:951-958.
    [217]. Guo D, Xu K, Han Y. The in situ synthesis of biphasic calcium phosphate scaffolds with controllable compositions, structures, and adjustable properties. J Biomed Mater Res A 2009,88:43-52.
    [218]. Huang X, Miao X. Novel porous hydroxyapatite prepared by combining H2O2 foaming with PU sponge and modified with PLGA and bioactive glass. J Biomater Appl 2007,21:351-374.
    [219]. Gbureck U, Hol zel T, Klammert U, Wurzler K, Muller FA, Barralet JE. Resorbable dicalcium phosphate bone substitutes prepared by 3D powder printing. Adv Funct Mater 2007,17:3940-3945.
    [220]. Gbureck U, Holzel T, Doillon CJ, Muller FA, Barralet JE. Direct printing of bioceramic implants with spatially localized angiogenic factors. Adv Mater 2007, 19:795-800.
    [221]. Bohner M. Implant comprising calcium cement and hydrophobic liquid. US Patent No.6,642,285 B1; 2003.
    [222]. Leong KF, Cheah CM, Chua CK. Solid freeform fabrication of threedimensional scaffolds for engineering replacement tissues and organs. Biomaterials 2003, 24:2363-2378.
    [223]. Klammert U, Reuther T, Jahn C, Kraski B, Kubler AC, Gbureck U. Cytocompatibility of brushite and monetite cell culture scaffolds made by three-dimensional powder printing. Acta Biomater 2009,5:727-734.
    [224]. Studart A R, Gonzenbach U T, Tervoort E, Gauckler L J. Processing routes to macroporous ceramics:A review. Journal of the American Ceramic Society,2006, 89:1771-1789.
    [225]. Grayson W L, Martens T P, Eng G M, Radisic M, Vunjak-Novakovic G. Biomimetic approach to tissue engineering. Seminars in Cell & Developmental Biology,2009,20:665-673.
    [226]. Joschek S, Nies B, Krotz R, Gopferich A. Chemical and physicochemical characterization of porous hydroxyapatite ceramics made of natural bone. Biomaterials,2000,21:1645-1658.
    [227]. Cesarano Ⅲ J, Dellinger J G, Saavedra M P, Gill D D, Jamison R D, Grosser B A, Sinn-Hanlon J M, Goldwasser M S. Customization of load-bearing hydroxyapatite lattice scaffolds. International Journal of Applied Ceramic Technology,2005, 2:212-220.
    [228]. Jo I H, Shin K H, Soon Y M, Koh Y H, Lee J H, Kim H E. Highly porous hydroxyapatite scaffolds with elongated pores using stretched polymeric sponges as novel template. Materials Letters,2009,63:1702-1704.
    [229]. Habibovic P, Gbureck U, Doillon CJ, Bassett DC, van Blitterswijk CA, Barralet JE. Osteoconduction and osteoinduction of low-temperature 3D printed bioceramic implants. Biomaterials 2008,29:944-953.
    [230]. Gonda Y, Ioku K, Shibata Y, Okuda T, Kawachi G, Kamitakahara M, et al. Stimulatory effect of hydrothermally synthesized biodegradable hydroxyapatite granules on osteogenesis and direct association with osteoclasts. Biomaterials 2009, 30:4390-4400.
    [231]. R.Z. Legeros, S. Lin, R. Rohanizadeh, D. Mijares, J.P. Legeros. Biphasic calcium phosphate bioceramics:preparation, properties and applications. J. Mater. Sci: Mater. Med.2003,14:201-209.
    [232]. S.-H. Kwon, Y.-K. Jun, S.-H. Hong, I.-S. Lee, H.-E. Kim. Calcium phosphate bioceramics with various porosities and dissolution rates. J. Am. Ceram. Soc.2002, 85:3129-2931.
    [233]. J.D. Santos, PL. Silva, J.C. Knowles, S. Talal, F.J. Monteiro. Reinforcement of hydroxyapatite by adding P2O5-CaO glasses with Na2O, K2O and MgO. J. Mater. Sci:Mater. Med.1996,7:187-189.
    [234]. O. Gauthier, J.-M. Bouler, E. Aguado, R.Z. Le Geros, P. Pilet, G. Daculsi. Elaboration conditions influence physicochemical properties and in vivo bioactivity of macroporous biphasic calcium phosphate ceramics. J. Mater. Sci: Mater. Med.1999,10:199-204.
    [235]. D. Tadic, F. Peters, M. Epple. Continuous synthesis of amorphous carbonated apatites. Biomaterials 2002,23:2553-2559.
    [236]. Dorozhkin SV. New Biphasic Calcium Phosphate in Orthopedic Surgery. Acta Biomaetrialia,2012,8:963-977.
    [237]. Rishna R, Mayer J, Winter E, Kam M, Leong W. Biomedical applications of polymer-composite materials a review. Compos Technol 2001,67:1189-1224.
    [238]. Wahl DA, Czernuszka JT. Collagen-hydroxyapatite composites for hard tissue repair. Eur Cells Mater 2006,11:43-56.
    [239]. Bandyopadhyay-Ghosh S. Bone as a collagen-hydroxyapatite composite and its repair. Trends Biomater Artif Org 2008,22:116-124.
    [240]. Wahl DA, Sachlos E, Liu CZ, Czernuszka JT. Controlling the processing of collagen-hydroxyapatite scaffolds for bone tissue engineering. J Mater Sci Mater Med 2006,18:201-209
    [241]. Roohani-Esfahani SI, Nouri-Khorasani S, Lu ZF, Appleyard RC, Zreiqat H Effects of bioactive glass nanoparticles on the mechanical and biological behavior of composite coated scaffolds. Acta Biomater 2011,7:1307-1318
    [242]. Kobayashi M, Toguchida J, Oka M. Preliminary study of polyvinyl alcohol/hydrogel (PVA-H) artificial meniscus. Biomaterials 2003,24:639-647.
    [243]. Stammen JA, Williams S, Ku DN, Guldberg RE. Mechanical properties of a novel PVA hydrogel in shear and unconfined compression. Biomaterials 2001, 22:799-806.
    [244]. Spiller KL, Laurencin SJ, Charlton D, Maher SA, Lowman AM. Superporous hydrogels for cartilage repair:Evaluation of the morphological and mechanical properties. Acta Biomater 2008,4:17-25.
    [245]. Tang Y, Du Y, Li Y, Wang X, Hu X. A thermosensitive chitosan/poly(vinyl alcohol) hydrogel containing hydroxyapatite for protein delivery. J Biomed Mater Res A 2009,91:953-963.
    [246]. Sinha A, Guha A. Biomimetic patterning of polymer hydrogels with hydroxyapatite nanoparticles. Mater Sci Eng A 2009,29:1330-1333.
    [247]. Kobayashia H, Katoa M, Taguchia T, Ikomaa T, Miyashitab H, Shimmurab S, TsubotabK, Tanaka J. Collagen immobilized PVA hydrogel-hydroxyapatite composites prepared by kneading methods as a material for peripheral cuff of artificial cornea. Mater Sci Eng C 2004,24:729-735.
    [248]. Zhang DK, Duan JJ, Wang DG, Ge SR. Effect of Preparation Methods on Mechanical Properties of PVA/HA Composite Hydrogel. J Bionic Eng 2010, 7:235-243.
    [249]. Mu YH, Li YB, Wang MB, Xu FL, Zhang X, Tian ZY. Novel method to fabricate porous n-HA/PVA hydrogel scaffolds. Mater Sci Forum 2006,878-881.
    [250]. Asran AS, Henning S, Michler GH. Polyvinyl alcohol-collagen-hydroxyapatite biocomposite nanofibrous scaffold:Mimicking the key features of natural bone at the nanoscale level. Polymer 2010,51:868-876.
    [251]. Ficai M, Andronescua E, Ficai D, Voicua G, Ficai A. Synthesis and characterization of COLL-PVA/HA hybrid materials with stratified morphology. Colloids Surf B 2010,81:614-619.
    [252]. Boguh M, Mikolajczyk T. Effect of Ceramic Nanoadditive Content and Type on the Rheological Properties of Poly(vinyl alcohol) Spinning Solutions. J Appl Polym Sci 2009,114:3452-3457.
    [253]. Poursamara SA, AzamibM, Mozafarib M. Controllable synthesis and characterization of porous polyvinyl alcohol/hydroxyapatite nanocomposite scaffolds via an in situ colloidal technique. Colloids Surf B 2011,84:310-316.
    [254]. Yang DZ, Jin Y, Ma GP, Chen XM, Lu FM, Nie J. Fabrication and Characterization of Chitosan/PVA with Hydroxyapatite Biocomposite Nanoscaffolds. J Appl Polym Sci 2008,110:3328-3335.
    [255]. Jin HH, Min SH, Song YK, Park HC, Yoon SY. Degradation behavior of poly(lactide-co-glycolide)/β-TCP composites prepared using microwave energy. Polym Degrad Stab 2010,95:1856-1861.
    [256]. Kim GM, Asran AS, Michler GH, Simon P, Kim JS. Electrospun PVA/HAp nanocomposite nanofibers:biomimetics of mineralized hard tissues at a lower level of complexity. Bioinspir Biomim 2008,3.
    [257]. Zuo KH, Zeng YP, Jiang DL. Effect of polyvinyl alcohol additive on the pore structure and morphology of the freeze-east hydroxyapatite ceramics. Mater Sci EngC 2010,30:283-287.
    [258]. K. Rezwan, Q.Z. Chen, J.J. Blaker, A.R. Boccaccini, Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering. Biomaterials 2006,27:4313-3431.
    [259]. H.W. Kim, J.C. Knowles, H.E. Kim, Hydroxyapatite porous scaffold engineered with biological polymer hybrid coating for antibiotic Vancomycin release. J. Mater. Sci.:Mater. Med 2005,16:189-195.
    [260]. C.M. Verfaillie, Adult stem cells:assessing the case for pluripotency. Trends Cell Biol 2002,12:502-508.
    [261]. T.L. Arinzeh, S.J. Peter, M.P. Archambault, C. Van den Bos, S. Gordon, K. Kraus, A. Smith, S. Kadiyala. Allogeneic Mesenchymal Stem Cells Regenerate Bone in a Critical-Sized Canine Segmental Defect. J. Bone Joint Surg. Am 2003, 85:1927-1935.
    [262]. C. Balcik, T. Tokdemir, N. Koc, M. Timucin, S. Akin, P. Korkusuz, F. Korkusuz. Early weight bearing of porous HA/TCP (60/40) ceramics in vivo:A longitudinal study in a segmental bone defect model of rabbit. Acta Biomater 2007,3:985-996.
    [263]. D. Qu, J.H. Li, Y.B. Li, A. Khadka, Y. Zuo. Ectopic osteochondral formation of biomimetic porous PVA-n-HA/PA6 bilayered scaffold and BMSCs construct in rabbit. J. Biomed. Mater. Res.2011, B96:9-15.
    [264]. Li S, Joost R, Li J, Layrolle P, Groot K. Macroporous biphasic calcium phosphate scaffold with high permeability/porosity ratio. Tissue Eng 2003,9:535-548.
    [265]. Yuan H, Blitterswijk CA, Groot K, Bruijn JD. Gross-species comparison of ectopic bone formation in biphasic calcium phosphate (BCP) and hydroxyapatite (HA) scaffolds. Tissue Eng 2006,12:1607-1615.
    [266]. Ebrahimi M, Pripatnanont P, Monmaturapoj N, Suttapreyasri S. Fabrication and characterization of novel nano hydroxyapatite/β-tricalcium phosphate scaffolds in three different composition ratios. J Biomed Mater Res Part A 2012, 100A:2260-2268.
    [267]. Ramay HR, Zhang M. Biphasic calcium phosphate nanocomposite porousscaffolds for load-bearing bone tissue engineering. Biomaterials 2004,25:5171-5180.
    [268]. Linhart W, Briem D, Amling M, Rueger JM, Windolf J. Mechanical failure of porous hydroxyapatite ceramics 7.5 years after implantation in the proximal tibial. Unfallchirurgie 2004,107:154-157.
    [269]. Kim HW, Knowles JC, Kim HE. Hydroxyapatite/poly(e-caprolactone) composite coatings on hydroxyapatite porous bone scaffold for drug delivery. Biomaterials 2004,25:1279-1287.
    [270]. Miao X, Tan LP, Tan LS, Huang X. Porous calcium phosphate ceramics modified with PLGA-bioactive glass. Mater Sci Eng C 2007,27:274-279.
    [271]. Jun IK, Song JH, Choi WY, Koh YH, Kim HE. Porous hydroxyapatite scaffolds coated with bioactive apatite-wollastonite glasse-ceramics. J Am Ceram Soc 2007, 90:2703-2708.
    [272]. Tian T, Jiang D, Zhang J, Lin Q. Fabrication of bioactive composite by developing PLLA onto the frame work of sintered HA scaffold. Mater Sci Eng C 2008, 28:51-56.
    [273]. Miao X, Tan DM, Li J, Xiao Y, Crawford R. Mechanical and biological properties of hydroxyapatite/tricalcium phosphate scaffolds coated with poly(lactic-coglycolic acid). Acta Biomater 2008,4:638-645.
    [274]. Wu C, Ramaswamy Y, Boughton P, Zreiqat H. Improvement of mechanical and biological properties of porous CaSiO3 scaffolds by poly(D, L-lactic acid) modification. Acta Biomater 2008,4:343-353.
    [275]. Zhao J, Lu X, Duan K, Guo LY, Zhou SB, Weng J. Improving mechanical and biological properties of macroporous HA scaffolds through composite coatings. Colloids Surf B Biointerfaces 2009,74:159-166.
    [276]. Fan H, Wang L, Zhao K, Shi Z, Ge Z, Jin Z. Fabrication, mechanical properties, and biocompatibility of grapheme-reinforced chitosan composites. Biomacromoleeules 2010,11:2345-2351.
    [277]. Jonker AM, Lowik DWPM, Hest JCM. Peptide-and protein-based hydrogels. Chem Mater 2012,24:759-773.
    [278]. Sui G, Yang X, Mei F. Poly-L-Lactic acid/hydroxyapatite hybrid membrane for bone tissue regeneration. J Biomed Mater Res 2007,82:445-454.
    [279]. M. M. Stevens, H. F. Qanadilo, R. Langer, and V. P. Shastri, A rapid-curing alginate gel system:utility in periosteum-derived cartilage tissue engineering. Biomaterials,2004,25:887-894.
    [280]. H. W. Kim, H. E. Kim, and V. Salih. Stimulation of osteoblast responses to biomimetic nanocomposites of gelatin-hydroxyapatite for tissue engineering scaffolds. Biomaterials,2005,26:5221-5230.
    [281]. K. W. Kim, J. H. Song, and H. E. Kim. Nanofiber generation of gelatinhydroxyapatite biomimetics for guided tissue regeneration. Advanced Functional Materials,2005,15:1988-1994.
    [282]. P. L. Lin, H. W. Fang, T. Tseng, and W. H. Lee. effects of hydroxyapatite dosage on mechanical and biological behaviors of polylactic acid composite materials. Materials Letters,2007,61:3009-3013.
    [283]. S. M. Choi, and H. Awaji. Nanocomposites-a new material design concept. Science and Technology of Advanced Materials,2005,6:2-10.
    [284]. H. Awaji, S. M. Choi, and E. Yagi. Mechanisms of toughening and strengthening in ceramic-based nanocomposites. Mechanics of Materials,2002,34:411-422.
    [285]. C. C. Chen, J. Y. Chueh, H. Tseng, H. M. Huang, and S. Y. Lee. Preparation and characterization of biodegradable PLA polymeric blends. Biomaterials,2003, 24:1167-1173,.
    [286]. E. Bouyer, F. Gitzhofer, M.I. Boulos, Morphological study of hydroxyapatite nanocrystal suspension, J. Mater. Sci.:Mater. Med.2000,11:523-531.
    [287]. T.A. Kuriakose, S.N. Kalkura, M. Palanichamy, D. Arivouli, K. Dierks, G. Bocelli, C. Betzel, Synthesis of stoichiometric nano crystalline hydroxyapatite by thanolbased sol-gel technique at low temperature, J. Cryst. Growth 2004, 263:517-523.
    [288]. Y. Sun, G. Guo, D. Tao, Z. Wang, Reverse microemulsion-directed synthesis of hydroxyapatite nanoparticles under hydrothermal conditions, J. Phys. Chem. Solids 2006,68:373-377.
    [289]. T. Furuzono, D. Walsh, K. Sato, K. Sonoda, J. Tanaka, Effect of reaction temperature on the morphology and size of hydroxyapatite nanoparticles in an emulsion system, J. Mater. Sci. Lett.2001,259:254-260.
    [290]. G.C. Koumoulidis, A.P. Katsoulidis, A.K. Ladavos, P.J. Pomonis, C.C. Trapalis, A.T. Sdoukos, T.C. Vaimakis, Preparation of hydroxyapatite via microemulsion route, J. Colloid Interface Sci.2003,259:254-260.
    [291]. S. Bose, S.K. Saha, Synthesis, Characterization of hydroxyapatite nanopowders by emulsion technique, Chem. Mater.2003,15:4464-4469.
    [292]. C. Ohtsuki, M. Kamitakahara, T. Miyazaki, Coating bone-like apatite onto organic substrates using solutions mimicking body fluid, J. Tissue Eng. Regen. Med.2007, 1:33-38.
    [293]. S. Yan, J. Yin, L. Cui, Y. Yang, X. Chen, Apatite-forming ability of bioactive poly(1-lactic acid)/grafted silica nanocomposites in simulated body fluid, Colloids Surf B Biointerfaces 2011,86:218-224.
    [294]. B. Cengiz, Y. Gokce, N. Yildiz, Z. Aktas, A. Calimli, Synthesis and characterization of hydroxyapatite nanoparticles, Colloids Surf. A 2008,322:29-33.
    [295]. M. Hashizume,Y. Nagasawa,T. Suzuki, S. Kawashima, M. Kamitakahara, Effect of preparative conditions on crystallinity of apatite particles obtained from simulated body fluids, Colloids Surf B Biointerfaces 2011,84:545-549.
    [296]. Yuelian Liu, Gang Wu and Klaas de Groot. Biomimetic coatings for bone tissue engineering of critical-sized defects. J. R. Soc. Interface,2010,7:631-647.
    [297]. Gang Wu, Ernst B. Hunziker, Yuanna Zheng, Daniel Wismeijer, Yuelian Liu. Functionalization of deproteinized bovine bone with a coating-incorporated depot of BMP-2 renders the material efficiently osteoinductive and suppresses foreign-body reactivity. Bone,2011,49:1323-1330.
    [298]. Darilis Suarez-Gonzalez, Kara Barnhart, Francesco Migneco, Colleen Flanagan, Scott J. Hollister, William L. Murphy. Controllable mineral coatings on PCL scaffolds as carriers for growth factor release. Biomaterials,2012,33:713-721.
    [299]. Rai B, Teoh S, Hutmacher D, Cao T, Ho K. Novel PCL-based honeycomb scaffolds as drug delivery systems for rhBMP-2. Biomaterials 2005,26:3739-3748.
    [300]. Yoshida K, Bessho K, Fujimura K, Konishi Y, Kusumoto K, Ogawa Y, et al. Enhancement by recombinant human bone morphogenetic protein-2 of bone formation by means of porous hydroxyapatite in mandibular bone defects. J Dent Res 1999,78:1505-1510.
    [301]. Linh N. Luong, Janani Ramaswamy, David H. Kohn. Effects of osteogenic growth factors on bone marrow stromal cell differentiation in a mineral-based delivery system. Biomaterials,2012,33:283-294.
    [302]. R.P. Felix Lanao, S.C.G. Leeuwenburgh, J.G.C. Wolke, J.A. Jansen. In vitro degradation rate of apatitic calcium phosphate cement with incorporated PLGA microspheres. Acta Biomaterialia,2011,7:3459-3468.
    [303]. Millar NL, Halai M, McKenna R, McGraw IW, Millar LL, Hadidi M. Uncemented ceramic-on-ceramic THA in adults with osteonecrosis of the femoral head. Orthopedics 2010,33:795-783.
    [304]. Tanck E, Bakker AD, Kregting S, Cornelissen B, Klein-Nulend J, Van Rietbergen B. Predictive value of femoral head heterogeneity for fracture risk. Bone 2009, 44:590-595.
    [305]. Tsang VL, Bhatia SN. Three-dimensional tissue fabrication. Adv Drug Deliv Rev 2004,56:1635-1647.
    [306]. Gao C, Seuntjens J, Kaufman GN, Tran-Khanh N, Butler A, Li A, et al. Mesenchymal stem cell transplantation to promote bone healing. J Orthop Res 2012,30:1183-1189.
    [307]. Mikolajczyk T, Rabiej S, Bogun M, Szparaga G, Draczynski Z. Nanocomposite polyvinyl alcohol fibers for medical applications. J Appl Polym Sci 2011, 120:1234-1244.
    [308]. Yang DZ, Yu K, Ai Y, Zhen HP, Nie J, Kennedy JF. The mineralization of electrospun chitosan/poly(vinyl alcohol) nanofibrous membranes. Carbohydr Polym 2011,84:990-996.
    [309]. Peng F, Shaw MT, Olson JR, Wei M. Hydroxyapatite needle-shaped particles/poly(1-lactic acid) electrospun scaffolds with perfect particle-along-nanofiber orientation and significantly enhanced mechanical properties. J Phys Chem C 2011,115:15743-15751.