新型多孔PVA及其复合物修复兔膝关节骨软骨缺损的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的探讨软骨微环境对MSCs的影响,研究多孔聚乙烯醇(PVA)及其复合物的性能与生物相容性,初步观察新型骨软骨一体化多孔材料、聚酰胺66/纳米羟基磷灰石(PA66/n-HA)、聚乙烯醇/明胶(PVA/Gel)修复兔膝关节骨软骨缺损的效果。
     方法①以兔关节软骨细胞和软骨细胞回收液模拟软骨微环境,并与MSCs进行单层共培养,采用镜下观察、组织学染色、Ⅱ型胶原原位杂交的方法观察其相互影响。②采用乳化发泡-冷冻固化-去除表面活性剂法获得多孔PVA、PVA╱n-HA、PVA/Gel和聚乙烯醇/壳聚糖(PVA/Cs),并采用图像分析、力学测试、MTT法、流式细胞仪、ELISA法、与MSCs复合培养法、肌肉植入实验检测材料性能和生物相容性。③以多孔PVA或PVA/n-HA为上层材料,多孔PA66/n-HA为下层材料,制得一体化多孔材料PVA/PA66/n-HA和PVA/n-HA/PA66/n-HA,采用撕裂试验观察上下层间的结合强度,并植入兔膝关节骨软骨缺损处观察其修复效果。④以PA66/n-HA复合MSCs略低于周围软骨平面植入骨软骨缺损处,观察其修复效果。⑤以Tween 20为致孔剂制得多孔PVA/Gel,并植入兔膝关节缺损处,2周后,行第2次手术注射MSCs到材料上,观察其修复效果。
     结果①MSCs与软骨细胞共培养可以发生相互影响,当MSCs与软骨细胞比例为2:1时,对维持软骨细胞外基质的分泌和促进软骨细胞Ⅱ型胶原mRNA的表达是较有利的;软骨细胞的培养回收液可以引起MSCs形态上的轻度类软骨样改变和诱导MSCsⅡ型胶原mRNA的强表达,但细胞有肥大现象;MSCs回收液则对软骨细胞Ⅱ型胶原表型的维持有一定作用。
     ②制得的多孔PVA及其复合物,亲水性好,有100~3001ma的大孔和10μm以下的微孔两级孔结构,孔与孔之间相互相互贯通,孔隙率在80%左右,有一定韧性和弹性。MTT法、肌肉植入、ELISA法、流式细胞仪检测表明,材料清洗3天,会有一定的表面活性剂(OP)残留,对材料生物相容性有一定负面影响;PVA复合物中以PVA/Gel、PVA/n-HA、PVA的生物相容性较好,其中,PVA/Gel与MSCs黏附较好,PVA/Cs也能与MSCs黏附,但肌肉植入该材料早期炎性反应较重,且在体外对软骨细胞增殖不利。
     ③一体化多孔PVA/PA66/n-HA上下层之间的结合强度约4.00±2.21N。植入膝关节4月后,PVA/n-HA/PA66/n-HA的软骨修复效果优于PVA/PA66/n-HA,两组的下层材料均有胶原和骨组织长入。
     ④以PA66/n-HA复合MSCs植入骨软骨缺损处,并略低于周围软骨平面,4个月后软骨修复效果较为理想,修复的软骨主要表达Ⅱ型胶原,少量表达Ⅰ型胶原。
     ⑤制得的多孔PVA/Gel也有100μm以上的大孔和10μm以下的微孔两级孔结构,孔隙率约76%,孔与孔间相互贯通;采用2次手术的方法注射MSCs到关节缺损处的材料上,可以有效的促进软骨修复,修复的软骨已十分接近透明软骨(术后4月),但材料稳定性还不够。
     结论软骨细胞与软骨细胞回收液所模拟的软骨微环境对MSCs向软骨方向分化有一定的诱导作用,这为采用MSCs作为种子细胞修复软骨损伤提供了证据,也为诱导MSCs向软骨细胞方向分化提供了一个新思路;PA66/n-HA在骨软骨损伤的修复中起了关键作用,能够维持即刻稳定和远期稳定;PVA/Gel是一种较好的软骨修复材料,未来需进一步寻找增加PVA黏附性的新方法,如进行表面修饰、添加其他材料等或制成可降解PVA;并与PA66/nHA结合,研制新的一体化多孔材料。
Objective The purposes of this study were to investigate the mesenchymal stem cells(MSCs) affected by microenvironment of cartilage and to research the features and biocompatibility of porous Poly(vinyl alcohol) (PVA)and its composite. In addition,we wanted to preliminary observed the repairing results of knee osteochondral defects in the rabbit by using new porous integrative interlocked biomaterial, Polyamide 66/nano-Hydroxyapatite(PA66/n-HA) and Poly(vinylalcohol)/Gelatin(PVA/Gel) composite.
     Methods①Chondrocyte of rabbit and its disused culture medium were used to simulate the cartilaginous microenvironment. We observed the effect cocultue chondrocyte or its disused cultue medium with MSCs on cartilaginous phenotype in vitro by microscope observation, toluidine blue staining and in situ hybridization for type II collagen mRNA.②Porous PVA , PVA/n-HA,PVA/Gel,Poly(vinyl alcohol)/Chitosan(PVA/Cs) materials were prepared by emusifier-foaming, freeze-drying and surfactant-cleaning method. The features and biocompatibility of above materials were further studyed by image analysis,mechanics test,MTT,ELISA assay,cocultue with MSCs and muscle implanting and so on.③prepared new porous integrative interlocked PVA/PA66/n-HA or PVA/n-HA/PA66/n-HA biomaterials,which upper layer material is PVA or PVA/n-HA and underlayer is PA66/n-HA. We evaluated their mechanics feature and the effects of repairing knee joint osteochondral defect of rabbits.④PA66/n-HA scaffold,which was seeded with MSCs in vitro,was implanted to knee joint osteochondral defect of rabbits.At the same time, the scaffold was lower than normal cartilage a little. After 1 and 4 months,we investigate the repairing effects.⑤We have also explored repairing effects of knee joint osteochondral defect of rabbits by implanting porous PVA/Gel,which was prepare by Tween-20 foaming agent.Differented to above method, MSCs were injected to PVA/Gel after materials implanting to defect 2 weeks.
     Results①Cocultue chondrocyte with MSCs would affect each other.Perhaps the 2:1 ratio of MSCs and chondrocytes was beneficial to maintenance cartilaginous matrix and increasing collagen II mRNA expression. The disused culture medium of chondrocytes could also induce MSCs to chondrocyte-like change and express collagen II mRNA,but the cells appeared hypertrophic.②The materials obtained by this method had high hydrophilicity,porosity,pore interconnectivity and proper elasticity. Scanning electron microscopy (SEM) showed that the material had a lot of micropores (less than 10 urn) on the walls of macropores (100~300μm). Porous PVA,PVA/n-HA and PVA/Gel had relative better biocompatibility,compared with control materials. PVA/Gel and PVA/Cs had better cellular compatibility with MSCs,but the latter had bigger inflammatory reaction when muscle implanting.③PVA/n-HA/PA66/n-HA had better repairing effects of knee joint osteochondral defect of rabbits.Underlayer material was stable.④PA66/n-HA scaffold,which was seeded with MSCs , had better repairing effects of knee joint osteochondral defect of rabbits.After 4 months,repaired cartilage main expressed collagen II ,also expressed collagen I .⑤The PVA/Gel obtained by this method also had good porosity(76%),pore interconnectivity. Scanning electron microscopy (SEM) showed that the material had micropores and macropores. Afer 4 months, porous PVA/Gel,which was injected MSCs,had a satisfactory repairing results.But the stability of material was not enough.
     Conclusion Our study suggests that microenvironment of cartilage,to some extent,can indue or maintain cartilaginous phenotype in vitro. So,our data provide clues to induce MSCs differentiation to cartilaginous direction.PA66/n-HA plays a key role in keeping instantly long-term stability of materials.Porous PVA/Gel is a better material for cartilage repairing.In the future, seeking for new methods such as surface modification ,adding other materials or preparing degradation PVA are required.
引文
1 Browne JE, Sasser TM, Branch TP. Autologous Chondrocyte Implantation. Techniques in Knee Surgery, 2006; 5(4): 238-251
    2 Hunter W. Of the structure and disease of articulating cartilages. Philos Trans R Soc Lond. 1743; 42: 514-521.
    3 Kuo CK, Wan-Ju Li, Mauck RL, Tuan RS. Cartilage tissue engineering: its potential and uses. Current Opinion in Rheumatology, 2006; 18(1): 64-73.
    4 Oh SH, Kang SG, Kim ES, et al. Fabrication and characterization of hydrophilic poly(lactic-coglycolic acid)/poly(vinyl alcohol) blend cell scaffolds by melt-molding particulate-leaching method. Biomaterials, 2003; 24(22): 4011-4021.
    5 Cho SH, Oh SH, Lee JH. Fabrication and characterization of porous alginate/polyvinyl alcohol hybrid scaffolds for 3D cell culture. Polymer Edn, 2005; 16(8): 933-947.
    6 郭大刚.聚乙烯醇在生物医学工程中的应用研究进展.生物医学工程学杂志,2005;22(3):602-605.
    7 Schmedlen RH, Masters KS, West JL. Photocrosslinkable polyvinyl alcohol hydrogels that can be modified with cell adhesion peptides for use in tissue engineering. Biomaterials, 2005; 23(22): 4325-4332.
    1 Sharma B,Williams CG,Manson P,Elisseeff JH.In vivo chondrogenesis of mesenchymal stem cells in a photopolymerized hydrogel.Plastic and Reconstructive Surgery,2007;l 19(1):112-120
    2 Metsaranta M,Kujala UM,Pelliniemi L,et al.Evidence for insufficient chondrocytic differentiation during repair of full-thickness defects of articular cartilage.Matrix Biol,1996;15(i):39-47
    3 Wakitani S, Goto T, Pineda SJ,et al. Mesenchymal cell-based repair of large, fullthickness defects of articular cartilage. J Bone Joint Surg Am1994;76(4):579-592.
    4 Friedenstein AJP-SI,Petrakova KV.Osteogenesis in transplants of bone marrow cells.The Journal of Embryological Experimental Morphology,1966,16(3): 381-390.
    5 Prockop DJ. Marrow stromal cells as stem cells for nonhematopoietic tissues. Science,1997;276(5309):71-74.
    6 Pittenger MF, Mackay AM, Beck SC,et al. Multilineage potential of adult human mesenchymal stem cells. Science,1999;284(5411):143-147.
    7 Deans RJ, Moseley AB. Mesenchymal stem cells: biology and potential clinical uses. Exp Hematol,2000;28(8):875-884.
    8 Barry F, Boynton R, Murphy M, Haynesworth S, Zaia J. The SH-3 and SH-4 antibodies recognize distinct epitopes on CD73 from human mesenchymal stem cells. Biochem Biophys Res Commun,2001;289(2):519-524.
    9 Barry FP, Boynton RE, Haynesworth S,Murphy JM, Zaia J. The monoclonal antibody SH-2,raised against human mesenchymal stem cells,recognizes an epitope on endoglin (CD 105). Biochem Biophys Res Commun,1999;265(1):134-139.
    10 Van Laar JM, Tyndall A. Adult stem cells in the treatment of autoimmune diseases. Rheumatology,2006;45(10):l 187-1193
    11 Kuo CK,Wan-Ju Li,Mauck RL,Tuan RS.Cartilage tissue engineering: its potential and uses.Current Opinion in Rheumatology 2006,18(1):64-73.
    12 Li WJ, Tuli R, Okafor C,et al. A three-dimensional nanofibrous scaffold for cartilage tissue engineering using human mesenchymal stem cells. Biomaterials,2005; 26(6):599-609.
    13 Stevens MM,Marini RP,Martin I,et al.FGF-2 enhances TGF-betal-induced periosteal chondrogenesis. J Orthop Res,2004; 22(5):1114-1119.
    14 Lee JE, Kim KE, Kwon IC, et al. Effects of the controlled-released TGF-beta 1 from chitosan microspheres on chondrocytes cultured in a collagen/chitosan/glycosaminoglycan scaffold. Biomaterials,2004; 25(18):4163-4173.
    15 Barbero A, Grogan S, Schafer D, et al. Age related changes in human articular chondrocyte yield, proliferation and post-expansion chondrogenic capacity.Osteoarthritis Cartilage,2004; 12(6):476-484.
    16 Tay AG, Farhadi J, Suetterlin R, et al. Cell yield, proliferation, and postexpansion differentiation capacity of human ear, nasal, and rib chondrocytes. Tissue Eng,2004;10(5-6):762-770.
    17 Hegewald AA, Ringe J, Bartel J, et al. Hyaluronic acid and autologous synovial fluid induce chondrogenic differentiation of equine mesenchymal stem cells: a preliminary study. Tissue Cell,2004;36(6):431-438.
    18 Glowacki J, Yates K, Maclean R, Mizuno S. In vitro engineering of cartilage: effects of serum substitutes, TGF-beta, and IL-1 alpha. Orthod Craniofac Res,2005;8(3):200-208.
    19 Vunjak-Novakovic G, Meinel L, Altaian G, Kaplan D. Bioreactor cultivation of osteochondral grafts. Orthod Craniofac Res 2005;8(3):209-218.
    20 Chua KH, Aminuddin BS, Fuzina NH, Ruszymah BH. Interaction between insulin-like growth factor-1 with other growth factors in serum depleted culture medium for human cartilage engineering. Med J Malaysia 2004; 59(Suppl B):7-8.
    21 Indrawattana N, Chen G, Tadokoro M, et al. Growth factor combination for chondrogenic induction from human mesenchymal stem cell. Biochem Biophys Res Commun 2004;320(3):914-919.
    22 Wang Y, Kim UJ, Blasioli DJ, et al. In vitro cartilage tissue engineering with 3D porous aqueous-derived silk scaffolds and mesenchymal stem cells. Biomaterials,2005;26(34):7082-7094.
    23 Verbruggen G,Wang J ,Wang L,et al. Analysis of chondrocyte functional markers and pericellular matrix components by flow cytometry.Methods Mol Med ,2004; 100:183-208.
    24 Olney RC ,Wang J ,Sylvester J E ,et al. Growth factor regulation of human growth plate chondrocyte proliferation in vitro.Biochem Biophys Res Commun ,2004;317(4): 1171 -1182.
    25 Tsuchiya K, Chen G,Ushida T,Matsuno T,Tateishi T.The effect of coculture of chondrocytes with mesenchymal stem cells on their cartilaginous phenotype in vitro. Materials Science and Engineering C,2004;24:391-396
    26 Sekiya I,Vuoristo JT,Larson BL,Prockop DJ. In vitro cartilage formation by human adult stem cells from bone marrow stroma defines the sequence of cellular and molecular events during chondrogenesis.Proc. Natl. Acad. Sci. U. S. A. 2002;99(7):4397-4402.
    1 Byung SK, David JM. Development of biocompatible synthetic extracellular matrices for tissue engineering. Trends in Biotechnology, 2003; 16(5): 224-230.
    2 Cho SH, Oh SH, Lee JH. Fabrication and characterization of porous alginate/polyvinyl alcohol hybrid scaffolds for 3D cell culture. Polymer Edn, 2005; 16(8): 933-947.
    3 Raghunath J, Salacinski H, Sales K, et al. Advancing cartilage tissue engineering: the application of stem cell technology. Current Opinion in Biotechnology 2005, 16(5): 503-509.
    4 郭大刚.聚乙烯醇在生物医学工程中的应用研究进展.生物医学工程学杂志,2005;22(3):602-605.
    5 Schmedlen RH, Masters KS, West JL. Photocrosslinkable polyvinyl alcohol hydrogels that can be modified with cell adhesion peptides for use in tissue engineering. Biomaterials, 2005; 23(22): 4325-4332.
    6 Kang HG, Lee SB, Lee YM. Novel preparative method for porous hydrogels using overrun process. Polym Int, 2005; 54: 537-543.
    7 Yamaura H, Ikuta T, Yahiro H, et al. Solid State Ionics, 2005; 176(324): 269-274.
    8 牟元华,李玉宝,张翔等.一种制备纳米羟基磷灰石/聚乙烯醇多孔支架材料的新方法.功能材料,2005;36(10):1578-1583.
    9 徐钢梅,张彩霞,宁丽等.MTT法评价镓合金的细胞毒性.中华口腔医学杂志,2001;36(3):189-192.
    10 杨子彬.论植入体内医用材料的生物相容性.中国医疗器械信息,2006;12(7):36-39.
    11 Yourtee MD, Tong PY, Ro se LA, et al. Effect of spiroorthocarbonate volume modifier comonomers on the in vitro toxicology of trial non-shrinking dental epoxy copo lymers. Res Commun Mol Pathol Pharmacol, 1994; 86(3): 347.
    12 Heuff G, Steenbergen JJ, Van de Loosdrecht AA, et al. Isolation of cytotoxic Kupffer cells by a modified enzymatic assay: a methodological study. J Immunol Methods, 1993; 159(1-2): 115-123.
    13 Vande Vannet B, Hanssens JL, Wehrbein H. The use of three-dimensional oral mucosa cell cultures to assess the toxicity of soldered and welded wires. European Journal of Orthodontics. 2007; 29(1): 60-66.
    14 吕晓迎,Kappert HF.牙科材料细胞毒性评定的新方法(MTT试验).中华口腔医学杂志,1995;30:377-379.
    15 Hussain RF, Nouri AM, Oliver RT. A new approach for measurement of cytotoxicity using colorimetric assay. J Immunol Methods, 1993; 160(1): 89-96.
    16 Shi C, Zhu Y, Ran X, et al. Therapeutic potential of chitosan and its derivatives in regenerative medicine. Journal of Surgical Research, 2006; 133(2): 185-192.
    17 梅陵宣,刘正,张濒.IL-1α、IL-1β和TNF-αmRNA在实验性鼠根尖周炎中的表达.上海口腔医学,2001;10(1):16-18.
    18 Efron PA, Moldawer LL. Cytokines and Wound Healing: The Role of Cytokine and Anticytokine Therapy in the Repair Response. Journal of Bum Care & Rehabilitation, 2004; 25(2): 149-160.
    19 Rumalla VK, Borah GL. Cytokines, growth factors, and plastic surgery. Plast Reconstr Surg 2001; 108(3): 719-733.
    20 Loppnow H, Bil R, Hirt S, et al. Platelet-derived intedeukin-1 induces cytokine production, but not proliferation of human vascular smooth muscle cells. Blood 1998; 91(1): 134-141.
    21 Fong Y, Moldawer LL, Marano M, et al. Cachectin/TNF or IL-1 alpha induces cachexia with redistribution of body proteins. Am J Physiol 1989; 256(3 Pt 2): R659-665.
    22 刘金成,易定华,徐学增等.新型人工心脏辅助装置材料组织炎症反应观察.心脏杂志,2006;18(2):146-148.
    23 Gallo RL, Dorschner RA, Takashima S, et al. Endothelial. cell surface alkaline phosphatase activity is induced by IL-6 released during wound repair. J Invest Dermatol 1997; 109(4): 597-603.
    24 Lee KY, Mooney DJ. Hydrogels for tissue engineering. Chemical Reviews, 2001; 101(7): 1869-1879.
    25 Smetana KJr. Cell biology of hydrogels. Biomaterials, 1993; 14(14): 1046-1050.
    26 Saavedra Y, Mircea A. Mateescu M, Averill-Bates D, et al. Polyvinylalcohol three-dimensional matrices for improved long-term dynamic culture of hepatocytes. J Biomed Mater Res. 2003; 66(3): 562-570.
    27 Chih-Ta Lee, Po-Han Kung, Yu-Der Lee. Preparation of poly(vinyl alcohol)-chondroitin sulfate hydrogel as matrices in tissue engineering. Carbohydrate Polymers, 2005; 61: 348-354.
    28 Oh SH, Kang SG, Kim ES, et al. Fabrication and characterization of hydrophilic poly(lactic-coglycolic acid)/poly(vinyl alcohol) blend cell scaffolds by melt-molding particulate-leaching method. Biomaterials, 2003; 24(22): 4011-4021.
    1 Wei Jie, Li Yubao. Tissue engineering scaffold material of nano-apatite crystals and polyamide composite. European Polymer Journal, 2004; 40: 509-515.
    2 David D, Julia T, Louise Southwood, et al. Early events in cartilage repair after subchondral bone microfracture. Clinical Orthopaedics and Related Research, 2003; (407): 215-227
    3 An YH, Friedman RJ. Animal models of articular cartilage defect. Animal models in orthopaedic research. Boca Raton, FL: CRC Press LLC; 1999.
    4 Ushio K, Oka M, Hyon SH, et al. Attachment of Artificial Cartilage to Underlying Bone. J Biomed Mater Res Part B: Appl Biomater, 2004; 68(1): 59-68.
    5 Delecrin J, Oka M, Kumar P. Joint reactions against polymer particles: PVA-H versus UHMWPE. J Jpn Orthop Assoc 1990; 64: S1395.
    6 Noguchi T, Yamamuro T, Oka M, et al. Poly(vinyl alcohol) hydrogel as an artificial articular cartilage: Evaluation of biocompatibility. J Appl Biomater 1991; 2(2): 101-107.
    7 严永刚,李玉宝,汪建新,等.聚酰胺66/羟基磷灰石复合材料的制备和性能研究.塑料工业,2000;28(3):38-41.
    8 王学江,汪建新,李玉宝,等.常压下纳米级羟基磷灰石针状晶体的合成.高技术通讯,2000;11(6):92-95.
    9 郭颖,李玉宝,严永刚.纳米磷灰石晶体/聚酰胺66复合材料的制备和界面研究.四川大学学报(自然科学版),2002;39(3):479-482.
    10 王学江,李玉宝.羟基磷灰石纳米针晶与聚酰胺仿生复合生物材料研究.高技术通讯,2001;5:1-3.
    11 Xuejiang Wang, Yubao Li, Jie Wei, et al. Development of Biomimetic Nano-hydroxyapatite/Poly(Hexamethylene Adipamide) Composites. Biomatedals, 2002; 23(24): 4787-4791.
    12 Wei Jie, Li Yubao. Tissue Engineering Scaffold Material of Nano-apatite Crystals and Polyamide Composite. European Polymer Journal, 2004; 40: 509-515.
    13 Chen G, Ushida T, Tateishi T. Preparation of and poly(DL-lactic-co-glycolic acid) foams by use ice microparticulates. Biomatedals, 2001, 22(18): 2563-2567.
    14 Groot JH, Zijlstra FM, Kuipers HW, et al. Meniscal tissue regeneration in porous 50/50 copoly(L-lactic/ε-caprolactone) implants. Biomaterials, 1997, 18: 613-622.
    15 Nam YS, Yoon JJ, Park TG. A novel fabrication method of macroporous biodegradablr polymer scaffolds using gas foaming salt as a porogen additive. J Biomed Mater Res, 2000; 53: 1-7.
    16 Ma PX, Choi JW. Biodegradable polymer scaffolds with well-defined interconnected spherical pore network. Tissue Engineering, 2001; 7(1): 23-33.
    17 Murphy WL, Dennis RG, Kileny JL, et al. Salt fusion: an approach to improve pore interconnectivity within tissue engineering scaffolds. Tissue Engineering, 2002, 8(1): 43-52.
    18 傅文斌.精细石油化工.1990;(6):29-32.
    19 成四喜,骆有寿.日用化学工业,1989;33(2):33-36.
    20 莫湘涛,秦廷武杨志明.骨组织工程支架材料的降解和生物力学特性.医用生物力学,2004;19(1):56-60.
    21 王小红.骨修复材料的研究进展.生物医学工程学杂志,2001;18(4):647-652.
    22 张其清,梁屹.纳米技术在生物医学中的应用.中国医学科学院学报,2002;24(2):197-202.
    23 O'Driscoll SW. Preclinical cartilage repair: current status and future perspectives. Clin Orthop 2001; 391(Suppl.): 397-401.
    24 Reinholz GG, Lu L, Saris DBF, Yaszemski MJ, et al. Animal models for cartilage reconstruction. Biomaterials, 2004; 25(9): 1511-1521.
    25 Rudert M. Histological Evaluation of Osteochondral Defects: Consideration of Animal Models with Emphasis on the Rabbit, Experimental Setup, Follow-Up and Applied Methods. Cells Tissues Organs, 2002; 171(4): 229-240.
    26 Namba RS, Meuli M, Sullivan KM., Le AX., et al. Spontaneous repair of superficial defects in articular cartilage in a fetal lamb model. J Bone Joint Surg Am, 1998, 80(1): 4-10。
    27 Athanasiou KA, Korvick D, Schenck R. Biodegradable implants for the treatment of o steochondral defects in a goat model. Tissue Eng, 1997; 3(4): 363-373.
    28 Shapiro F, Koide S, Glimcher MJ. Cell origin and differentiation in the repair of fullthickness defects of articular cartilage. J Bone Joint Surg Am, 1993; 75: 532-553.
    1 Frosch KH, Drengk A, Krause P, et al. Stem cell-coated titanium implants for the partial joint resurfacing of the knee. Biomaterials, 2006; 27(12): 2542-2549.
    2 Radin EL, Rose RM. Role of subchondral bone in the initiation and progression of cartilage damage. Clin Orthop, 1986; (213): 34-40.
    3 严永刚,李玉宝,汪建新等.聚酰胺66/羟基磷灰石复合材料的制备和性能研究.塑料工业,2000;28(3):38-41.
    4 王学江,汪建新,李玉宝,等.常压下纳米级羟基磷灰石针状晶体的合成.高技术通讯,2000;11(6):92~95.
    5 郭颖,李玉宝,严永刚.纳米磷灰石晶体/聚酰胺66复合材料的制备和界面研究.四川大学学报(自然科学版),2002;39(3):479-482.
    6 王学江,李玉宝.羟基磷灰石纳米针晶与聚酰胺仿生复合生物材料研究.高技术通讯,2001;5:1~3.
    7 Xuejiang Wang, Yubao Li, Jie Wei, et al. Development of Biomimetic Nano-hydroxyapatite/Poly(Hexamethylene Adipamide) Composites. Biomaterials, 2002; 23(24): 4787-4791.
    8 Wei Jie, Li Yubao. Tissue Engineering Scaffold Material of Nano-apatite Crystals and Polyamide Composite. European Polymer Journal, 2004; 40: 509-515.
    9 孟纯阳,安洪,蒋电明等.纳米羟基磷灰石/聚酰胺66与人胚胎成纤维细胞的生物相容性研究.重庆医科大学学报,2005:10(2):169-172.
    10 Hegewald AA, Ringe J, Bartel J, et al. Hyaluronic acid and autologous synovial fluid induce chondrogenic differentiation of equine mesenchymal stem cells: A preliminary study. Tissue Cell,2004;36(6):431-438.
    11 Chen J,Wang C,Lu S,et al In vivo chondrogenesis of adult bone-marrow-derived autologous mesenchymal stem cells. Cell Tissue Res, 2005;319(3): 429-438.
    1 Lee KY, Mooney DJ.Hydrogels for tissue engineering.Chemical Reviews,2001;101(7): 1869-1879.
    2 Smetana KJr.Cell biology of hydrogels.Biomaterials, 1993;14(14):1046-1050.
    3 Saavedra Y,Mircea A.Mateescu M, Averill-Bates D, et al.Polyvinylalcohol three-dimensional matrices for improved long-term dynamic culture of hepatocytes.J Biomed Mater Res,Part A,2003;66(3): 562-570.
    4 Chih-Ta Lee, Po-Han Kung, Yu-Der Lee.Preparation of poly(vinyl alcohol)-chondroitin sulfate hydrogel as matrices in tissue engineering. Carbohydrate Polymers,2005; 61:348-354.
    5 Schmedlen RH, Masters KS,West JL. Photocrosslmkabie polyvinyl alcohol hydrogels that can be modified with cell adhesion peptides for use in tissue engineering. Biomaterials,2005;23(22):4325-4332.
    6 Cho SH,Oh SH,Lee JH.Fabrication and characterization of porous alginate/polyvinyl alcohol hybrid scaffolds for 3D cell culture.Polymer Edn;2005;16(8):933-947.
    7 Oh SH,Kang SG,Kim ES,et al. Fabrication and characterization of hydrophilic poly(lactic-coglycolic acid)/poly(vinyl alcohol) blend cell scaffolds by melt-molding particulate-leaching method. Biomaterials,2003;24(22): 4011-4021.
    8 Raghunath J,Salacinski H,Sales K,et al.Advancing cartilage tissue engineering: the application of stem cell technology. Current Opinion in Biotechnology 2005,16(5):503-509.
    9 Wakitani S, Goto T,Young RG,et al. Repair of large full-thickness articular cartilage defects with allograft articular chondrocytes embedded in a collagen gel.Tissue Eng,1998;4(4):429-444.
    1 Kuo CK, Wan-Ju Li, Mauck RL, Tuan RS. Cartilage tissue engineering: its potential and uses. Current Opinion in Rheumatology, 2006, 18(1): 64-73.
    2 Browne JE, Sasser TM, Branch TP. Autologous Chondrocyte Implantation. Techniques in Knee Surgery, 2006; 5(4): 238-251.
    3 Hunter W. Of the structure and disease of articulating cartilages. Philos Trans R Soc Lond. 1743; 42: 514-521.
    4 Freemont AJ, Hoyland J. Lineage plasticity and cell biology of fibrocartilage and hyaline cartilage: Its significance in cartilage repair and replacement. European Journal of Radiology, 2006; 57(1): 32-36.
    5 Joseph A,Buckwalter,Thomas A,et al.主编.陈启明,梁国穗,秦岭等主译.骨科基础科学—骨关节肌肉系统生物学和生物力学.北京:人民卫生出版社,2001年12月第2版第1次印刷:382
    6 David D, Julia T, Louise Southwood, et al. Early events in cartilage repair after subchondral bone microfracture. Clinical Orthopaedics and Related Research, 2003; (407): 215-227.
    7 Rudert M. Histological Evaluation of Osteochondral Defects: Consideration of Animal Models with Emphasis on the Rabbit, Experimental Setup, Follow-Up and Applied Methods. Cells Tissues Organs, 2002; 171(4): 229-240.
    8 Eyre DR. The collagens of articular cartilage. Semin. Arthritis Rheum. 1991; 21(3, Suppl 2), 2-11.
    9 Hasler EM, Herzog W, Wu JZ, Muller W, Wyss U. Articular cartilage biomechanics: theoretical models, material properties, and biosynthetic response. Crit Rev Biomed Eng 1999; 27(6): 415-488.
    10 Hunziker EB.Tissue sampling and preservation for morphological studies; in Maroudas,A., K.E. Kuettner (eds): Methods in Cartilage Research. London, Academic Press, 1990;19-25.
    11 Hunziker EB,Michel M,Studer D.Ultrastructure of adult human articular cartilage matrix after cryotechnical processing.Microsc Res Technol,1997;37(4): 271-284.
    12 Rudert M,Tillmann B.Tillmann.Detection of lymph and blood vessels in the human intervertebral disc by histochemical and immunohistochemical methods. Ann Anat,1993;175(3):237-242.
    13 Tsuchiya H, Kitoh H, Sugiura F, et al.Chondrogenesis enhanced by overexpression of sox9 gene in mouse bone marrow-derived mesenchymal stem cells. Biochem Biophys Res Commun,2003;301(2):338-343.
    14 MacLaughlin CA,Chiasson RB.Laboratory Anatomy of the Rabbit. Dubuque, Brown.
    15 Prudden TM.Experimental studies on the transplantation of cartilage. Am J Med Sci,1881;82:360-370.
    16 Salter RB,Simmonds DF,Malcom BW,Rumble EJ,et al. the effect of continuous passive motion on the healing of articular cartilage defects -An experimental investigation in rabbits. J Bone Joint Surg Am,57: 570-571.
    17 O'Driscoll SW. Preclinical cartilage repair: current status and future perspectives. Clin Orthop 2001 ;391(Suppl.):397-401.
    18 Reinholz GG, Lu L, Saris DBF, Yaszemski MJ, et al. Animal models for cartilage reconstruction. Biomaterials,2004; 25(9): 1511-1521.
    19 Wei X, J. Gao J, Messner K.Maturation-dependent repair of untreated osteochondral defects in the rabbit knee joint.J Biomed Mater Res 1997;34(1):63-72.
    20 Freed LE,Grande DA, Lingbin Z, et al.Joint resurfacing using allograft chondrocytes and synthetic biodegradable polymer scaffolds. J Biomed Mater Res, 1994;28(8):891-899.
    21 Wakitani S, Goto T, Pineda SJ,et al.Mesenchymal cell-based repair of large, fullthickness defects of articular cartilage.J Bone Joint Surg Am,1994;76(4):579-592.
    22 Rasanen T,Messner K.Regional variations of indentation stiffness and thickness of normal rabbit knee articular cartilage.J Biomed Mater Res,1996;31(4):519-524.
    23 Namba RS, Meuli M, Sullivan KM., Le AX.,et al. Spontaneous repair of superficial defects in articular cartilage in a fetal lamb model. J Bone Joint Surg Am,1998, 80(1): 4-10.
    24 An YH, Friedman RJ. Animal models of articular cartilage defect. Animal models in orthopaedic research. Boca Raton, FL:CRC Press LLC; 1999.
    25 Athanasiou KA, Fischer R, Niederauer GG, et al. Effects of excimer laser on healing of articular cartilage in rabbits.J Orthop Res,1995;13(4):483-94.
    26 An YH, Friedman RJ, Jiang M, et al. Bone ingrowth to implant surfaces in an inflammatory arthritis model. J Orthop Res,1998;16(5):576-584.
    27 Martino F, Ettorre GC, Patella V, et al. Articular cartilage echography as a criterion of the evolution of osteoarthritis of the knee. Int J Clin Pharmacol Res,1993;13(Suppl):35-42.
    28 Shapiro F, Koide S,Glimcher MJ.Cell origin and differentiation in the repair of full-thickness defects of articular cartilage. J. Bone Joint Surg Am1993; 75(4): 532-553.
    29 O'Driscoll S. The healing and regeneration of articular cartilage. J Bone Jt Surg 1998; 80(12): 1795-1812.
    30 Hunziker EB. Articular cartilage repair: basic science and clinical progress. A review of the current status and prospects. Osteoarthritis Cartilage 2002; 10(6): 432-463.
    31 Williams DF. To engineer is to create: the link between engineering and regeneration. TRENDS in Biotechnology, 2006; 24(1): 4-8.
    32 Dennis JE, Cohen N, Goldberg VM, et al. Targeted delivery of progenitor cells for cartilage repair. Journal of Orthopaedic Research, 2004; 22(4): 735-741.
    33 Williams DF. The inert bioactivity conundrum. In The Implant Tissue Interface (Ellingsen, J. E., ed.), CRC Press, 2003; 407-430
    34 闫玉华,殷湘慧.人工关节的研究现状和发展趋势。生物骨科材料与临床研究,2004;1(4):39-43.
    35 Ushio K, Oka M, Hyon SH, et al. Attachment of Artificial Cartilage to Underlying Bone. J Biomed Mater Res Part B: Appl Biomater, 2004; 68(1): 59-68.
    36 Delecrin J, Oka M, Kumar P. Joint reactions against polymer particles: PVA-H versus UHMWPE. J Jpn Orthop Assoc, 1990; 64: 1395.
    37 Noguchi T, Yamamuro T, Oka M, et al. Poly(vinyl alcohol) hydrogel as an artificial articular cartilage: Evaluation of biocompatibility. J Appl Biomater 1991; 2(2): 101-107.
    38 Nesic D, Whiteside R, Brittberg M, et al. Cartilage tissue engineering for degenerative joint disease.Advanced Drug Delivery Reviews,2006;58(2):300-322.
    39 Kim BS,Mooney DJ.Development of biocompatible synthetic extracellular matrices for tissue engineering. Trends in Biotechnology, 1998;16(5):224-230.,
    40 Klagsbrun M.Large-scale preparation of chondrocytes.Methods Enzymol,1979;58:560-564.
    41 Johnstone B,Hering TM,Caplan AI, et al.In vitro chondrogenesis of bone marrow-derived mesenchymal progenitor cells.Exp Cell Res 1998;238(1):265-272.
    42 Nakahara H,Bmder SP,Haynesworth SE,et al.Bone and cartilage formation in diffusion chambers by subcultured cells derived from the periosteum. Bone,1990;ll(3):181-188.
    43 Dounchis JS, Goomer RS, Harwood FL, et al.Chondrogenic phenotype of perichondrium-derived chondroprogenitor cells is influenced by transforming growth factor-beta 1.J Orthop Res,1997;15(6):803-807.
    44 Williams JT, Southerland SS, Souza J, et al.Cells isolated from adult human skeletal muscle capable of differentiating into multiple mesodermal phenotypes. Am Surg,1999;65(1):22-26.
    45 Keating A.Mesenchymal stromal cells.Current Opinion in Hematology,2006,13(6):419-425.
    46 Tse WT, Pendleton JD, Beyer WM, Egalka MC. et al. Suppression of allogeneic T-cell proliferation by human marrow stromal cells: implications in transplantation. Transplantation,2003,75(3):389-397.
    47 Le Blanc K, Tammik C, Rosendahl K, et al.HLA expression and immunologic properties of differentiated and undifferentiated mesenchymal stem cells. Experimental Hematology,2003,31(10): 890-896.
    48 Le Blanc K, Rasmusson I,Sundberg B,et al.Treatment of severe acute graft-versus-host disease with third party haploidentical mesenchymal stem cells/The Lancet,2004;363(9419):1439-1441.
    49 Di Nicola M, Carlo-Stella C, Magni M, et al. Human bone marrow stromal cells suppress T-lymphocyte proliferation induced by cellular or nonspecific mitogenic stimuli. Blood,2002,99(10):3838-3843.
    50 Horwitz E, Le Blanc K, Dominici M,et al.Clarification of the nomenclature for MSC: the International Society for Cellular Therapy position statement. Cytotherapy 2005;7(5):393-405.
    51 Van Laar JM,Tyndall A.Adult stem cells in the treatment of autoimmune diseases. Rheumatology,2006;45(10):1187-1193
    52 Javazon EH,Beggs KJ,Flake AW.Mesenchymal stem cells: Paradoxes of passaging. Experimental Hematology,2004;32(5):414-425.
    53 Pittenger MF, Mackay AM, Beck SC, et al. Multilineage potential of adult human mesenchymal stem cells. Science. 1999;284(5411):143-147.
    54 Prockop DI.Marrow stromal cells as stem cells for nonhematopoietic tissues. Science. 1997;276(5309):71-74
    55 Pittenger MF, Mosca JD, Mclntosh KR.Human mesenchymal stem cells: progenitor cells for cartilage, bone, fat and stroma.Curr Top Microbiol Immunol. 2000;251:3-11.
    56 Pereira RF, Halford KW, O'Hara MD, et al. Cultured adherent cells from marrow can serve as long-lasting precursor cells for bone, cartilage,and lung in irradiated mice. Proc Natl Acad Sci USA,1995;92(11):4857-4861.
    57 De Ban C, Pringle S,Pitzalis C,et al. The stem cell niche: a new target in medicine. Current Opinion in Orthopaedics,2006,17:398-404.
    58 Li WJ, Tuli R, Okafor C,et al. A three-dimensional nanofibrous scaffold for cartilage tissue engineering using human mesenchymal stem cells. Biomaterials,2005;26(6):599-609.
    59 Stevens MM,Marini RP,Martin I,et al.FGF-2 enhances TGF-betal-induced periosteal chondrogenesis.J Orthop Res,2004; 22(5):1114-1119.
    60 Lee JE, Kim KE, Kwon IC,et al.Effects of the controlled-released TGF-beta 1 from chitosan microspheres on chondrocytes cultured in a collagen/chitosan/glycosaminoglycan scaffold.Biomaterials,2004; 25(18):4163-4173.
    61 Barbero A, Grogan S, Schafer D,et al.Age related changes in human articular chondrocyte yield, proliferation and post-expansion chondrogenic capacity.Osteoarthritis Cartilage,2004; 12(6):476-484.
    62 Tay AG, Farhadi J, Suetterlin R,et al.Cell yield, proliferation, and postexpansion differentiation capacity of human ear, nasal, and rib chondrocytes. Tissue Eng,2004;10(5-6):762-770.
    63 Hegewald AA, Ringe J,Bartel J,et al.Hyaluronic acid and autologous synovial fluid induce chondrogenic differentiation of equine mesenchymal stem cells: a preliminary study.Tissue Cell,2004; 36(6):431-438.
    64 Glowacki J, Yates K, Maclean R, Mizuno S.In vitro engineering of cartilage: effects of serum substitutes, TGF-beta, and IL-1 alpha. Orthod Craniofac Res,2005;8(3):200-208.
    65 Vunjak-Novakovic G,Meinel L,Altman G,Kaplan D.Bioreactor cultivation of osteochondral grafts.Orthod Craniofac Res,2005;8(3):209-218.
    66 Chua KH, Aminuddin BS, Fuzina NH, Ruszymah BH. Interaction between insulin-like growth factor-1 with other growth factors in serum depleted culture medium for human cartilage engineering. Med J Malaysia 2004; 59(Suppl B):7-8.
    67 Indrawattana N,Chen G,Tadokoro M,et al.Growth factor combination for chondrogenic induction from human mesenchymal stem cell. Biochem Biophys Res Commun,2004;320(3):914-919.
    68 Wang Y,Kim UJ,Blasioli DJ,et al. In vitro cartilage tissue engineering with 3D porous aqueous-derived silk scaffolds and mesenchymal stem cells. Biomaterials,2005;26(34):7082-7094.
    69 Sharma B,Williams CG,Manson P,Elisseeff JH.In vivo chondrogenesis of mesenchymal stem cells in a photopolymerized hydrogel.Plastic and Reconstructive Surgery,2007;l 19(1):112-120
    70 Park Y, Sugimoto M, Watrin A, et al.BMP-2 induces the expression of chondrocyte-specific genes in bovine synovium-derived progenitor cells cultured in three-dimensional alginate hydrogel.Osteoarthritis Cartilage,2005;13(6):527-536.
    71 Davidson D, Blanc A, Filion D, et al.Fibroblast growth factor (FGF) 18 signals through FGF receptor 3 to promote chondrogenesisJ Biol Chem,2005;280(21):20509-20515.
    72 Kaplan BA, Gorman CR, Gupta AK, et al. Effects of transforming growth factor Beta and insulinlike growth factor 1 on the bidmechanical and histologic properties of tissue-engineered cartilage. Arch Facial Plast Surg 2003;5(1):96-101.
    73 Westreich R,Kaufman M,Gannon P,Lawson W. Validating the subcutaneous model of injectable autologous cartilage using a fibrin glue scaffold. Laryngoscope,2004;114(12):2154-2160.
    74 Veilleux N,Spector M.Effects of FGF-2 and IGF-1 on adult canine articular chondrocytes in type II collagen-glycosaminoglycan scaffolds in vitro.Osteoarthritis Cartilage,2005; 13(4):278-286.
    75 Hegewald AA, Ringe J, Bartel J, et al.Hyaluronic acid and autologous synovial fluid induce chondrogenic differentiation of equine mesenchymal stem cells: A preliminary study. Tissue Cell,2004;36(6): 431-438.
    76 Chen J,Wang C,Lu S,et al. In vivo chondrogenesis of adult bone-marrow-derived autologous mesenchymal stem cells.Cell Tissue Res,2005;319(3):429-438.
    77 Lu L, Zhu X, Valenzuela RG, Currier BL,Yaszemski MJ.Biodegradable polymer scaffolds for cartilage tissue engineering.Clin Orthop,2001;(391 Suppl):251-270.
    78 Wakitani S,Goto T,Young RG,et al.Repair of large full-thickness articular cartilage defects with allograft articular chondrocytes embedded in a collagen gel. Tissue Eng,1998;4(4):429-444.
    79 Cho SH,Oh SH,Lee JH.Fabrication and characterization of porous alginate/polyvinyl alcohol hybrid scaffolds for 3D cell culture. Polymer Edn,2005;16(8):933-947.
    80 Raghunath J,Salacinski H,Sales K,et al.Advancing cartilage tissue engineering: the application of stem cell technology. Current Opinion in Biotechnology,2005,16(5):503-509.
    
    81 Athanasiou KA , Korvick D, Schenck R. Biodegradable implants for the treatment of o steochondral defects in a goat model.Tissue Eng,1997; 3(4):363-373.
    
    82 Cucchiarini M, Madry H.Gene therapy for cartilage defects. J Gene Med, 2005;7(12):1495-1509.
    
    83 Butler DL, Goldstein SA, Guilak F.Functional tissue engineering: the role of biomechanics. J Biomech Eng,2000;122(6):570-575.