食物蛋白与壳聚糖相互作用及其在食品体系的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
如何有效利用蛋白质与多糖的相互作用来构建(或设计)具有不同结构功能特性的新食品及食品配料是目前食品研究领域的热点问题。壳聚糖是世界上产量仅次于纤维素的天然多糖,其在医药和天然高聚物领域有一定的研究。但是,壳聚糖在食品领域的研究较少,尤其利用壳聚糖与食物蛋白的相互作用构建食品结构及配料的系统研究更是空白。本文系统研究了不同pH、蛋白与多糖复合比、离子强度和温度等条件下的食物蛋白与壳聚糖的相互作用机制,并深入探讨了食物蛋白-壳聚糖复合物在乳液稳定性、油脂抗氧化及凝胶结构修饰方面的应用前景,主要研究结果如下:
     (1)本文系统研究了β-伴大豆球蛋白(7S)和大豆球蛋白(11S)与壳聚糖(CS)的相互作用及复合物稳定性。通过调节pH值(pH3-8)、复合比(0.05、0.1和0.2g g-1)、壳聚糖分子量(150、350和500kDa)、离子强度(100mM)和温度(95°C)的方式对比研究了7S-CS和11S-CS所形成的复合体系的相行为,微结构及稳定性。结果显示7S-CS和11S-CS的相互作用是静电相互作用,两种体系均在体系电荷接近等电点时发生静电凝聚现象(Coacervation),在体系ζ-电位为+20~+30mV时形成可溶性复合物(Soluble complex),说明体系电荷量是体系稳定性的决定因素。壳聚糖的分子量由于对体系的电荷影响较小,从而对复合体系稳定性的影响较小;pH、复合比、热处理和离子强度由于对体系的电荷影响较大,所以对复合体系稳定性的影响较大。
     (2)本文研究了11S-CS可溶性复合物的形成、界面吸附及其与乳液稳定性之间的关系。利用等温量热滴定(ITC)、浊度滴定和粒度分布的方法研究了11S-CS可溶性复合物的形成过程,发现在pH4.5,复合比0.1g g-1,无离子添加时形成的可溶性复合物为稳定状态,此时ζ-电位值为+27.95mV。利用动态界面吸附测定技术发现可溶性复合物的形成有助于提升复合物在油-水界面上的吸附效果。通过可溶性复合物形成的乳液稳定性的研究发现,复合乳液在pH4.5,复合比0.1-0.2g g-1时具有最好的乳化稳定性和长期储藏稳定性。研究表明,利用蛋白多糖可溶性复合物在酸性条件下的形成可以制备一种具有良好酸性pH稳定的大豆蛋白-壳聚糖复合乳液。
     (3)在上述研究基础上,本文研究了7S-CS复合乳液的抗菌稳定性,制备获得一种在酸性条件下既保证物理稳定性又具有抗菌性的乳液。首先乳液稳定性的研究发现复合乳液在低pH值(pH3.0-4.0)具有较好的物理稳定性。抑菌环实验说明复合乳液对金黄色葡萄球菌(S. aureus,革兰氏阳性菌),枯草芽孢杆菌(B. subtilis,革兰氏阳性菌),大肠杆菌(E. coli,革兰氏阴性菌),沙门氏菌(Salmonella,革兰氏阴性菌)均有一定的抑制作用。抗真菌(面包酵母,S. cerevisiae)储藏稳定性实验体现出7S-CS复合乳液较好的抗菌储藏稳定性。本文结合可溶性复合物界面性质的观点提出将复合抗菌剂用于油-水界面,使其起到稳定乳液及抗菌的双重功效的新概念。
     (4)本文初步探索了SPI-CS的凝聚物(Coacervate)的形成及在油脂的包裹和抑制氧化方面的效果。凝聚物产率、流变学的结构学研究说明,凝聚物通过SPI带负电荷的羧基基团与CS带正点的氨基基团结合形成。pH6.5-7.0、复合比0.1-0.2g g-1条件下形成的SPI-CS凝聚物表现出较高的粘度,并且这类凝聚物具有弹性模量(G')大于粘性模量(G")的弱凝胶型的流变学特性。对于凝聚物用于油脂包裹的研究发现,这种方法可有效的提升包裹效率,减少被包裹油脂与外界的接触从而明显的抑制了油脂的氧化。
     (5)本文系统研究了壳聚糖对乳清分离蛋白(WPI)在酸性条件下形成的热置凝胶的结构与质构修饰作用。微结构显示在pH3.5和4.0时形成了完全不同的复合凝胶类型,pH3.5时形成了相分离型的(Phase-separated)复合凝胶,而pH4.0形成了结合型的(Coupled)复合凝胶,这两者之间的区别在于体系中蛋白与多糖的相互作用方式的不同,并且后者更易受到离子强度的影响。结合凝胶微结构、质构学及物理性质的结果发现,凝胶的微结构直接决定了凝胶的质构及保水性,并不依赖于pH是酸性或碱性。WPI-CS复合凝胶具有蛋白连续型(Protein continuous)的微结构时具有好的凝胶强度及较高的保水性,但具有粗线状(Coarse stranded)的微结构会导致凝胶强度和保水性的降低。
     (6)本文研究了甲壳素微纤维材料(Chitin microfiber,CMF)与大豆7S蛋白复合凝胶的流变学及微结构特性。利用微射流高压均质的方式制备了一种甲壳素微纤维材料,这种材料具有较高的体系电荷(+30mV)并长期稳定的悬浮在水相中(2个月)。红外光谱的分析说明微纤维的化学结构在处理前后并未受到破坏。流变学研究发现,甲壳素微纤维材料能显著的提高TG酶诱导7S冷置凝胶的凝胶强度,并且提高程度赖于微纤维材料的添加量。凝胶网络结构的结果显示7S-CMF复合凝胶形成了蜂窝型的微结构,并且结构孔径明显小于7S凝胶。分析CMF对凝胶的增强机理可能是由于其参与了凝胶的形成,增加了蛋白网络承受外力的能力并有效的防止凝胶内部结构的破裂出现。
The exploitation of protein-polysaccharide interactions offers opportunities for thedesign of new food structures with different functional properties and it has been of greatconcern in food research field. As the second largest abundant natural polysaccharide in theworld, chitosan (CS) and its derivatives shows wide application prospect due to its cost andfunctional properties. So far, the investigations regarding using food protein-chitosaninteraction to tailor the food structure are limited, especially in soy protein-based foodsystem.Consequently, this thesis systematically studied the effect of pH, mixing ratio, ionicstrength and temperature on the mechanism of interaction between food protein and chitosan.The formed complex and coacervate with different functional properties were theninvestigated in food emulsion and food gel to show their application. The main results are asfollows:
     (1) This study explored the interaction between the β-conglycinin (7S) and glycinin (11S)and chitosan (CS) and investigated the influence of pH (pH3-8), mixing ratio (0.05、0.1and0.2g g-1), chitosan molecular weight (150、350and500kDa), ionic strength (100mM) andheat treatment (95°C). The turbidity versus ζ-potential pattern showed that, independent ofprotein, the coacervation of7S-CS and11S-CS mixtures were all obtained at chargeneutralization pH while soluble complex were all obtained atζ-potential of+20to+30mV,indicating the7S-CS and11S-CS mixtures were electrostatically driven. The molecularweight of chitosan showed less effect on the stability of mixtures. Mixing ratio as well as heattreatment and ionic strength, however, showed great effect on the stability of mixtures.
     (2) The formation and interfacial adsorption of11S-CS soluble complex wereinvestigated at acidic pH. The stability of the mixed emulsion stabilized by the complex wasalso evaluated at pH4.5. Turbidimetric analysis, isothermal titration calorimetry (ITC) anddynamic light scattering were used to characterize the dynamic formation of the complex. Theresults showed that soluble complexes were formed at pH4.5and saturated at mixing ratio of0.1g g-1, showing theζ-potential of+27.95mV. It also can be found that the soluble complexshowed improved interfacial adsorption. The droplet size and confocal observation of themixed emulsion fabricated with11S-CS soluble complex displayed improved stability at mixing ratios of0.1-0.2g g-1, suggesting the synergistic effect of the two molecules. Weconcluded that interfacial and emulsifying properties of glycinin could be improved byformation of11S-CS soluble complex at acidic pH.
     (3)To fabricate a soy protein emulsion with good storage stability against microorganism,we investigated the stability and antimicrobial activity of7S-CSmixed emulsion at acidicpHs.Results of droplet size and microstructure showed7S/CS mixed emulsions were stable atacidic pHs. Agar well diffusion experiment suggested that the mixed emulsions inhibited allthe microorganisms (S. aureus, B. subtilis, E. coli andSalmonella).As for the storage test,results showed that7S-CS mixed emulsion displayed an significantly (p <0.05) improvedstorage stability than control both under un-inoculated and inoculated condition because thepresence of chitosan. The fabrication of7S-CS mixed emulsion illuminated a new idea thatantibacterial agent can be used on the oil-water interface and can play a multifunctional rolein increasing acidic stability and antimicrobial activity of emulsion in order to extendshelf-life.
     (4) The SPI-CS coacervation and its application in inhibition of lipid oxidation wereinvestigated. Results showed that the coacervate formed between the negatively chargedcarboxyl group on SPI and the positively charged amino group on CS. The coacervates withhighest viscosity were formed at pH6.5-7.0, mixing ratio0.1-0.2g g-1, showing a weakgel-like rheological properties (G'> G"). A coated emulsion with high encapsulationefficiency can be fabricated in this way thereby reducing the lipid-air contact and inhibition oflipid oxidation.
     (5)This study explored the microstructure, textural and physical properties of WPI-CSmixed gels at pH3.5and4.0. The results of microstructure showed that WPI-CS mixed gelsdisplayed a total different gel structure at different pH. Phase-separated gel structure wasobtained at pH3.5while coupled structure was obtained at pH4.0because differentinteraction occurred. Ionic strength showed greater effect on coupled gel. The results in thispaper suggested that segregative phase separation can be used to alter the fracture and waterholding properties of WPI gels formed below their pI, in a way similar to that seen above theirpI, indicating that the microstructure decide the textural and physical properties. WPI-CSmixed gels with protein continuous network showed higher gel strength and water holding value while mixed gels with coarse stranded network showed poor gel strength and waterholding value.
     (6) A stable positively charged (+30mV) chitin microfiber (CMF) suspension wasfabricated by a facile Microfluidizer approach without changing its chemical structure. Theobtained CMFwere then developed in a transglutaminase cross-linked7S gel.Themorphological and rheological characterizations of the7S-CMF gels were done as a functionof the protein and CMF concentrations. Results showed that the presence of CMF networkimproved the gel strength significantly. This effect was CMF content dependent and wasrelated to the formation of sponge-like porous microstructure. We inferred that the CMFprovided an initial framework for gel formation and added structural rigidity to the protein gel.The role of protein was to participate in network development as an electrostatic coating andgelation component.
引文
[1] Tolstoguzov V B. Functional properties of food proteins and role ofprotein-polysaccharide interaction[J]. Food Hydrocolloids,1991,4(6):429-468.
    [2] Tolstoguzov V. Texturising by phase separation[J]. Biotechnology advances,2006,24(6):626-628.
    [3] Mezzenga R, Schurtenberger P, Burbidge A, et al. Understanding foods as softmaterials[J]. Nature materials,2005,4(10):729-740.
    [4] Evans M, Ratcliffe I, Williams P A. Emulsion stabilisation using polysaccharide–proteincomplexes[J]. Current Opinion in Colloid&Interface Science,2013,18(4):272-282.
    [5] Turgeon S L, Schmitt C, Sanchez C. Protein–polysaccharide complexes andcoacervates[J]. Current Opinion in Colloid&Interface Science,2007,12(4):166-178.
    [6]李向红,裘爱泳,华欲飞,等.蛋白质-多糖相分离性质及其研究进展[J].粮食与油脂,2006(9):14-15.
    [7] Doublier J L, Garnier C, Renard D, et al. Protein–polysaccharide interactions[J]. CurrentOpinion in Colloid&Interface Science,2000,5(3):202-214.
    [8] Cooper C L, Dubin P L, Kayitmazer A B, et al. Polyelectrolyte–protein complexes[J].Current Opinion in Colloid&Interface Science,2005,10(1):52-78.
    [9] Tolstoguzov V. Some thermodynamic considerations in food formulation[J]. FoodHydrocolloids,2003,17(1):1-23.
    [10]Gu Y S, Decker E A, Julian McClements D. Application of multi-component biopolymerlayers to improve the freeze–thaw stability of oil-in-water emulsions:β-Lactoglobulin–ι-carrageenan–gelatin[J]. Journal of food engineering,2007,80(4):1246-1254.
    [11]Dickinson E. Interfacial structure and stability of food emulsions as affected byprotein–polysaccharide interactions[J]. Soft Matter,2008,4(5):932-942.
    [12]Ferreira C O, Nunes C A, Delgadillo I, et al. Characterization of chitosan–whey proteinfilms at acid pH[J]. Food research international,2009,42(7):807-813.
    [13]Nori M P, Favaro-Trindade C S, Matias de Alencar S, et al. Microencapsulation ofpropolis extract by complex coacervation[J]. LWT-Food Science and Technology,2011,44(2):429-435.
    [14]Xiao J X, Huang G Q, Wang S Q, et al. Microencapsulation of capsanthin by soybeanprotein isolate‐chitosan coacervation and microcapsule stability evaluation[J]. Journalof Applied Polymer Science,2014,131(1).
    [15]Laneuville S I, Paquin P, Turgeon S L. Formula Optimization of a Low‐fat Food SystemContaining Whey Protein Isolate‐Xanthan Gum Complexes as Fat Replacer[J]. Journalof food science,2005,70(8): s513-s519.
    [16]Chen W S, Soucie W G. Edible fibrous serum milk protein/xanthan gum complexes: U.S.Patent4,559,233[P].1985-12-17.
    [17]Laneuville S I, Turgeon S L, Sanchez C, et al. Gelation of native β-lactoglobulin inducedby electrostatic attractive interaction with xanthan gum[J]. Langmuir,2006,22(17):7351-7357.
    [18]Le X T, Turgeon S L. Rheological and structural study of electrostatic cross-linkedxanthan gum hydrogels induced by β-lactoglobulin[J]. Soft Matter,2013,9(11):3063-3073.
    [19]McClements D J. Emulsion design to improve the delivery of functional lipophiliccomponents[J]. Annual review of food science and technology,2010,1:241-269.
    [20] ak r E, Foegeding E A. Combining protein micro-phase separation andprotein–polysaccharide segregative phase separation to produce gel structures[J]. Foodhydrocolloids,2011,25(6):1538-1546.
    [21]Espinosa-Andrews H, Báez-González J G, Cruz-Sosa F, et al. Gum Arabic-chitosancomplex coacervation[J]. Biomacromolecules,2007,8(4):1313-1318.
    [22]Klein M, Aserin A, Ishai P B, et al. Interactions between whey protein isolate and gumArabic[J]. Colloids and Surfaces B: Biointerfaces,2010,79(2):377-383.
    [23]Liu S, Cao Y L, Ghosh S, et al. Intermolecular interactions during complex coacervationof pea protein isolate and gum Arabic[J]. Journal of agricultural and food chemistry,2009,58(1):552-556.
    [24]Weinbreck F, Tromp R H, De Kruif C G. Composition and structure of whey protein/gumarabic coacervates[J]. Biomacromolecules,2004,5(4):1437-1445.
    [25]Wolf W J. Soybean proteins. Their functional, chemical, and physical properties[J].Journal of Agricultural and Food Chemistry,1970,18(6):969-976.
    [26]Thanh V H, Shibasaki K. Major proteins of soybean seeds. Subunit structure of.beta.-conglycinin[J]. Journal of agricultural and food chemistry,1978,26(3):692-695.
    [27]Maruyama N, Katsube T, Wada Y, et al. The roles of the N‐linked glycans and extensionregions of soybean β‐conglycinin in folding, assembly and structural features[J].European journal of biochemistry,1998,258(2):854-862.
    [28]Duranti M, Lovati M R, Dani V, et al. The α′subunit from soybean7S globulin lowersplasma lipids and upregulates liver β-VLDL receptors in rats fed a hypercholesterolemicdiet[J]. The Journal of nutrition,2004,134(6):1334-1339.
    [29]Ferreira E S, Silva M A, Demonte A, et al. Soy β-conglycinin (7S globulin) reducesplasma and liver cholesterol in rats fed hypercholesterolemic diet[J]. Journal of medicinalfood,2011,14(1-2):94-100.
    [30]Bian Y, Myers D J, Dias K, et al. Functional properties of soy protein fractions producedusing a pilot plant-scale process[J]. Journal of the American Oil Chemists' Society,2003,80(6):545-549.
    [31]Tang C H, Wu H, Chen Z, et al. Formation and properties of glycinin-rich andβ-conglycinin-rich soy protein isolate gels induced by microbial transglutaminase[J].Food research international,2006,39(1):87-97.
    [32]Staswick P E, Hermodson M A, Nielsen N C. Identification of the acidic and basicsubunit complexes of glycinin[J]. Journal of Biological Chemistry,1981,256(16):8752-8755.
    [33]Ohkura K, Mori M, Terada H, et al. Stimulation of insulin action and stabilization of cellmembrane in3T3-L1cells by glycinin acidic subunit A1a[J]. Biosciences Biotechnologyand Biochemistry,1995,59(8):1485-1488.
    [34]Harish Prashanth K V, Tharanathan R N. Chitin/chitosan: modifications and theirunlimited application potential-an overview[J]. Trends in food science&technology,2007,18(3):117-131.
    [35]孟哲,胡章记,毛宝玲.壳聚糖的结构特性及其衍生物的应用[J].化学教育,2006,27(8):1-2.
    [36]Ribeiro C, Vicente A A, Teixeira J A, et al. Optimization of edible coating composition toretard strawberry fruit senescence[J]. Postharvest Biology and Technology,2007,44(1):63-70.
    [37]匡银近,池伟林,覃彩芹.壳聚糖在食品工业中应用的研究进展[J].孝感学院学报,2006,26(3):30-35.
    [38]Turgeon S L, Laneuville S I. Protein+polysaccharide coacervates and complexes: fromscientific background to their application as functional ingredients in food products[J].Modern biopolymer science,2009:327-363.
    [39]Sanchez C, Mekhloufi G, Schmitt C, et al. Self-assembly of β-lactoglobulin and acaciagum in aqueous solvent: Structure and phase-ordering kinetics[J]. Langmuir,2002,18(26):10323-10333.
    [40]Schmitt C, Sanchez C, Lamprecht A, et al. Study of β-lactoglobulin/acacia gum complexcoacervation by diffusing-wave spectroscopy and confocal scanning laser microscopy[J].Colloids and Surfaces B: Biointerfaces,2001,20(3):267-280.
    [41]Wang X, Lee J, Wang Y W, et al. Composition and rheological properties ofβ-lactoglobulin/pectin coacervates: effects of salt concentration and initialprotein/polysaccharide ratio[J]. Biomacromolecules,2007,8(3):992-997.
    [42]Girard M, Sanchez C, Laneuville S I, et al. Associative phase separation ofβ-lactoglobulin/pectin solutions: a kinetic study by small angle static light scattering[J].Colloids and Surfaces B: Biointerfaces,2004,35(1):15-22.
    [43]Laneuville S I, Sanchez C, Turgeon S L, et al. Small-angle Static Light-Scattering Studyof Associative Phase Separation Kinetics in β-Lactoglobulin+Xanthan Gum Mixturesunder Shear[J]. Food Colloids: Interactions, Microstructure and Processing,2005,298:443.
    [44]Girard M, Turgeon S L, Gauthier S F. Thermodynamic parameters ofβ-lactoglobulin-pectin complexes assessed by isothermal titration calorimetry[J]. Journalof agricultural and food chemistry,2003,51(15):4450-4455.
    [45]Ou Z, Muthukumar M. Entropy and enthalpy of polyelectrolyte complexation: Langevindynamics simulations[J]. The Journal of chemical physics,2006,124(15):154902.
    [46]Damodaran S. Food proteins and their applications[M]. CRC Press,1997.
    [47]Weinbreck F, Nieuwenhuijse H, Robijn G W, et al. Complex formation of whey proteins:exocellular polysaccharide EPS B40[J]. Langmuir,2003,19(22):9404-9410.
    [48]Burgess D J, Carless J E. Microelectrophoretic studies of gelatin and acacia for theprediction of complex coacervation[J]. Journal of Colloid and interface Science,1984,98(1):1-8.
    [49]Dubin P L, Murrell J M. Size distribution of complexes formed between poly(dimethyldiallylammonium chloride) and bovine serum albumin[J]. Macromolecules,1988,21(7):2291-2293.
    [50]Mattison K W, Brittain I J, Dubin P L. Protein-polyelectrolyte phase boundaries[J].Biotechnology Progress,1995,11(6):632-637.
    [51]Elmer C, Karaca A C, Low N H, et al. Complex coacervation in pea proteinisolate–chitosan mixtures[J]. Food Research International,2011,44(5):1441-1446.
    [52]Weinbreck F, De Vries R, Schrooyen P, et al. Complex coacervation of whey proteins andgum arabic[J]. Biomacromolecules,2003,4(2):293-303.
    [53]Li Y, Xia J, Dubin P L. Complex formation between polyelectrolyte and oppositelycharged mixed micelles: static and dynamic light scattering study of the effect ofpolyelectrolyte molecular weight and concentration[J]. Macromolecules,1994,27(24):7049-7055.
    [54]Bushell G C, Yan Y D, Woodfield D, et al. On techniques for the measurement of themass fractal dimension of aggregates[J]. Advances in Colloid and Interface Science,2002,95(1):1-50.
    [55]Mekhloufi G, Sanchez C, Renard D, et al. pH-induced structural transitions duringcomplexation and coacervation of β-lactoglobulin and acacia gum[J]. Langmuir,2005,21(1):386-394.
    [56]Burova T V, Grinberg N V, Grinberg V Y, et al. Conformational changes in ι-andκ-carrageenans induced by complex formation with bovine β-casein[J].Biomacromolecules,2007,8(2):368-375.
    [57]Zhang G, Foegeding E A, Hardin C C. Effect of sulfated polysaccharides on heat-inducedstructural changes in β-lactoglobulin[J]. Journal of agricultural and food chemistry,2004,52(12):3975-3981.
    [58]Chung K, Kim J, Cho B K, et al. How does dextran sulfate prevent heat inducedaggregation of protein?: The mechanism and its limitation as aggregation inhibitor[J].Biochimica et Biophysica Acta (BBA)-Proteins and Proteomics,2007,1774(2):249-257.
    [59]Mounsey J S, O’Kennedy B T, Fenelon M A, et al. The effect of heating onβ-lactoglobulin–chitosan mixtures as influenced by pH and ionic strength[J]. Foodhydrocolloids,2008,22(1):65-73.
    [60]Espinosa-Andrews H, Enríquez-Ramírez K E, García-Márquez E, et al. Interrelationshipbetween the zeta potential and viscoelastic properties in coacervates complexes[J].Carbohydrate polymers,2013,95(1):161-166.
    [61]Wang Y, Kimura K, Dubin P L, et al. Polyelectrolyte-micelle coacervation: effects ofmicelle surface charge density, polymer molecular weight, and polymer/surfactant ratio[J].Macromolecules,2000,33(9):3324-3331.
    [62]Tolstoguzov V B. Functional properties of protein-polysaccharide[J]. Functionalproperties of food macromolecules,1998(1):252.
    [63]Girard M, Turgeon S L, Gauthier S F. Interbiopolymer complexing betweenβ-lactoglobulin and low-and high-methylated pectin measured by potentiometric titrationand ultrafiltration[J]. Food Hydrocolloids,2002,16(6):585-591.
    [64]Galazka V B, Smith D, Ledward D A, et al. Complexes of bovine serum albumin withsulphated polysaccharides: effects of pH, ionic strength and high pressure treatment[J].Food Chemistry,1999,64(3):303-310.
    [65]Wang Y, Kimura K, Huang Q, et al. Effects of salt on polyelectrolyte-micellecoacervation[J]. Macromolecules,1999,32(21):7128-7134.
    [66]Bowman W A, Rubinstein M, Tan J S. Polyelectrolyte-gelatin complexation:Light-scattering study[J]. Macromolecules,1997,30(11):3262-3270.
    [67]Kayitmazer A B, Seyrek E, Dubin P L, et al. Influence of chain stiffness on the interactionof polyelectrolytes with oppositely charged micelles and proteins[J]. The Journal ofPhysical Chemistry B,2003,107(32):8158-8165.
    [68]Takahashi D, Kubota Y, Kokai K, et al. Effects of surface charge distribution of proteinsin their complexation with polyelectrolytes in an aqueous salt-free system[J]. Langmuir,2000,16(7):3133-3140.
    [69]Dickinson E. Stability and rheological implications of electrostatic milkprotein–polysaccharide interactions[J]. Trends in Food Science&Technology,1998,9(10):347-354.
    [70]Azegami S, Tsuboi A, Izumi T, et al. Formation of an intrapolymer complex from humanserum albumin and poly (ethylene glycol)[J]. Langmuir,1999,15(4):940-947.
    [71]Kaibara K, Okazaki T, Bohidar H B, et al. pH-induced coacervation in complexes ofbovine serum albumin and cationic polyelectrolytes[J]. Biomacromolecules,2000,1(1):100-107.
    [72]Sanchez C, Despond S, Schmitt C, et al. Effect of heat and shear onb-lactoglobulin-acacia gum complex coacervation[J]. Food colloids: fundamentals offormulation, Royal Society of Chemistry, Cambridge, UK,2001:332-343.
    [73]Lapasin R, Pricl S. Rheology of industrial polysaccharides: theory and applications[M].London: Blackie Academic&Professional,1995.
    [74]Teramoto A, Takagi Y, Hachimori A, et al. Interaction of albumin with polysaccharidescontaining ionic groups[J]. Polymers for Advanced Technologies,1999,10(12):681-686.
    [75]Syrbe A, Bauer W J, Klostermeyer H. Polymer science concepts in dairy systems—anoverview of milk protein and food hydrocolloid interaction[J]. International Dairy Journal,1998,8(3):179-193.
    [76]Langendorff V, Cuvelier G, Launay B, et al. Gelation and flocculation of caseinmicelle/carrageenan mixtures[J]. Food Hydrocolloids,1997,11(1):35-40.
    [77]Tromp R H, de Kruif C G, van Eijk M, et al. On the mechanism of stabilisation ofacidified milk drinks by pectin[J]. Food Hydrocolloids,2004,18(4):565-572.
    [78]Pereyra R, Schmidt K A, Wicker L. Interaction and stabilization of acidified caseindispersions with low and high methoxyl pectins[J]. Journal of Agricultural and FoodChemistry,1997,45(9):3448-3451.
    [79]Lucey J A. Cultured dairy products: an overview of their gelation and textureproperties[J]. International Journal of Dairy Technology,2004,57(2‐3):77-84.
    [80]Ruas-Madiedo P, Hugenholtz J, Zoon P. An overview of the functionality ofexopolysaccharides produced by lactic acid bacteria[J]. International Dairy Journal,2002,12(2):163-171.
    [81]Girard, M. and Schaffer-Lequart, C.(2008). Attractive interactions between selectedanionic exopolysaccharides and milk proteins. Food Hydrocolloids22,1425–1434.
    [82]Weinbreck F, Wientjes R H W. Rheological properties of whey protein/gum arabiccoacervates[J]. Journal of Rheology,2004,48(6):1215-1228.
    [83]Morris V J. Multicomponent gels[J]. Gums and stabilisers for the food industry,1986,3:87-99.
    [84]Ballester S I L, Paquin P, Sanchez C, et al. Gelation of Undenatured Proteins withPolysaccharides: U.S. Patent Application11/997,811[P].2005-8-4.
    [85]Ould Eleya M M, Turgeon S L. The effects of pH on the rheology ofβ-lactoglobulin/κ-carrageenan mixed gels[J]. Food Hydrocolloids,2000,14(3):245-251.
    [86]Turgeon S L, Beaulieu M. Improvement and modification of whey protein gel textureusing polysaccharides[J]. Food Hydrocolloids,2001,15(4):583-591.
    [87]Ballester S I L, Paquin P, Sanchez C, et al. Gelation of Undenatured Proteins withPolysaccharides: U.S. Patent Application11/997,811[P].2005-8-4.
    [88]Matia-Merino L, Lau K, Dickinson E. Effects of low-methoxyl amidated pectin and ioniccalcium on rheology and microstructure of acid-induced sodium caseinate gels[J]. FoodHydrocolloids,2004,18(2):271-281.
    [89]Chen W S, Drehkoff W D, Henry G A, et al. Shelf stable acid food dressings containingfibrous protein complexes: U.S. Patent4,762,726[P].1988-8-9.
    [90]Bishay I E, Clark D R. Carbohydrate/protein cream substitutes: U.S. Patent5,536,514[P].1996-7-16.
    [91]Walstra P. Physical chemistry of foods[M]. CRC Press,2002.
    [92]Dickinson E, Izgi E. Foam stabilization by protein-polysaccharide complexes[J]. Colloidsand Surfaces A: Physicochemical and Engineering Aspects,1996,113(1):191-201.
    [93]Ganzevles R A, Cohen Stuart M A, Vliet T, et al. Use of polysaccharides to controlprotein adsorption to the air–water interface[J]. Food Hydrocolloids,2006,20(6):872-878.
    [94]Ganzevles R A, Kosters H, van Vliet T, et al. Polysaccharide charge density regulatingprotein adsorption to air/water interfaces by protein/polysaccharide complex formation[J].The Journal of Physical Chemistry B,2007,111(45):12969-12976.
    [95]Schmitt C, Palma da Silva T, Bovay C, et al. Effect of time on the interfacial and foamingproperties of β-lactoglobulin/acacia gum electrostatic complexes and coacervates at pH4.2[J]. Langmuir,2005,21(17):7786-7795.
    [96]Dickinson E. Hydrocolloids as emulsifiers and emulsion stabilizers[J]. FoodHydrocolloids,2009,23(6):1473-1482.
    [97]Jourdain L, Leser M E, Schmitt C, et al. Stability of emulsions containing sodiumcaseinate and dextran sulfate: relationship to complexation in solution[J]. FoodHydrocolloids,2008,22(4):647-659.
    [98]Gancz K, Alexander M, Corredig M. Interactions of high methoxyl pectin with wheyproteins at oil/water interfaces at acid pH[J]. Journal of agricultural and food chemistry,2005,53(6):2236-2241.
    [99]Ducel V, Richard J, Saulnier P, et al. Evidence and characterization of complexcoacervates containing plant proteins: application to the microencapsulation of oildroplets[J]. Colloids and surfaces A: Physicochemical and engineering aspects,2004,232(2):239-247.
    [100] Guzey D, McClements D J. Formation, stability and properties of multilayeremulsions for application in the food industry[J]. Advances in Colloid and InterfaceScience,2006,128:227-248.
    [101] Laplante S, Turgeon S L, Paquin P. Effect of pH, ionic strength, and composition onemulsion stabilising properties of chitosan in a model system containing whey proteinisolate[J]. Food hydrocolloids,2005,19(4):721-729.
    [102] Laplante S, Turgeon S L, Paquin P. Emulsion stabilizing properties of variouschitosans in the presence of whey protein isolate[J]. Carbohydrate polymers,2005,59(4):425-434.
    [103] Klinkesorn U, McClements D J. Influence of chitosan on stability and lipasedigestibility of lecithin-stabilized tuna oil-in-water emulsions[J]. Food chemistry,2009,114(4):1308-1315.
    [104] Weinbreck F, Minor M, De Kruif C G. Microencapsulation of oils using wheyprotein/gum arabic coacervates[J]. Journal of microencapsulation,2004,21(6):667-679.
    [105] Gouin S. Microencapsulation: industrial appraisal of existing technologies andtrends[J]. Trends in food science&technology,2004,15(7):330-347.
    [106] Yeo Y, Bellas E, Firestone W, et al. Complex coacervates for thermally sensitivecontrolled release of flavor compounds[J]. Journal of agricultural and food chemistry,2005,53(19):7518-7525.
    [107] Pierucci A P T R, Andrade L R, Farina M, et al. Comparison of α-tocopherolmicroparticles produced with different wall materials: pea protein a new interestingalternative[J]. Journal of microencapsulation,2007,24(3):201-213.
    [108] Xiao J X, Huang G Q, Wang S Q, et al. Microencapsulation of capsanthin by soybeanprotein isolate‐chitosan coacervation and microcapsule stability evaluation[J]. Journalof Applied Polymer Science,2014,131(1).
    [109] Taylor A J. Release and transport of flavors in vivo: physicochemical, physiological,and perceptual considerations[J]. Comprehensive reviews in food science and food safety,2002,1(2):45-57.
    [1] Dickinson E. Interfacial structure and stability of food emulsions as affected byprotein–polysaccharide interactions[J]. Soft Matter,2008,4(5):932-942.
    [2] Schmitt C, Turgeon S L. Protein/polysaccharide complexes and coacervates in foodsystems[J]. Advances in colloid and interface science,2011,167(1):63-70.
    [3] Turgeon S L, Schmitt C, Sanchez C. Protein–polysaccharide complexes andcoacervates[J]. Current Opinion in Colloid&Interface Science,2007,12(4):166-178.
    [4] Klein M, Aserin A, Ishai P B, et al. Interactions between whey protein isolate and gumArabic[J]. Colloids and Surfaces B: Biointerfaces,2010,79(2):377-383.
    [5] Liu S, Cao Y L, Ghosh S, et al. Intermolecular interactions during complex coacervationof pea protein isolate and gum Arabic[J]. Journal of agricultural and food chemistry,2009,58(1):552-556.
    [6] Weinbreck F, Tromp R H, De Kruif C G. Composition and structure of whey protein/gumarabic coacervates[J]. Biomacromolecules,2004,5(4):1437-1445.
    [7] Thanh V H, Shibasaki K. Beta-conglycinin from soybean proteins. Isolation andimmunological and physicochemical properties of the monomeric forms[J]. Biochimicaet Biophysica Acta (BBA)-Protein Structure,1977,490(2):370-384.
    [8] Staswick P E, Hermodson M A, Nielsen N C. Identification of the acidic and basicsubunit complexes of glycinin[J]. Journal of Biological Chemistry,1981,256(16):8752-8755.
    [9] Anal A K, Tobiassen A, Flanagan J, et al. Preparation and characterization ofnanoparticles formed by chitosan–caseinate interactions[J]. Colloids and Surfaces B:Biointerfaces,2008,64(1):104-110.
    [10]Lee A C, Hong Y H. Coacervate formation of α-lactalbumin–chitosan andβ-lactoglobulin–chitosan complexes[J]. Food research international,2009,42(5):733-738.
    [11]Mounsey J S, O’Kennedy B T, Fenelon M A, et al. The effect of heating onβ-lactoglobulin–chitosan mixtures as influenced by pH and ionic strength[J]. Foodhydrocolloids,2008,22(1):65-73.
    [12]Murakami R, Takashima R. Mechanical properties of the capsules of chitosan–soyglobulin polyelectrolyte complex[J]. Food hydrocolloids,2003,17(6):885-888.
    [13]Huang G Q, Sun Y T, Xiao J X, et al. Complex coacervation of soybean protein isolateand chitosan[J]. Food chemistry,2012,135(2):534-539.
    [14]Liu C, Yang X Q, Lin M G, et al. Complex coacervation of chitosan and soy globulins inaqueous solution: a electrophoretic mobility and light scattering study[J]. InternationalJournal of Food Science&Technology,2011,46(7):1363-1369.
    [15]Nagano T, Hirotsuka M, Mori H, et al. Dynamic viscoelastic study on the gelation of7Sglobulin from soybeans[J]. Journal of Agricultural and Food Chemistry,1992,40(6):941-944.
    [16]Duncan D B. Multiple range and multiple F tests[J]. Biometrics,1955.
    [17]Wolf W J. Soybean proteins. Their functional, chemical, and physical properties[J].Journal of Agricultural and Food Chemistry,1970,18(6):969-976.
    [18]Santander-Ortega M J, Peula-García J M, Goycoolea F M, et al. Chitosan nanocapsules:effect of chitosan molecular weight and acetylation degree on electrokinetic behaviourand colloidal stability[J]. Colloids and Surfaces B: Biointerfaces,2011,82(2):571-580.
    [19]Elmer C, Karaca A C, Low N H, et al. Complex coacervation in pea proteinisolate–chitosan mixtures[J]. Food Research International,2011,44(5):1441-1446.
    [20]Laneuville S I, Turgeon S L, Sanchez C, et al. Gelation of native β-lactoglobulin inducedby electrostatic attractive interaction with xanthan gum[J]. Langmuir,2006,22(17):7351-7357.
    [21]Le X T, Turgeon S L. Rheological and structural study of electrostatic cross-linkedxanthan gum hydrogels induced by β-lactoglobulin[J]. Soft Matter,2013,9(11):3063-3073.
    [22]Guo J, Yang X Q, He X T, et al. Limited aggregation behavior of β-conglycinin and itsterminating effect on glycinin aggregation during heating at pH7.0[J]. Journal ofagricultural and food chemistry,2012,60(14):3782-3791.
    [23]Hong Y H, McClements D J. Formation of hydrogel particles by thermal treatment ofβ-lactoglobulin-chitosan complexes[J]. Journal of agricultural and food chemistry,2007,55(14):5653-5660.
    [24]Wang X, Lee J, Wang Y W, et al. Composition and rheological properties ofβ-lactoglobulin/pectin coacervates: effects of salt concentration and initialprotein/polysaccharide ratio[J]. Biomacromolecules,2007,8(3):992-997.
    [25]Espinosa-Andrews H, Enríquez-Ramírez K E, García-Márquez E, et al. Interrelationshipbetween the zeta potential and viscoelastic properties in coacervates complexes[J].Carbohydrate polymers,2013,95(1):161-166.
    [26]van Nieuwenhuyzen W, Szuhaj B F. Effects of lecithins and proteins on the stability ofemulsions[J]. Lipid/Fett,1998,100(7):282-291.
    [1] Dickinson E. Interfacial structure and stability of food emulsions as affected byprotein–polysaccharide interactions[J]. Soft Matter,2008,4(5):932-942.
    [2] Keerati-u-rai M, Corredig M. Heat-induced changes in oil-in-water emulsions stabilizedwith soy protein isolate[J]. Food hydrocolloids,2009,23(8):2141-2148.
    [3] Liu L, Zhao Q, Liu T, et al. Sodium caseinate/xanthan gum interactions in aqueoussolution: Effect on protein adsorption at the oil–water interface[J]. Food Hydrocolloids,2012,27(2):339-346.
    [4] Laneuville S I, Paquin P, Turgeon S L. Effect of preparation conditions on thecharacteristics of whey protein—xanthan gum complexes[J]. Food Hydrocolloids,2000,14(4):305-314.
    [5] Hong Y H, McClements D J. Formation of hydrogel particles by thermal treatment ofβ-lactoglobulin-chitosan complexes[J]. Journal of agricultural and food chemistry,2007,55(14):5653-5660.
    [6] Mounsey J S, O’Kennedy B T, Fenelon M A, et al. The effect of heating onβ-lactoglobulin–chitosan mixtures as influenced by pH and ionic strength[J]. Foodhydrocolloids,2008,22(1):65-73.
    [7] Elmer C, Karaca A C, Low N H, et al. Complex coacervation in pea proteinisolate–chitosan mixtures[J]. Food Research International,2011,44(5):1441-1446.
    [8] Laplante S, Turgeon S L, Paquin P. Effect of pH, ionic strength, and composition onemulsion stabilising properties of chitosan in a model system containing whey proteinisolate[J]. Food hydrocolloids,2005,19(4):721-729.
    [9] Laplante S, Turgeon S L, Paquin P. Emulsion stabilizing properties of various chitosans inthe presence of whey protein isolate[J]. Carbohydrate polymers,2005,59(4):425-434.
    [10]Laplante S, Turgeon S L, Paquin P. Emulsion-stabilizing properties of chitosan in thepresence of whey protein isolate: Effect of the mixture ratio, ionic strength and pH[J].Carbohydrate polymers,2006,65(4):479-487.
    [11]Klinkesorn U, McClements D J. Influence of chitosan on stability and lipase digestibilityof lecithin-stabilized tuna oil-in-water emulsions[J]. Food chemistry,2009,114(4):1308-1315.
    [12]Huang G Q, Sun Y T, Xiao J X, et al. Complex coacervation of soybean protein isolateand chitosan[J]. Food chemistry,2012,135(2):534-539.
    [13]Liu C, Yang X Q, Lin M G, et al. Complex coacervation of chitosan and soy globulins inaqueous solution: a electrophoretic mobility and light scattering study[J]. InternationalJournal of Food Science&Technology,2011,46(7):1363-1369.
    [14]Evans M, Ratcliffe I, Williams P A. Emulsion stabilisation using polysaccharide–proteincomplexes[J]. Current Opinion in Colloid&Interface Science,2013,18(4):272-282.
    [15]刘丽娅.酪蛋白酸钠-多糖界面相互作用及其对乳状液稳定性的影响[D].华南理工大学,2011.
    [16]Weinbreck F, De Vries R, Schrooyen P, et al. Complex coacervation of whey proteins andgum arabic[J]. Biomacromolecules,2003,4(2):293-303.
    [17]Anal A K, Tobiassen A, Flanagan J, et al. Preparation and characterization ofnanoparticles formed by chitosan–caseinate interactions[J]. Colloids and Surfaces B:Biointerfaces,2008,64(1):104-110.
    [18]Guzey D, McClements D J. Characterization of β-lactoglobulin–chitosan interactions inaqueous solutions: a calorimetry, light scattering, electrophoretic mobility and solubilitystudy[J]. Food Hydrocolloids,2006,20(1):124-131.
    [19]de Souza H K S, Bai G, Gon alves M P, et al. Whey protein isolate–chitosan interactions:A calorimetric and spectroscopy study[J]. Thermochimica Acta,2009,495(1):108-114.
    [20]de Souza H K S, Gon alves M P, Gómez J. Effect of chitosan degradation on itsinteraction with β-lactoglobulin[J]. Biomacromolecules,2011,12(4):1015-1023.
    [21]Rodríguez Patino J M, Rodríguez Ni o M R, Sánchez C C. Adsorption of whey proteinisolate at the oil-water interface as a function of processing conditions: A rheokineticstudy[J]. Journal of agricultural and food chemistry,1999,47(6):2241-2248.
    [22]Rodríguez Ni o M R, Sánchez C C, Ruíz-Henestrosa V P, et al. Milk and soy proteinfilms at the air–water interface[J]. Food Hydrocolloids,2005,19(3):417-428.
    [23]Dickinson, E., Mixed biopolymers at interfaces Competitive adsorption and multilayerstructures[J]. Food Hydrocolloids,2011,25(8):1966-1983.
    [24]Rodríguez Patino J M, Carrera Sánchez C, Molina Ortiz S E, et al. Adsorption of soyglobulin films at the air-water interface[J]. Industrial&engineering chemistry research,2004,43(7):1681-1689.
    [25]MacRitchie F. Proteins at interfaces[J]. Advances in protein chemistry,1978,32:283.
    [26]Xu S, Damodaran S. Kinetics of adsorption of proteins at the air-water interface from abinary mixture[J]. Langmuir,1994,10(2):472-480.
    [27]Graham D E, Phillips M C. Proteins at liquid interfaces: III. Molecular structures ofadsorbed films[J]. Journal of Colloid and Interface Science,1979,70(3):427-439.
    [28]Nystr m B, Kj niksen A L, Iversen C. Characterization of association phenomena inaqueous systems of chitosan of different hydrophobicity[J]. Advances in Colloid andInterface Science,1999,79(2):81-103.
    [29]Martinez K D, Carrera Sanchez C, Pizones Ruiz-Henestrosa V, et al. Soyprotein–polysaccharides interactions at the air–water interface[J]. Food Hydrocolloids,2007,21(5):804-812.
    [30]Rodríguez Patino J M, Pilosof A M R. Protein–polysaccharide interactions at fluidinterfaces[J]. Food Hydrocolloids,2011,25(8):1925-1937.
    [31]Speiciene V, Guilmineau F, Kulozik U, et al. The effect of chitosan on the properties ofemulsions stabilized by whey proteins[J]. Food chemistry,2007,102(4):1048-1054.
    [32]Liu L, Zhao Q, Liu T, et al. Dynamic surface pressure and dilatational viscoelasticity ofsodium caseinate/xanthan gum mixtures at the oil–water interface[J]. Food Hydrocolloids,2011,25(5):921-927.
    [1] Han J, Washington C. Partition of antimicrobial additives in an intravenous emulsion andtheir effect on emulsion physical stability[J]. International journal of pharmaceutics,2005,288(2):263-271.
    [2] Ho Lee C, Soon An D, Cheol Lee S, et al. A coating for use as an antimicrobial andantioxidative packaging material incorporating nisin and α-tocopherol[J]. Journal of FoodEngineering,2004,62(4):323-329.
    [3] Liu T T, Yang T S. Stability and Antimicrobial Activity of Allyl Isothiocyanate duringLong‐Term Storage in an Oil‐in‐Water Emulsion[J]. Journal of food science,2010,75(5): C445-C451.
    [4] Sznitowska M, Janicki S, Dabrowska E A, et al. Physicochemical screening ofantimicrobial agents as potential preservatives for submicron emulsions[J]. Europeanjournal of pharmaceutical sciences,2002,15(5):489-495.
    [5] Yorgancioglu A, Bayramoglu E E. Production of cosmetic purpose collagen containingantimicrobial emulsion with certain essential oils[J]. Industrial Crops and Products,2013,44:378-382.
    [6] Borges O, Cordeiro-da-Silva A, Romeijn S G, et al. Uptake studies in rat Peyer's patches,cytotoxicity and release studies of alginate coated chitosan nanoparticles for mucosalvaccination[J]. Journal of controlled release,2006,114(3):348-358.
    [7] No H K, Young Park N, Ho Lee S, et al. Antibacterial activity of chitosans and chitosanoligomers with different molecular weights[J]. International journal of food microbiology,2002,74(1):65-72.
    [8] Jumaa M, Furkert F H, Müller B W. A new lipid emulsion formulation with highantimicrobial efficacy using chitosan[J]. European Journal of Pharmaceutics andBiopharmaceutics,2002,53(1):115-123.
    [9] Zivanovic S, Basurto C C, Chi S, et al. Molecular weight of chitosan influencesantimicrobial activity in oil-in-water emulsions[J]. Journal of Food Protection,2004,67(5):952-959.
    [10]Chove B E, Grandison A S, Lewis M J. Emulsifying properties of soy protein isolatefractions obtained by isoelectric precipitation[J]. Journal of the Science of Food andAgriculture,2001,81(8):759-763.
    [11]Keerati-u-rai M, Corredig M. Heat-induced changes occurring in oil/water emulsionsstabilized by soy glycinin and β-conglycinin[J]. Journal of agricultural and foodchemistry,2010,58(16):9171-9180.
    [12]Zhang J B, Wu N N, Yang X Q, et al. Improvement of emulsifying properties of Maillardreaction products from β-conglycinin and dextran using controlled enzymatichydrolysis[J]. Food Hydrocolloids,2012,28(2):301-312.
    [13]Laplante S, Turgeon S L, Paquin P. Effect of pH, ionic strength, and composition onemulsion stabilising properties of chitosan in a model system containing whey proteinisolate[J]. Food hydrocolloids,2005,19(4):721-729.
    [14]G B.47892-2010.食品安全国家标准食品微生物学检验菌落总数测定[S].2010.
    [15]Laplante S, Turgeon S L, Paquin P. Emulsion stabilizing properties of various chitosans inthe presence of whey protein isolate[J]. Carbohydrate polymers,2005,59(4):425-434.
    [16]Laplante S, Turgeon S L, Paquin P. Emulsion-stabilizing properties of chitosan in thepresence of whey protein isolate: Effect of the mixture ratio, ionic strength and pH[J].Carbohydrate polymers,2006,65(4):479-487.
    [17]Yuan F, Gao Y, Decker E A, et al. Modulation of physicochemical properties ofemulsified lipids by chitosan addition[J]. Journal of Food Engineering,2013,114(1):1-7.
    [18]Jourdain L, Leser M E, Schmitt C, et al. Stability of emulsions containing sodiumcaseinate and dextran sulfate: relationship to complexation in solution[J]. FoodHydrocolloids,2008,22(4):647-659.
    [19]Dickinson E. Hydrocolloids as emulsifiers and emulsion stabilizers[J]. FoodHydrocolloids,2009,23(6):1473-1482.
    [20]Kimura K, Yamaoka M, Kamisaka Y. Rapid estimation of lipids in oleaginous fungi andyeasts using Nile red fluorescence[J]. Journal of Microbiological Methods,2004,56(3):331-338.
    [21]Moreira M R, Pereda M, Marcovich N E, et al. Antimicrobial effectiveness of bioactivepackaging materials from edible chitosan and casein polymers: assessment on carrot,cheese, and salami[J]. Journal of food science,2011,76(1): M54-M63.
    [22]Potara M, Jakab E, Damert A, et al. Synergistic antibacterial activity of chitosan–silvernanocomposites on Staphylococcus aureus[J]. Nanotechnology,2011,22(13):135101.
    [23]Ponce A G, Roura S I, del Valle C E, et al. Antimicrobial and antioxidant activities ofedible coatings enriched with natural plant extracts: In vitro and in vivo studies[J].Postharvest biology and technology,2008,49(2):294-300.
    [24]Vásconez M B, Flores S K, Campos C A, et al. Antimicrobial activity and physicalproperties of chitosan–tapioca starch based edible films and coatings[J]. Food ResearchInternational,2009,42(7):762-769.
    [25]Dutta P K, Tripathi S, Mehrotra G K, et al. Perspectives for chitosan based antimicrobialfilms in food applications[J]. Food Chemistry,2009,114(4):1173-1182.
    [26]Helander I M, Nurmiaho-Lassila E L, Ahvenainen R, et al. Chitosan disrupts the barrierproperties of the outer membrane of Gram-negative bacteria[J]. International journal offood microbiology,2001,71(2):235-244.
    [27]Arroyo-López F N, Orli S, Querol A, et al. Effects of temperature, pH and sugarconcentration on the growth parameters of Saccharomyces cerevisiae, S. kudriavzevii andtheir interspecific hybrid[J]. International journal of food microbiology,2009,131(2):120-127.
    [1] Bungenberg de Jong H G. Crystallisation-coacervation-flocculation[J]. Colloid science,1949,2:232-258.
    [2] Overbeek J T G, Voorn M J. Phase separation in polyelectrolyte solutions. Theory ofcomplex coacervation[J]. Journal of Cellular and Comparative Physiology,1957,49(S1):7-26.
    [3] Veis A, Aranyi C. Phase separation in polyelectrolyte systems. I. Complex coacervates ofgelatin[J]. The Journal of Physical Chemistry,1960,64(9):1203-1210.
    [4] Xiao J X, Huang G Q, Wang S Q, et al. Microencapsulation of capsanthin by soybeanprotein isolate‐chitosan coacervation and microcapsule stability evaluation[J]. Journalof Applied Polymer Science,2014,131(1).
    [5] Weinbreck F, Minor M, De Kruif C G. Microencapsulation of oils using wheyprotein/gum arabic coacervates[J]. Journal of microencapsulation,2004,21(6):667-679.
    [6] Gouin S. Microencapsulation: industrial appraisal of existing technologies and trends[J].Trends in food science&technology,2004,15(7):330-347.
    [7] Kuang S S, Oliveira J C, Crean A M. Microencapsulation as a tool for incorporatingbioactive ingredients into food[J]. Critical reviews in food science and nutrition,2010,50(10):951-968.
    [8] Leclercq S, Harlander K R, Reineccius G A. Formation and characterization ofmicrocapsules by complex coacervation with liquid or solid aroma cores[J]. Flavour andfragrance journal,2009,24(1):17-24.
    [9] Nori M P, Favaro-Trindade C S, Matias de Alencar S, et al. Microencapsulation ofpropolis extract by complex coacervation[J]. LWT-Food Science and Technology,2011,44(2):429-435.
    [10]Arneodo C, Baszkin A, Benoit J P, et al. Interfacial tension behavior of citrus oils againstphases formed by complex coacervation of gelatin[J]. Flavor Encapsulation,1988.
    [11]Wang X, Lee J, Wang Y W, et al. Composition and rheological properties ofβ-lactoglobulin/pectin coacervates: effects of salt concentration and initialprotein/polysaccharide ratio[J]. Biomacromolecules,2007,8(3):992-997.
    [12]Weinbreck F, Tromp R H, De Kruif C G. Composition and structure of whey protein/gumarabic coacervates[J]. Biomacromolecules,2004,5(4):1437-1445.
    [13]Espinosa-Andrews H, Báez-González J G, Cruz-Sosa F, et al. Gum Arabic-chitosancomplex coacervation[J]. Biomacromolecules,2007,8(4):1313-1318.
    [14]Burgess D J, Carless J E. Microelectrophoretic studies of gelatin and acacia for theprediction of complex coacervation[J]. Journal of Colloid and interface Science,1984,98(1):1-8.
    [15]Nesterenko A, Alric I, Silvestre F, et al. Vegetable proteins in microencapsulation: Areview of recent interventions and their effectiveness[J]. Industrial crops and products,2013,42:469-479.
    [16]Huang G Q, Sun Y T, Xiao J X, et al. Complex coacervation of soybean protein isolateand chitosan[J]. Food chemistry,2012,135(2):534-539.
    [17]Mellema M. Complex coacervate encapsulate comprising lipophilic core: U.S. PatentApplication10/540,172[P].2003-11-17.
    [18]Wan Z L, Wang J M, Wang L Y, et al. Enhanced Physical and Oxidative Stabilities of SoyProtein-Based Emulsions by Incorporation of a Water-Soluble Stevioside–ResveratrolComplex[J]. Journal of agricultural and food chemistry,2013,61(18):4433-4440.
    [19]Espinosa-Andrews H, Enríquez-Ramírez K E, García-Márquez E, et al. Interrelationshipbetween the zeta potential and viscoelastic properties in coacervates complexes[J].Carbohydrate polymers,2013,95(1):161-166.
    [20]Singh S S, Aswal V K, Bohidar H B. Structural studies of agar–gelatin complexcoacervates by small angle neutron scattering, rheology and differential scanningcalorimetry[J]. International journal of biological macromolecules,2007,41(3):301-307.
    [21]Weinbreck F, Wientjes R H W. Rheological properties of whey protein/gum arabiccoacervates[J]. Journal of Rheology,2004,48(6):1215-1228.
    [22]Bohidar H, Dubin P L, Majhi P R, et al. Effects of protein-polyelectrolyte affinity andpolyelectrolyte molecular weight on dynamic properties of bovine serum albumin-poly(diallyldimethylammonium chloride) coacervates[J]. Biomacromolecules,2005,6(3):1573-1585.
    [23]Lee A C, Hong Y H. Coacervate formation of α-lactalbumin–chitosan andβ-lactoglobulin–chitosan complexes[J]. Food research international,2009,42(5):733-738.
    [24]Espinosa-Andrews H, Sandoval-Castilla O, Vázquez-Torres H, et al. Determination of thegum Arabic–chitosan interactions by Fourier Transform Infrared Spectroscopy andcharacterization of the microstructure and rheological features of their coacervates[J].Carbohydrate polymers,2010,79(3):541-546.
    [25]Guo J, Zhang Y, Yang X Q. A novel enzyme cross-linked gelation method for preparingfood globular protein-based transparent hydrogel[J]. Food Hydrocolloids,2012,26(1):277-285.
    [26]Beekes M, Lasch P, Naumann D. Analytical applications of Fourier transform-infrared(FT-IR) spectroscopy in microbiology and prion research[J]. Veterinary microbiology,2007,123(4):305-319.
    [27]Yeo Y, Bellas E, Firestone W, et al. Complex coacervates for thermally sensitivecontrolled release of flavor compounds[J]. Journal of agricultural and food chemistry,2005,53(19):7518-7525.
    [28]Ocak B. Complex coacervation of collagen hydrolysate extracted from leather solidwastes and chitosan for controlled release of lavender oil[J]. Journal of environmentalmanagement,2012,100:22-28.
    [29]Lamprecht A, Sch fer U, Lehr C M. Influences of process parameters on preparation ofmicroparticle used as a carrier system for O-3unsaturated fatty acid ethyl esters used insupplementary nutrition[J]. Journal of Microencapsulation,2001,18(3):347-357.
    [30]Taherian A R, Britten M, Sabik H, et al. Ability of whey protein isolate and/or fish gelatinto inhibit physical separation and lipid oxidation in fish oil-in-water beverage emulsion[J].Food Hydrocolloids,2011,25(5):868-878.
    [31]Fomuso L B, Corredig M, Akoh C C. Effect of emulsifier on oxidation properties of fishoil-based structured lipid emulsions[J]. Journal of agricultural and food chemistry,2002,50(10):2957-2961.
    [32]Anraku M, Fujii T, Kondo Y, et al. Antioxidant properties of high molecular weightdietary chitosan in vitro and in vivo[J]. Carbohydrate Polymers,2011,83(2):501-505.
    [33]Hu M, McClements D J, Decker E A. Lipid oxidation in corn oil-in-water emulsionsstabilized by casein, whey protein isolate, and soy protein isolate[J]. Journal ofAgricultural and Food Chemistry,2003,51(6):1696-1700.
    [1] Food colloids: interactions, microstructure and processing[M]. Royal Society ofChemistry,2005.
    [2] Ako K, Nicolai T, Durand D, et al. Micro-phase separation explains the abrupt structuralchange of denatured globular protein gels on varying the ionic strength or the pH[J]. SoftMatter,2009,5(20):4033-4041.
    [3] Verheul M, Roefs S P F M. Structure of particulate whey protein gels: effect of NaClconcentration, pH, heating temperature, and protein composition[J]. Journal ofagricultural and food chemistry,1998,46(12):4909-4916.
    [4] Van den Berg L, Van Vliet T, Van Der Linden E, et al. Breakdown properties and sensoryperception of whey proteins/polysaccharide mixed gels as a function of microstructure[J].Food Hydrocolloids,2007,21(5):961-976.
    [5] ak r E, Daubert C R, Drake M A, et al. The effect of microstructure on the sensoryperception and textural characteristics of whey protein/κ-carrageenan mixed gels[J]. FoodHydrocolloids,2012,26(1):33-43.
    [6] Van den Berg L, Carolas A L, Van Vliet T, et al. Energy storage controls crumblyperception in whey proteins/polysaccharide mixed gels[J]. Food hydrocolloids,2008,22(7):1404-1417.
    [7] Errington A D, Foegeding E A. Factors determining fracture stress and strain offine-stranded whey protein gels[J]. Journal of Agricultural and Food Chemistry,1998,46(8):2963-2967.
    [8] Ould Eleya M M, Turgeon S L. The effects of pH on the rheology ofβ-lactoglobulin/κ-carrageenan mixed gels[J]. Food Hydrocolloids,2000,14(3):245-251.
    [9] Turgeon S L, Beaulieu M. Improvement and modification of whey protein gel textureusing polysaccharides[J]. Food Hydrocolloids,2001,15(4):583-591.
    [10] ak r E, Foegeding E A. Combining protein micro-phase separation andprotein–polysaccharide segregative phase separation to produce gel structures[J]. Foodhydrocolloids,2011,25(6):1538-1546.
    [11]Diehl K C, Hamann D D, Whitfield J K. Structural failure in selected raw fruits andvegetables[J]. Journal of texture studies,1980,10(4):371-400.
    [12]Kocher P N, Foegeding E A. Microcentrifuge-Based Method for MeasuringWater-Holding of Protein Gels[J]. Journal of Food Science,1993,58(5):1040-1046.
    [13]van den Berg L, van Vliet T, van der Linden E, et al. Physical properties giving thesensory perception of whey proteins/polysaccharide gels[J]. Food Biophysics,2008,3(2):198-206.
    [14]Langton M, Hermansson A M. Fine-stranded and particulate gels of β-lactoglobulin andwhey protein at varying pH[J]. Food Hydrocolloids,1992,5(6):523-539.
    [15]de Souza H K S, Bai G, Gon alves M P, et al. Whey protein isolate–chitosan interactions:A calorimetric and spectroscopy study[J]. Thermochimica Acta,2009,495(1):108-114.
    [16]Foegeding E A, Bowland E L, Hardin C C. Factors that determine the fracture propertiesand microstructure of globular protein gels[J]. Food Hydrocolloids,1995,9(4):237-249.
    [17]Barbut S. Use of fibre optics to study the transition from clear to opaque whey proteingels[J]. Food research international,1996,29(5):465-469.
    [18]Van den Berg L, van Vliet T, van der Linden E, et al. Serum release: the hidden quality infracturing composites[J]. Food hydrocolloids,2007,21(3):420-432.
    [19]de Jong S, van de Velde F. Charge density of polysaccharide controls microstructure andlarge deformation properties of mixed gels[J]. Food Hydrocolloids,2007,21(7):1172-1187.
    [20]Gwartney E A, Larick D K, Foegeding E A. Sensory texture and mechanical properties ofstranded and particulate whey protein emulsion gels[J]. Journal of food science,2004,69(9): S333-S339.
    [21]Ikeda S, Foegeding E A, Hagiwara T. Rheological study on the fractal nature of theprotein gel structure[J]. Langmuir,1999,15(25):8584-8589.
    [22]Kuhn P R, Foegeding E A. Mineral salt effects on whey protein gelation[J]. Journal ofAgricultural and Food Chemistry,1991,39(6):1013-1016.
    [23]McGuffey M K, Foegeding E A. Electrostatic effects on physical properties of particulatewhey protein isolate gels[J]. Journal of texture studies,2001,32(4):285-305.
    [24] ak r E, Daubert C R, Drake M A, et al. The effect of microstructure on the sensoryperception and textural characteristics of whey protein/κ-carrageenan mixed gels[J]. FoodHydrocolloids,2012,26(1):33-43.
    [25]Pascua Y, Ko H, Foegeding E A. Food structure: Roles of mechanical properties and oralprocessing in determining sensory texture of soft materials[J]. Current Opinion in Colloid&Interface Science,2013,18(4):324-333.
    [1] Zeng J B, He Y S, Li S L, et al. Chitin whiskers: An overview[J]. Biomacromolecules,2011,13(1):1-11.
    [2] Lee S Y, Chun S J, Kang I A, et al. Preparation of cellulose nanofibrils by high-pressurehomogenizer and cellulose-based composite films[J]. Journal of Industrial andEngineering Chemistry,2009,15(1):50-55.
    [3] Liu D, Chang P R, Chen M, et al. Chitosan colloidal suspension composed ofmechanically disassembled nanofibers[J]. Journal of colloid and interface science,2011,354(2):637-643.
    [4] Mezzenga R, Schurtenberger P, Burbidge A, et al. Understanding foods as softmaterials[J]. Nature materials,2005,4(10):729-740.
    [5] Fernandes S C M, Oliveira L, Freire C S R, et al. Novel transparent nanocomposite filmsbased on chitosan and bacterial cellulose[J]. Green Chemistry,2009,11(12):2023-2029.
    [6] Araki J, Yamanaka Y, Ohkawa K. Chitin-chitosan nanocomposite gels: reinforcement ofchitosan hydrogels with rod-like chitin nanowhiskers[J]. Polymer journal,2012,44(7):713-717.
    [7] Aouada F A, de Moura M R, Orts W J, et al. Preparation and characterization of novelmicro-and nanocomposite hydrogels containing cellulosic fibrils[J]. Journal ofagricultural and food chemistry,2011,59(17):9433-9442.
    [8] Yano H, Sugiyama J, Nakagaito A N, et al. Optically transparent composites reinforcedwith networks of bacterial nanofibers[J]. Advanced Materials,2005,17(2):153-155.
    [9] P kk M, Ankerfors M, Kosonen H, et al. Enzymatic hydrolysis combined withmechanical shearing and high-pressure homogenization for nanoscale cellulose fibrils andstrong gels[J]. Biomacromolecules,2007,8(6):1934-1941.
    [10]Zhou C, Wu Q. A novel polyacrylamide nanocomposite hydrogel reinforced with naturalchitosan nanofibers[J]. Colloids and Surfaces B: Biointerfaces,2011,84(1):155-162.
    [11]Tang C H, Li L, Wang J L, et al. Formation and rheological properties of ‘cold-set’tofuinduced by microbial transglutaminase[J]. LWT-Food Science and Technology,2007,40(4):579-586.
    [12]Tang C H, Wu H, Chen Z, et al. Formation and properties of glycinin-rich andβ-conglycinin-rich soy protein isolate gels induced by microbial transglutaminase[J].Food research international,2006,39(1):87-97.
    [13]Liu D, Zhu Y, Li Z, et al. Chitin nanofibrils for rapid and efficient removal of metal ionsfrom water system[J]. Carbohydrate polymers,2013,98(1):483-489.
    [14]Tzoumaki M V, Moschakis T, Kiosseoglou V, et al. Oil-in-water emulsions stabilized bychitin nanocrystal particles[J]. Food Hydrocolloids,2011,25(6):1521-1529.
    [15]Leksrisompong P N, Foegeding E A. How Micro‐Phase Separation Alters the HeatingRate Effects on Globular Protein Gelation[J]. Journal of food science,2011,76(3):E318-E327.
    [16]Abbasi S, Dickinson E. High-pressure-induced rheological changes of low-methoxylpectin plus micellar casein mixtures[J]. Journal of agricultural and food chemistry,2002,50(12):3559-3565.
    [17]Guo J, Zhang Y, Yang X Q. A novel enzyme cross-linked gelation method for preparingfood globular protein-based transparent hydrogel[J]. Food Hydrocolloids,2012,26(1):277-285.
    [18]Le X T, Turgeon S L. Rheological and structural study of electrostatic cross-linkedxanthan gum hydrogels induced by β-lactoglobulin[J]. Soft Matter,2013,9(11):3063-3073
    [19]Renkema J M S, Knabben J H M, Van Vliet T. Gel formation by β-conglycinin andglycinin and their mixtures[J]. Food Hydrocolloids,2001,15(4):407-414.
    [20]Motoki M, Seguro K. Transglutaminase and its use for food processing[J]. Trends in foodscience&technology,1998,9(5):204-210.
    [21]Marchessault R H, Morehead F F, Walter N M. Liquid crystal systems from fibrillarpolysaccharides[J].1959.
    [22]Oshima T, Taguchi S, Ohe K, et al. Phosphorylated bacterial cellulose for adsorption ofproteins[J]. Carbohydrate Polymers,2011,83(2):953-958.
    [23]Shin M K, Spinks G M, Shin S R, et al. Nanocomposite hydrogel with high toughness forbioactuators[J]. Advanced Materials,2009,21(17):1712-1715.
    [24]Zhou C, Wu Q, Yue Y, et al. Application of rod-shaped cellulose nanocrystals inpolyacrylamide hydrogels[J]. Journal of colloid and interface science,2011,353(1):116-123.
    [25]Wu Y, Zhou Z, Fan Q, et al. Facile in-situ fabrication of novel organic nanoparticlehydrogels with excellent mechanical properties[J]. Journal of Materials Chemistry,2009,19(39):7340-7346.