乳头状甲状腺癌血清标记物的筛选与鉴定
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景
     甲状腺癌是头颈部常见的恶性肿瘤之一,也是内分泌最常见恶性肿瘤。据报道,该肿瘤约占内分泌恶性肿瘤的91.1%,在所有恶性肿瘤中约占1%。美国每年新增甲状腺癌病例约为33 550,最近统计资料显示该疾病发病率有上升趋势,尤其是乳头状甲状腺癌的发病率。乳头状甲状腺癌是甲状腺癌中最常见的类型,约占甲状腺癌的80%。早期正确的诊断、及时合理的治疗对提高乳头状甲状腺癌长期生存率具有重要意义。当前临床上用于甲状腺癌诊断的方法很多,主要有超声、CT、磁共振、甲状腺放射性核素扫描、甲状腺吸碘率、细针穿刺细胞学检查。细针穿刺细胞学检查是目前临床上区分甲状腺结节良恶性最有效的手段。据统计,细针穿刺细胞学检查区分甲状腺结节良恶性的敏感性为93%,但其特异性仅为75%。上世纪90年代以来,人们开始寻找乳头状甲状腺癌相关蛋白质标记物,以期能够早期正确诊断乳头状甲状腺癌。Galectin-3、CITED-1、HBME1、cytokeratin-19及TPO等,曾被认为可作为甲状腺癌早期诊断的蛋白质标记物,但后来的研究发现,这些肿瘤标记物缺乏一定的特异性,且阳性预测值低,尚不足以用来诊断甲状腺癌。近年来,蛋白质组学的发展为肿瘤标记物的检测和肿瘤早期正确的诊断提供了新的手段,越来越多的研究希望运用蛋白质组学技术寻找可用于肿瘤早期诊断的特异性标记物。表面增强激光解析电离飞行时间质谱(SELDI-TOF-MS)是近年来开展的一项全新的蛋白质组学技术,已被证实为肿瘤潜在标记物检测的强有力的工具。同时,该项技术结合MALDI-TOF-MS. LC-MS/MS等可实现对肿瘤血清中特异性标记物的鉴定。目前这些蛋白质组学技术已经成功应用于多种恶性肿瘤生物学标记物的研究中。尽管以往曾有研究人员利用蛋白质组学技术对乳头状甲状腺癌标记物进行研究,但迄今为止尚未有该肿瘤相关的特异性蛋白质鉴定方面的报道。
     本研究旨在应用SELDI-TOF-MS芯片技术对乳头状甲状腺癌患者和正常健康人血清中蛋白质组进行检测,结合生物信息学分析处理,筛选乳头状甲状腺癌血清特异性蛋白质峰,建立可用于乳头状甲状腺癌诊断的判别模型,随后联合HPLC、MALDI-TOF-MS及LC-MS/MS等一系列蛋白质组学技术对这些差异性蛋白质波峰进行分离、纯化、鉴定,最后应用抗体芯片免疫测定法对所鉴定出的目标蛋白质进行验证。
     研究目的
     筛选并鉴定可用于乳头状甲状腺癌血清学诊断的特异性蛋白质标记物。
     材料与方法
     1临床资料
     224例血清标本均来自于郑州大学第一附属医院普通外科,其中包括108例乳头状甲状腺癌患者血清标本,56例良性甲状腺结节血清标本,60例健康志愿者血清标本。本实验经本院伦理委员会同意,且受试者均签署有知情同意书。乳头状甲状腺癌患者中位年龄43岁,其中男27例,女81例,血清标本均在初诊时获得。根据UICC分期标准,108例乳头状甲状腺癌患者中Ⅰ期85例,Ⅱ期12例,Ⅲ期8例,Ⅳ期3例。良性甲状腺结节患者和正常健康志愿者均与乳头状甲状腺癌患者年龄、性别相匹配。所有的乳头状甲状腺癌及良性甲状腺结节患者均得到2位以上的病理学专家证实。血清标本均在清晨空腹时抽取,室温静置1h,3000 r/min离心10 min,取上清液,然后放入—80℃液氮冰箱保存。
     2主要试剂和仪器
     蛋白质芯片生物系统(Ciphergen PBSⅡ+SELDI-TOF-MS)和WCX2芯片购于美国Ciphergen公司,SELDI-TOF-MS相关试剂购于美国Sigma公司。Ziptip C18购于美国Millipore公司,胰蛋白酶购于美国Promega公司,碘乙酰胺(IAM)购于德国Applichem公司,二硫苏糖醇(DTT)购于德国Bio-rad公司。基质辅助激光解析电离飞行时间质谱(MALDI-TOF-MS)购于英国Kratos Analytical公司,高效液相色谱(HPLC)购于日本Shimadzu公司,液相色谱串联质谱(LC-MS/MS)购于美国Thermo Electron公司。
     3实验方法
     3.1 SELDI-TOF-MS蛋白质芯片操作
     冰浴中解冻血清标本,4℃离心。取96孔板置冰盒上,每孔加20μl U9缓冲液和10μl血清,4℃层析柜600 r/min振荡30 min。在震荡结束前15 min做芯片预处理,芯片装入加样器中,记下芯片号,每孔加醋酸钠200μl,层析,重复操作1次。U9处理后的96孔板置冰上,排枪加醋酸钠185μl,层析。取已处理的样本100μl加到芯片上,置层析柜4℃600 r/min结合60min,甩去残液,快速拍干。加醋酸钠200μl,振荡,甩掉,拍干,重复3次。200μl去离子水冲洗各孔2次,甩去除多余的水分。芯片风干后,每孔分两次加入50%饱和的SPA1μl,干燥后上机待测。
     3.2数据收集、处理及统计学分析
     随机选取60例乳头状甲状腺癌患者(Ⅰ期45例,Ⅱ期8例,Ⅲ期4例,Ⅳ期3例)和40例正常健康者作为训练组。为评估和验证所建立的分类模型的准确性,余48例乳头状甲状腺癌患者(Ⅰ期40例,Ⅱ期4例,Ⅲ期4例)和76例对照(20例正常健康人,56例良性甲状腺结节患者)作为测试组。
     数据收集前,使用All-in-one标准蛋白质芯片对SELDI-TOF-MS系统进行校正。将结合后的WCX2蛋芯片用PBS-Ⅱ+质谱阅读仪进行分析。分析参数:激光强度为170,灵敏度为6,每个样本收集点数140次。收集数据分子质量范围1000~30000 Da,优化范围是2000~20000 Da。数据分析时首先通过离散小波去除噪音,并采用单调局部极小曲线对原始质谱进行校正,减掉基线,过滤出S/N大于2的峰。以10%为最小阈值进行聚类分析,每个样本中m/z差异小于0.3%的峰归为一类,并进行标准化处理。初步筛选出的m/z峰进行Wilcoxon秩和检验,P值来衡量每个峰区分不同组别的能力。检验标准取a=0.01。然后为了区分不同组别数据差异,采用非线性支持向量机(SVM)分类器对各个样本质谱数据进行分析,建立判别模型,最后用留一法交叉验证对所建立判别模型的判别效果进行评估。
     3.3差异性蛋白质峰的纯化
     于—80℃冰箱中取出血清样本,置入冰水浴中解冻。取血清100μl,分别加入350μ1超纯水和700μl纯ACN。随后将混合液置入—20℃冰箱,30 min后,13000 r/min离心10 min。取上清液移入新的试管,置入SPD SpeedVac冻干20 min。冻干后的样品置入HPLC仪中,收集不同时间的纯化液。将纯化出的各时间段蛋白液分别置入SPD SpeedVac中冻干至20μl。冻干后的蛋白液各取1.5μl分别与1.5μl CHCA混合后,置入靶板上,待干。同时用细胞色素C+CHCA和胰岛素+CHCA校样。将靶板置入MALDI-TOF-MS质谱仪中进行检测,跟踪目标蛋白质峰。
     3.4蛋白质标记物的鉴定
     含有目标蛋白质的蛋白液加超纯水至40μl,再加入配好的浓度为0.1 mol/L的DTT溶液4μl后,置于37℃温水中水浴1h。向该混合液中加入IAM 1.6μl后,避光放置1 h,随后依次加入1.6μl的1 mol/L的DTT溶液,150μl的0.1 mol/L的NH4HCO3溶液和2μl的胰蛋白酶。然后置于37℃温水中过夜。酶解后的蛋白液填柱上样。全部上样到毛细色谱柱后,置入nano-LC-ESI-MS/MS进行质谱分析,将得到的肽质量指纹图谱导入SEQUEST检索程序于Bioworks蛋白质序列数据库查询,检索相匹配的可能蛋白质。
     3.5蛋白质标记物的验证
     为验证上述所鉴定出的目标蛋白质,本实验采用抗体芯片免疫测定法对所有样本进行重新分析。首先将特异性的抗体(抗人触珠蛋白α抗体;抗人载脂蛋白C-Ⅰ抗体;抗人载脂蛋白C-Ⅲ抗体)分别以共价结合方式偶联于预激活的PS20芯片上。BSA试剂阻断结合反应后,清洗未结合的抗体,上样。1.5μL的血清样本、3μL的结合缓冲液与特异性抗体所覆盖的位点室温下孵育90 min。PBS液和去离子水分别洗涤两次,干燥后,采用PBS-Ⅱ+系统的蛋白质芯片阅读器进行分析检测。
     结果
     1差异性蛋白质峰的检测
     60例乳头状甲状腺癌患者和40例正常健康对照原始质谱数据经去噪、减掉基线及标准化处理后,聚类分析得到样本各自的峰。对所得到峰的相对强度做Wilcoxon秩和检验,P<0.01的m/z峰26个。其中7个m/z峰在乳头状甲状腺癌中高表达,19个呈低表达。从差异显著蛋白质峰的任意组合中,采用SVM筛选出预测值的Youden指数最高的组合模型,筛出m/z峰值位于9190、6631和8697的蛋白质标记物3个。与正常健康对照相比,乳头状甲状腺癌患者中,m/z峰值位于9190的蛋白质明显高表达,而峰值位于6631和8697的蛋白质表达明显降低。此外,随着肿瘤分期的增加,m/z峰值位于9190的蛋白质表达水平有升高的趋势,而峰值位于6631和8697的蛋白质表达水平则呈下降趋势。联合3种潜在蛋白质标记物,leave-1-out交叉检测,该判别模型区分乳头状甲状腺癌患者和正常健康人的敏感性是98%,特异性是97%。
     2差异性蛋白质峰的验证
     为验证上述所得到的判别模型的准确性和可行性,本研究用另外48例乳头状甲状腺癌患者和76例非乳头状甲状腺癌对照血清标本(20例正常健康人、56例良性甲状腺结节患者)进行盲法测试。结果显示该判别模型区分乳头状甲状腺癌患者和非癌症对照组的敏感性为95.15%,特异性为93.97%,阳性预测值为96.0%。
     3蛋白质标记物的纯化与鉴定
     采用HPLC技术分别对m/z峰位于9190、6631和8697的蛋白质进行分离纯化。随后对目标蛋白质进行酶解,nano-LC-MS/MS对得到的多肽混合物进行分析检测。m/z峰值位于9190的蛋白质被鉴定为触珠蛋白al,m/z峰值位于6631和8697的蛋白质分别被鉴定为载脂蛋白C-Ⅰ和载脂蛋白C-Ⅲ。
     4蛋白质标记物的验证
     为进一步验证鉴定结果的准确性,本实验采用分别结合有抗人触珠蛋白α抗体、抗人载脂蛋白C-Ⅰ抗体和抗人载脂蛋白C-Ⅲ抗体的蛋白质芯片进行免疫检测。观察到m/z峰值位于9190的蛋白质可被偶联有抗人触珠蛋白α抗体的芯片捕获,而m/z峰值位于6631和8697的蛋白质可分别被偶联有抗人载脂蛋白C-Ⅰ抗体和抗人载脂蛋白C-Ⅲ抗体的芯片所结合。
     结论
     m/z峰位于9190、6631和8697的蛋白质分别被鉴定为触珠蛋白α1、载脂蛋白C-Ⅰ和载脂蛋白C-Ⅲ。联合此三种蛋白质,可有效的区分乳头状甲状腺癌患者和非癌者,在乳头状甲状腺癌的诊断中具有一定的价值和广泛的应用前景。本实验是基于有限样本的研究,仍需扩大样本量,使其具有更高的准确率和推广性。此外,SELDI-TOF-MS芯片分析、HPLC纯化、MALDI-TOF-MS跟踪监测及LC-MS/MS蛋白质鉴定等一些列蛋白质组学技术的联合应用,为肿瘤蛋白质标记物的检测鉴定提供了有效的技术支持。
Background
     Thyroid carcinoma is the most common endocrine malignancy, and a common cancer among the malignancies of head and neck. It comprises 91.5% of all endocrine malignancies and 1% of all malignant diseases. An estimated 33 550 new cases are diagnosed annually in the United States and recent statistics shows the incidence of thyroid carcinoma has increased, especially in papillary thyroid carcinomas (PTC). PTC is the most common type, which accounts for 80% of all thyroid cancers. Early accurate diagnosis and timely treatment are critical for improving long-term survival of PTC patients. Many diagnostic tools have been used for thyroid carcinoma, such as sonography, computed tomography, magnetic resonance imaging, cytological examination and fine-needle aspiration. Currently, although ultrasound-guided fine-needle aspiration biopsy is considered as the most effective test for distinguishing malignant from benign thyroid nodules, its sensitivity is approximately 93% and its specificity is 75%. At the same time, researchers have been seeking valuable biomarkers for thyroid carcinoma diagnosis, such as galectin-3, CITED-1, HBME1, cytokeratin-19 and TPO, and so on. What is disappointing is that all these biomarkers either are lacking specificity to some degree, or have a poor positive predictive value. To distinguish a malignant thyroid nodule from a benign lesion more accurately, the diagnostic test, however, still needs to be improved. Recent advances in the proteomics study have introduced novel techniques for the screening of cancer biomarkers and improved early and accurate diagnosis of cancer diseases to a new horizon. Surfaced enhanced laser desorption/ionization time of flight mass spectroscopy (SELDI-TOF-MS), which generates the protein fingerprint by MS, has been proved a powerful tool for potential biomarker discovery. Recently, the SELDI-TOF-MS analysis has been successfully used to identify specific biomarkers for various cancers. When combining with other peoteomics technologies, such as MALDI-TOF-MS, LC-MS/MS and so on, the candidate protein biomarkers can be identified. In search of biomarkers for diagnosing PTC, a few pilot studies based on proteomics were conducted, in which SELDI-TOF-MS has been utilized. However, to our knowledge, no specific protein biomarkers have been identified and validated in these reports.
     In this study, we first used SELDI-TOF-MS technology to screen potential protein patterns specific for PTC and then purified the candidate protein biomarker peaks by HPLC, MALDI-TOF-MS, and identified by LC-MS/MS. Finally, we confirmed these biomarkers by ProteinChip Immunoassays.
     Objective
     The aim of this study was to discover and identify potential protein biomarkers for PTC specifically.
     Materials and methods
     1 Clinical Materials
     Serum samples were obtained from 224 individuals with informed consent in the Department of General Surgery, the First Affiliated Hospital of Zhengzhou University. These 224 individuals included 108 patients with PTC,56 patients with benign thyroid node, and 60 healthy individuals. Patients with PTC had a median age of 43 years (ranging from 23 to 75 years,27 men and 81 women), and the sera was obtained at the time of diagnosis. All 108 patients were distributed in 4 stages according to UICC. In stageⅠthere were 85 patients, stageⅡ,Ⅲ&Ⅳconsisted of 12, 8 & 3 patients respectively. The benign thyroid node group and the healthy individuals group were age-and gender-matched with the PTC group. Pathological diagnosis of all the PTC and benign thyroid nodes were confirmed independently by two pathologists. All serum samples were collected preoperatively in the morning before breakfast. The sera were left at room temperature for 1 h, centrifuged at 3000 r/min for 10 min, and then stored at-80℃.
     2 Reagents and instruments
     ProteinChip Biosystems (Ciphergen PBSⅡ+SELDI-TOFMS) and WCX2 chip were purchased from Ciphergen Biosystems (USA). All other SELDI-TOF-MS related reagents were acquired from Sigma (USA). Ziptip C18 was purchased from Millipore (USA). Trypsase was purchased from Promega (USA). IAM was purchased from AppliChem(GER). DTT was purchased from Bio-rad (GER). MALDI-TOF-MS was purchased from Kratos Analytical Co (UK) and HPLC was purchased from Shimadzu (JPN). LC-MS/MS was purchased from Thermo Electron Corporation (USA).
     3 Methods
     3.1 SELDI-TOF-MS analysis of serum protein profiles
     Frozen serum samples were defrosted on ice and spun at 4℃. Each serum sample(10μL) was denatured by addition of 20μL of U9 buffer and vortexed at 4℃for 30 min. WCX2 proteinchip arrays was pretreatmented before 15 min of finishing the vibration. The proteinchip was placed in the bioprocessor, and wrote down the chip number. Each hole was added with 200μl sodium acetate and then was vortexed. Repeat this operation once. The 96-hole plate with prepared by U9 was placed on ice, and added with 185μl sodium acetate, then vortexed. The diluted serum sample was allowed to react with the surface of the WCX2 chip for 60 min at room temperature. After removing the remaining liquid and drying the array surface rapidly, adding 200μl sodium acetate, and then vortexed. Repeat the operation three times. Each spot was then washed two times with 200μl deionized water, and removed the remaining water. After drying the array surface in the air,1μl 50% saturated SPA was applied and allowed to dry, and placed them on the device for testing.
     3.2 Purification of candidate protein markers using HPLC
     Frozen serum samples were defrosted on ice. Each serum sample (100μl) was mixed with 350μl ultrapure water and 700μl pure ACN, and then incubated for for 30 min at-20℃. After that, the mixture was centrifuged at 13000 r/min for 10 min. The supernatant was removed into new tubes and then placed in SPD SpeedVac for 20 min. The freeze-dried samples were then loaded into HPLC. Each peak fraction was collected and concentrated using SpeedVac. The mixture with 1.5μl CHCA and 1.5μl concentrated fraction was spotted to the MALDI plate. At the same time, the instrument was calibrated by cytochrome C+CHCA and Insulin+CHCA. And then, the taget plate was placed into the AXIMA-CFRTM+MALDI-TOF mass spectrometer to trace the candidate protein biomarkers.
     3.3 Identification of candidate protein biomarkers by LC-MS/MS
     Each fraction which contains the candidate protein biomarker was added ultrapure water to 40μl and mixed with 4μl 0.1 mol/L DTT for 1 h in 37℃water. Then the mixture was alkylated by 1.6μl iodoacetamide in the dark for 1 h. After that, the candidate proteins were proteolysed with 2μl trypsin in 150 ul NH4HCO3 overnight at 37℃. Protein digests obtained above were loaded onto a home-made C18 column and followed with nano-LC-ESI-MS/MS analysis. All MS/MS data were searched against a human protein database downloaded from Bioworks using the SEQUEST program.
     3.4 Confirmation of candidate protein biomarkers using ProteinChip Immunoassays
     To confirm the identity of the candidate protein biomarkers, all samples from the initial experiments were reanalyzed by using ProteinChip immunoassays. Specific antibody arrays were prepared by covalently coupling the appropriate antibodies to preactivated ProteinChip arrays. Antibodies (anti-human haptoglobinα-chain; anti-human apolipoprotein C-I; anti-human apolipoprotein C-III) were covalently coupled to PS20 arrays, respectively. After blocking with BSA and washing to remove uncoupled antibodies, antibody-coated spots were incubated with 1.5μL of serum samples and 3μL of binding buffer for 90 min. Spots were then washed with PBST, PBS and deionized water twice respectively before drying. SELDI-TOF-MS analysis was performed on a PBS-II ProteinChip reader with CHCA as matrix.
     4 Data collection and processing
     The SELDI-TOF-MS instrument was calibrated by the All-in-one peptide molecular mass standard before the collection of data. MS analysis was performed on a PBS-II ProteinChip reader. The mass spectra of the proteins were generated using an average of 140 laser shots at a laser intensity of 170 arbitrary units and detector sensitivity was set at 6. The scope of data collection is 1000 to 30000 daltons, and the optimize detection mass range was set from 2000 to 20000 daltons for all study sample profiles. The first step of data analysis was to use the undecimated discrete wavelet transform method to denoise the signals. Second, the spectra were subjected to baseline correction by aliging with a monotone local minimum curve and mass calibration. Third, the peaks were filtered to maintain a S/N of more than two. Finally, to match peaks across spectra, we pooled the detected peaks if the relative difference in their mass sizes was not more then 0.3%. The minimal percentage of each peak, appearing in all the spectra, is specified to ten. The matched peak across spectra is defined as a peak cluster. To distinguish between data of different groups, we used a nonlinear SVM classifier. The leave-one-out crossing validation approach was applied to estimate the accuracy of this classifier.
     5 Statistical analysis
     After the data of MS were filtered out the noice and with clustering analysis, the capability of each peak in distinguishing data of different groups was estimated by the P value of Wilcoxon test. The testing standard is set atα=0.01.
     Results
     1 Serum protein profiles and data processing
     Serum samples from the training set were analyzed and compared by SELDI-TOF-MS with WCX2 chip. All MS data were baseline subtracted and normalized using total ion current, and the peak clusters were generated by Biomarker Wizard software. After carrying out Wilcoxon rank sum tests to determine relative signal strength,26 peaks with P value<0.01 were obtained. Seven protein peaks were found up-regulated and 19 peaks were found down-regulated in PTC group. From the random combination of protein peaks with remarkable variation, SVM screened out the combined model with maximum Youden index of the predicted value, identifying 3 markers positioned at 9190,6631 and 8697 respectively. In the PTC group, the 9190 Da protein was remarkably elevated while 6631 & 8697 Da proteins were significantly decreased. In addition, the level of 9190 Da protein progressively increased with the clinical stage I, II, III and IV, and the expression of 6631,8697 Da proteins gradually decreased in higher stages. Combining 3 potential markers, using the method of leave-1-out for cross detection, the sensitivity of discriminating 60 PTC and 40 normal subjects was 98%, and its specificity was 97%.
     2 Protein peak validation
     The remaining 48 PTC and 76 control serum samples (20 healthy controls and 56 patients with benign thyroid node) as a blind testing set, were analyzed to validate the accuracy and validity of the classification model derived from the training set. The classification model distinguished the PTC samples from controls with a sensitivity of 95.15%, specificity of 93.97%, and positive predictive value of 96.0%, respectively.
     3 Purification and identification of candidate protein biomarkers
     Serum samples from PTC patients were used for the purification of the up-regulated candidate protein biomarker (9190 Da), and serum samples from healthy controls were used for the purification of the two down-regulate proteins (6631,8697 Da) using WCX SPE and C18 HPLC.
     After digestion with modified trypsin, the peptide mixture was analyzed by nano-LC-MS/MS. The candidate biomarker with m/z 9190 was identified as haptoglobin al chain, while another two biomarkers were identified as apolipoprotein C-I (6631 Da) and apolipoprotein C-Ⅲ(8697 Da). The whole sequence of the three candidate protein markers is given by combination of high sequence coverage and accurate molecular weight (MW) measurement using MALDI-TOF-MS.
     4 Validation of three candidate protein biomarkers
     A ProteinChip-array-based immunoassay was used to specifically capture haptoglobin al chain, apolipoprotein C-Ⅰand apolipoprotein C-Ⅲfrom crude serum samples and confirm the significance of each marker. The anti-haptoglobin a-chain antibody specifically captured the previously identified 9190 Da protein. The anti-apolipoprotein C-Ⅰarray was developed to capture apolipoprotein C-Ⅰ(6631 Da) and the apolipoprotein C-III antibody against specifically captured apolipoprotein C-Ⅲ(8697 Da).
     Conclusions
     In summary, we have identified a set of protein peaks that could discriminate PTC from non-cancer controls. From the protein peaks specific for PTC disease, we identified haptoglobinα1 chain, apolipoprotein C-I and apolipoprotein C-Ⅲas potential proteomic biomarkers of PTC. Further studies with larger sample sizes will be needed to verify the specific protein markers. An efficient strategy, composed of SELDI-TOF-MS analysis, HPLC purification, MALDI-TOF-MS trace and LC-MS/MS identification has been proved very successful.
引文
[1]Ronckers C M, McCarron P, Ron E. Thyroid cancer and multiple primary tumors in the SEER cancer registries[J]. Int J Cancer,2005,117 (2):281~288
    [2]Jemal A, Siegel R, Ward E, et al. Cancer statistics,2008[J]. CA Cancer J Clin,2008, 58 (2):71-96
    [3]Pelizzo M R, Merante Boschin I, Toniato A, et al. Diagnosis, treatment, prognostic factors and long-term outcome in papillary thyroid carcinoma[J]. Minerva Endocrinol,2008,33 (4):359-379
    [4]Seaberg R M, Eski S, Freeman J L. Influence of previous radiation exposure on pathologic features and clinical outcome in patients with thyroid cancer[J]. Arch Otolaryngol Head Neck Surg,2009,135 (4):355-359
    [5]Akulevich N M, Saenko V A, Rogounovitch T I, et al. Polymorphisms of DNA damage response genes in radiation-related and sporadic papillary thyroid carcinoma[J]. Endocr Relat Cancer,2009,16 (2):491-503
    [6]Hayashi N, Kitaoka M. Fine-needle aspiration biopsy of the thyroid nodule:uses and limitations[J]. Nippon Rinsho,2007,65 (11):2003-2007
    [7]Inohara H, Segawa T, Miyauchi A, et al. Cytoplasmic and serum galectin-3 in diagnosis of thyroid malignancies[J]. Biochem Biophys Res Commun,2008,376(3):605~610
    [8]Saussez S, Glinoer D, Chantrain G, et al. Serum galectin-1 and galectin-3 levels in benign and malignant nodular thyroid disease[J]. Thyroid,2008,18 (7):705~712
    [9]Asa S L. The role of immunohistochemical markers in the diagnosis of follicular-patterned lesions of the thyroid[J]. Endocr Pathol,2005,16 (4):295~309
    [10]Nygaard B, Frisch T, Kiss K. Thyroid papillary cancer using TPO staining[J]. Ugeskr Laeger,2008,170 (18):1571
    [11]Park Y J, Kwak S H, Kim DC, et al. Diagnostic value of galectin-3, HBME-1, cytokeratin 19, high molecular weight cytokeratin, cyclin D1 and p27(kip1)in the differential diagnosis of thyroid nodules[J]. J Korean Med Sci,2007,22 (4):621-628
    [12]Yang Y, Pospisil P, Iyer L K, et al. Integrative genomic data mining for discovery of potential blood-borne biomarkers for early diagnosis of cancer[J]. PLoS One,2008,3(11): e3661
    [13]LiXQ, Zhang S L, Cai Z, et al. Proteomic identification of tumor-associated protein in ovarian serous cystadenocarinoma[J]. Cancer Lett,2009,275 (1):109~116
    [14]Morla A, Poirier F, Pons S. Analysis of high molecular mass proteins larger than 150 kDa using cyanogen bromide cleavage and conventional 2-DE[J]. Electrophoresis,2008,29(20): 4158-4168
    [15]Issaq H J, Veenstra T D. The role of electrophoresis in disease biomarker discovery [J]. Electrophoresis,2007,28 (12):1980-1988
    [16]Woolley J F, Al-Rubeai M. The application of SELDI-TOF mass spectrometry to mammalian cell culture[J]. Biotechnol Adv,2009,27 (2):177-184
    [17]Geng X, Wang F, Li Y G. SELDI-TOF MS proteinchip technology for screening of serum markers of HBV-induced hepatocellular carcinoma[J]. J Exp Clin Cancer Res,2007,26(4): 505-508
    [18]Wang J, Zhang X, Ge X, et al. Proteomic studies of early-stage and advanced ovarian cancer patients[J]. Gynecol Oncol,2008,111 (1):111-119
    [19]Skytt A, Thysell E, Stattin P, et al. SELDI-TOF MS versus prostate specific antigen analysis of prospective plasma samples in a nested case-control study of prostate cancer[J]. Int J Cancer,2007,121 (3):615~620
    [20]Liu D, Cao L, Yu J, et al. Diagnosis of pancreatic adenocarcinoma using protein chip technology[J]. Pancreatology,2009,9 (1-2):127-135
    [21]Hundt S, Haug U, Brenner H. Blood markers for early detection of colorectal cancer:a systematic review[J]. Cancer Epidemiol Biomarkers Prev,2007,16 (10):1935~1953
    [22]Goncalves A, Bertucci F, Birnbaum D, et al. Protein profiling SELDI-TOF and breast cancer: clinical potential applications [J]. Med Sci,2007,23 (Spec No 1):23~26
    [23]Somorjai R L, Dolenko B, Baumgartner R. Class prediction and discovery using gene microarray and proteomics mass spectroscopy data:curses, caveats, cautions [J]. Bioinformatics,2003,19 (12):1484-1491
    [24]Busuttil S, Abela J, Pace G J. Support vector machines with profile-based kernels for remote protein homology detection[J]. Genome Inform,2004,15 (2):191~200
    [25]Matheny M E, Resnic F S, Arora N, et al. Effects of SVM parameter optimization on discrimination and calibration for post-procedural PCI mortality[J]. J Biomed Inform,2007, 40 (6):688-697
    [26]Fang J, Dongf Y, Williams T D, et al. Feature selection in validating mass spectrometry database search results[J]. J Bioinform Comput Biol,2008,6 (1):223~240
    [1]Wu N, Clausen A M. Fundamental and practical aspects of ultrahigh pressure liquid chromatography for fast separations[J]. J Sep Sci,2007,30 (8):1167~1182
    [2]Bergstrom J P, Helander A. Clinical characteristics of carbohydrate-deficient transferrin (%disialotransferrin) measured by HPLC:sensitivity, specificity, gender effects, and relationship with other alcohol biomarkers[J]. Alcohol Alcohol,2008,43 (4):436~441
    [3]Eramian D, Eswar N, Shen M Y, et al. How well can the accuracy of comparative protein structure models be predicted[J]. Protein Sci,2008,17 (11):1881~1893
    [4]Chen W, Yin X, Yin Y. Rapid and reliable peptide de novo sequencing facilitated by microfluidic chip-based Edman degradation[J]. J Proteome Res,2008,7 (2):766~770
    [5]Fuchs B, Schiller J. MALDI-TOF MS analysis of lipids from cells, tissues and body fluids[J]. Subcell Biochem,2008,49 (8):541~565
    [6]Wang K Y, Chuang S A, Lin P C, et al. Multiplexed immunoassay:quantitation and profiling of serum biomarkers using magnetic nanoprobes and MALDI-TOF MS[J]. Anal Chem, 2008,80 (16):6159~6167
    [7]Lu X, Zhao X, Bai C, et al. LC-MS-based metabonomics analysis[J]. J Chromatogr B Analyt Technol Biomed Life Sci,2008,866 (1-2):64~76
    [8]Ma S, Zhu M. Recent advances in applications of liquid chromatography-tandem mass spectrometry to the analysis of reactive drug metabolites[J]. Chem Biol Interact,2009,179 (1):25~37
    [9]Dwivedi R C, Spicer V, Harder M, et al. Practical implementation of 2D HPLC scheme with accurate peptide retention prediction in both dimensions for high-throughput bottom-up proteomics[J]. Anal Chem,2008,80 (18):7036~7042
    [10]Schneiderheinze J, Walden Z, Dufield R, et al. Rapid online proteolytic mapping of PEGylated rhGH for identity confirmation, quantitation of methionine oxidation and quantitation of UnPEGylated N-terminus using HPLC with UV detection[J]. J Chromatogr B Analyt Technol Biomed Life Sci,2009,877 (31):4065~4070
    [11]Issaq H J, Abbott E, Veenstra T D. Utility of separation science in metabolomic studies[J]. J Sep Sci,2008,31 (11):1936-1947
    [12]Mericko D, Lehotay J, Cizmarik J. HPLC separation of enantiomers using chiral stationary phases[J]. Ceska Slov Farm,2007,56 (3):107-113
    [13]Saz J M, Marina M L. Application of micro-and nano-HPLC to the determination and characterization of bioactive and biomarker peptides[J]. J Sep Sci,2008,31 (3):446~ 458
    [14]Yang Z, Wang S. Recent development in application of high performance liquid chromatography-tandem mass spectrometry in therapeutic drug monitoring of immunosuppressants[J]. J Immunol Methods,2008,336 (2):98~103
    [15]Wang C, Xu J. Zhou G, et al. Electrochemical detection coupled with high-performance liquid chromatography in pharmaceutical and biomedical analysis:a mini review[J]. Comb Chem High Throughput Screen,2007,10 (7):547~554
    [16]Colah R B, Surve R, Sawant P, et al. HPLC studies in hemoglobinopathies[J]. Indian J Pediatr,2007,74 (7):657~662
    [17]Pusch W, Kostrzewa M. Application of MALDI-TOF mass spectrometry in screening and diagnostic research[J]. Curr Pharm Des,2005,11(20):2577~2591
    [18]Najam-ul-Haq M, Rainer M, Trojer L, et al. Alternative profiling platform based on MELDI and its applicability in clinical proteomics[J]. Expert Rev Proteomics,2007,4 (4):447~ 452
    [19]Lee J, Soper S A, Murray K K. Development of an efficient on-chip digestion system for protein analysis using MALDI-TOF MS[J]. Analyst,2009,134 (12):2426~2433
    [20]Schug K A. Solution phase enantioselective recognition and discrimination by electrospray ionization--mass spectrometry:state-of-the-art, methods, and an eye towards increased throughput measurements[J]. Comb Chem High Throughput Screen,2007,10(5):301~ 316
    [21]Grandori R, Santambrogio C, Brocca S, et al. Electrospray ionization mass spectrometry as a tool for fast screening of protein structural properties[J]. Biotechnol J,2009,4(1):73~ 87
    [22]Favre-Kontula L, Sattonnet-Roche P, Magnenat E, et al. Detection and identification of plasma proteins that bind GlialCAM using ProteinChip arrays, SELDI-TOF MS, and nano-LC MS/MS[J]. Proteomics,2008,8 (2):378~388
    [23]Xi L, Junjian Z, Yumin L, et al. Serum biomarkers of vascular cognitive impairment evaluated by bead-based proteomic technology [J]. Neurosci Lett,2009,463 (1):6~11
    [24]Wu H Y, Tseng V S, Chen L C, et al. Combining alkaline phosphatase treatment and hybrid linear ion trap/Orbitrap high mass accuracy liquid chromatography-mass spectrometry data for the efficient and confident identification of protein phosphorylation[J]. Anal Chem, 2009,81 (18):7778-7787
    [25]Hogenboom A C, van Leerdam J A, de Voogt P. Accurate mass screening and identification of emerging contaminants in environmental samples by liquid chromatography-hybrid linear ion trap Orbitrap mass spectrometry[J]. J Chromatogr A,2009,1216 (3):510~519
    [26]Wassell J. Haptoglobin:function and polymorphism[J]. Clin lab,2000,46 (11-12):547~ 552
    [27]Weinberg E D. The role of iron in cancer[J]. Eur J Cancer Prev,1996,5 (1):19~36
    [28]Reizenstein P. Iron, free radicals and cancer[J]. Med Oncol Tumor Pharmacother,1991,8 (4):229~233
    [29]Saldova R, Royle L, Radcliffe C M, et al. Ovarian cancer is associated with changes in glycosylation in both acute-phase proteins and IgG[J]. Glycobiology,2007,17C12):1344~ 1356
    [30]Saito S, Murayama Y, Pan Y, et al. Haptoglobin-beta chain defined by monoclonal antibody RM2 as a novel serum marker for prostate cancer[J]. Int J Cancer,2008,123 (3):633~ 640
    [31]Nakano M, Nakagawa T, Ito T,et al. Site-specific analysis of N-glycans on haptoglobin in sera of patients with pancreatic cancer:a novel approach for the development of tumor markers[J]. Int J Cancer,2008,122 (10):2301~2309
    [32]Huang H L, Stasyk T, Morandell S, et al. Biomarker discovery in breast cancer serum using 2-D differential gel electrophoresis/MALDI-TOF/TOF and data validation by routine clinical assays[J]. Electrophoresis,2006,27 (8):1641-1650
    [33]Song G, Ouyang G, Bao S. The activation of Akt/PKB signaling pathway and cell survival[J]. J Cell Mol Med,2005,9 (1):59~71
    [1]Spisak S, Tulassay Z, Molnar B, et a. Protein microchips in biomedicine and biomarker discovery[J]. Electrophoresis,2007,28 (23):4261~4273
    [2]Poetz O, Ostendorp R, Brocks B, et al. Protein microarrays for antibody profiling: specificity and affinity determination on a chip[J]. Proteomics,2005,5 (9):2402~ 2411
    [3]Chen C S, Sullivan S, Anderson T, et al. Identification of novel serological biomarkers for inflammatory bowel disease using Escherichia coli proteome chip[J]. Mol Cell Proteomics,2009,8 (8):1765-1776
    [4]Sun Z, Fu X, Zhang L, et al. A protein chip system for parallel analysis of multi-tumor markers and its application in cancer detection[J]. Anticancer Res,2004,24(2C):1159~ 1165
    [5]Hu S, Li Y, Liu G, et al. A protein chip approach for high-throughput antigen identification and characterization [J]. Proteomic,2007,7 (13):2151~2161
    [6]Shi L, Zhang J, Wu P, et al. Discovery and identification of potential biomarkers of pediatric acute lymphoblastic leukemia[J]. Proteome Sci,2009,7(1):7
    [7]Polticelli F, Bocedi A, Minervini G, et al. Ascenzi P. Human haptoglobin structure and function--a molecular modelling study[J]. FEBSJ,2008,275 (22):5648~5656
    [8]Quaye I K. Haptoglobin, inflammation and disease[J]. Trans R Soc Trop Med Hyg,2008, 102 (8):735~742
    [9]Saeed S A, Mahmood F, Shah B H, et al. The inhibition of prostaglandin biosynthesis by human haptoglobin and its relationship with haemoglobin binding[J]. Biochem Soc Trans, 1997,25 (4):S618'
    [10]Borda J T, Alvarez X, Mohan M, et al. CD 163, a marker of perivascular macrophages, is up-regulated by microglia in simian immunodeficiency virus encephalitis after haptoglobin-hemoglobin complex stimulation and is suggestive of breakdown of the blood-brain barrier[J]. Am J Pathol,2008,172 (3):725-737
    [11]Lai I H, Tsai T I, Lin H H, et al. Cloning and expression of human haptoglobin subunits in Escherichia coli:delineation of a major antioxidant domain[J]. Protein Expr Purif,2007, 52 (2):356~362
    [12]Levy A P, Levy J E, Kalet-Litman S, et al. Haptoglobin genotype is a determinant of iron, lipid peroxidation, and macrophage accumulation in the atherosclerotic plaque[J]. Arterioscler Thromb Vasc Biol,2007,27 (1):134~140
    [13]Saeed S A, Ahmad N, Ahmed S. Dual inhibition of cyclooxygenase and lipoxygenase by human haptoglobin:its polymorphism and relation to hemoglobin binding[J]. Biochem Biophys Res Commun,2007,353 (4):915~920
    [14]Huntoon K M, Wang Y, Eppolito C A, et al. The acute phase protein haptoglobin regulates host immunity[J]. J Leukoc Biol,2008,84 (1):170~181
    [15]Guetta J, Strauss M, Levy N S, et al. Haptoglobin genotype modulates the balance of Thl/ Th2 cytokines produced by macrophages exposed to free hemoglobin [J]. Atherosclerosis, 2007,191 (1):48~53
    [16]Ugochukwu N H, Figgers C L. Caloric restriction inhibits up-regulation of inflammatory cytokines and TNF-alpha, and activates IL-10 and haptoglobin in the plasma of streptozotocin-induced diabetic rats[J]. J Nutr Biochem,2007,18 (2):120~126
    [17]Huang H L, Stasyk T, Morandell S, et al. Biomarker discovery in breast cancer serum using 2-D differential gel electrophoresis/MALDI-TOF/TOF and data validation by routine clinical assays[J]. Electrophoresis,2006,27 (8):1641~1650
    [18]Weinberg E D. The role of iron in cancer[J]. Eur J Cancer Prev,1996,5 (1):19~ 36
    [19]Reizenstein P. Iron, free radicals and cancer[J]. Med Oncol Tumor Pharmacother,1991, 8 (4):229~233
    [20]Sun Z L, Zhu Y, Wang F Q, et al. Serum proteomic-based analysis of pancreatic carcinoma for the identification of potential cancer biomarkers[J]. Biochim Biophys Acta,2007,1774 (6):764-771
    [21]Dumont L, Gautier T, de Barros J P, et al. Molecular mechanism of the blockade of plasma cholesteryl ester transfer protein by its physiological inhibitor apolipoprotein CI[J]. J Biol Chem,2005,280 (45):38108~38116
    [22]Lopez-Miranda J, Williams C, Lairon D. Dietary, physiological, genetic and pathological influences on postprandial lipid metabolism[J]. Br J Nutr,2007,98 (3):458~473
    [23]Schaefer E J, Asztalos B F. Cholesteryl ester transfer protein inhibition, high-density lipoprotein metabolism and heart disease risk reduction[J]. Curr Opin Lipidol,2006,17 (4):394~398
    [24]Mauger J F, Couture P, Bergeron N, et al. Apolipoprotein C-III isoforms:kinetics and relative implication in lipid metabolism[J]. J Lipid Res,2006,47 (6):1212~1218
    [25]Chen J, Anderson M, Misek D E, et al. Characterization of apolipoprotein and apolipoprotein precursors in pancreatic cancer serum samples via two-dimensional liquid chromatography and mass spectrometry[J]. J Chromatogr A,2007,1162 (2):117~ 125
    [26]Engwegen J Y, Helgason H H, Cats A, et al. Identification of serum proteins discriminating colorectal cancer patients and healthy controls using surface-enhanced laser desorption ionisation-time of flight mass spectrometry[J]. World J Gastroenterol,2006,12 (10): 1536-1544
    [27]Gobel T, Vorderwulbecke S, Hauck K, et al. New multi protein patterns differentiate liver fibrosis stages and hepatocellular carcinoma in chronic hepatitis C serum samples[J]. World J Gastroenterol,2006,12 (47):7604~7612
    [28]Muntoni S, Atzori L, Mereu R, et al. Serum lipoproteins and cancer[J]. Nutr Metab Cardiovasc Dis,2009,19 (3):218~225
    [29]Lavrentiadou S N, Hadzopoulou-Cladaras M, Kardassis D, et al. Binding specificity and modulation of the human ApoCⅢ promoter activity by heterodimers of ligand-dependent nuclear receptors[J]. Biochemistry,1999,38(3):964~975
    [30]Haymart M R, Repplinger D J, Leverson G E, et al. Higher serum thyroid stimulating hormone level in thyroid nodule patients is associated with greater risks of differentiated thyroid cancer and advanced tumor stage[J]. J Clin Endocrinol Metab,2008,93 (3) 809-814
    [1]Ahram M, Petricoin E F. Proteomics Discovery of Disease Biomarkers[J]. Biomark Insights, 2008,3(1):325~333
    [2]Gonzalez-Buitrago J M, Ferreira L, Muniz M C. Clinical proteomics and new biomarkers in biological fluids[J]. Med Clin(Barc),2008,131 (11):426~434
    [3]Michaud G A, Snyder M. Proteomic approaches for the global analysis of proteins[J]. Biotechniques,2002,33 (6):1308~1316
    [4]Liebler D C. Proteomic approaches to characterize protein modifications:new tools to study the effects of environmental exposures[J]. Environ Health Perspec,2002,110(Suppl 1): 3-9
    [5]Dakna M, He Z, Yu W C, et al. Technical, bioinformatical and statistical aspects of liquid chromatography-mass spectrometry (LC-MS) and capillary electrophoresis-mass spectrometry (CE-MS) based clinical proteomics:a critical assessment[J]. J Chromatogr B Analyt Technol Biomed Life Sci,2009,877 (13):1250~1258
    [6]Choi C W, Hong Y S, Kim S I. Application of free-flow electrophoresis/2-dimentional gel electrophoresis for fractionation and characterization of native proteome of Pseudomonas putida KT2440[J]. J Microbiol,2008,46 (4):448~455
    [7]Volke D, Hoffmann R. Quantitative proteomics by fluorescent labeling of cysteine residues using a set of two cyanine-based or three rhodamine-based dyes[J]. Electrophoresis,2008, 29 (22):4516~4526
    [8]Morla A, Poirier F, Pons S, et al. Analysis of high molecular mass proteins larger than 150 kDa using cyanogen bromide cleavage and conventional 2-DE[J]. Electrophoresis,2008, 29 (20) : 4158~4168
    [9]Wang Z, Feng X, Liu X, et al. Involvement of potential pathways in malignant transformation from oral leukoplakia to oral squamous cell carcinoma revealed by proteomic analysis[J]. BMCGenomics,2009,10 (8):383
    [10]Fan P, Wang X, Kuang T, et al. An efficient method for the extraction of chloroplast proteins compatible for 2-DE and MS analysis[J]. Electrophoresis,2009,30 (17):3024~3033
    [11]LiK, XuC, Li Z, et al. Comparative proteome analyses of phosphorus responses in maize (Zea mays L.) roots of wild-type and a low-P-tolerant mutant reveal root characteristics associated with phosphorus efficiency[J]. Plant J,2008,55 (6):927~939
    [12]Chitteti B R, Tan F, Mujahid H, et al. Comparative analysis of proteome differential regulation during cell dedifferentiation in Arabidopsis[J]. Proteomics,2008,8 (20):4303~ 4016
    [13]Rozanas C R, Loyland S M. Capabilities using 2-D DIGE in proteomics research:the new gold standard for 2-D gel electrophoresis[J]. Methods Mol Biol,2008,441 (3):1~18
    [14]Kondo T. Tissue proteomics for cancer biomarker development:laser microdissection and 2D-DIGE[J]. BMB Rep,2008,41 (9):626-634
    [15]Fernandez E A, Girotti M R, Olmo J A, et al. Improving 2D-DIGE protein expression analysis by two-stage linear mixed models:assessing experimental effects in a melanoma cell study[J]. Bioinformatics,2008,24 (23):2706~2712
    [16]Zubaidah R M, Tan G S, Tan S B, et al.2-D DIGE profiling of hepatocellular carcinoma tissues identified isoforms of far upstream binding protein (FUBP) as novel candidates in liver carcinogenesis[J]. Proteomics,2008,8 (23-24):5086-5096
    [17]Timms J F, Cramer R. Difference gel electrophoresis[J]. Proteomics,2008,8 (23-24)): 4886~4897
    [18]Dwivedi R C, Spicer V, Harder M, et al. Practical implementation of 2D HPLC scheme with accurate peptide retention prediction in both dimensions for high-throughput bottom-up proteomics[J]. Anal Chem,2008,80 (18):7036~7042
    [19]Schneiderheinze J, Walden Z, Dufield R, et al. Rapid online proteolytic mapping of PEGylated rhGH for identity confirmation, quantitation of methionine oxidation and quantitation of UnPEGylated N-terminus using HPLC with UV detection[J]. J Chromatogr B Analyt Technol Biomed Life Sci,2009,877 (31):4065~4070
    [20]Fang X, Balgley B M, Lee C S. Recent advances in capillary electrophoresis-based proteomic techniques for biomarker discovery[J]. Electrophoresis,2009,30(23):3998~ 4007
    [21]Zurbig P, Schiffer E, Mischak H. Capillary electrophoresis coupled to mass spectrometry for proteomic profiling of human urine and biomarker discovery[J]. Methods Mol Biol,2009, 564 (6):105-121
    [22]Metzger J, Luppa P B, Good D M, et al. Adapting mass spectrometry-based platforms for clinical proteomics applications:The capillary electrophoresis coupled mass spectrometry paradigm[J]. Crit Rev Clin Lab Sci,2009,46 (3):129-152
    [23]Junker K, von Eggeling F, Muller J, et al. Identification of biomarkers and therapeutic targets for renal cell cancer using ProteinChip technology[J]. Urologe A,2006,45 (3):305~ 306
    [24]Hui L, Diandong H, Baoxia Z, et al. Serum proteomic profiling associated with immune system impaired by stress using ProteinChip technology[J]. Neuroimmunomodulation,2007, 14 (6):326~330
    [25]Yip T T, Cho W C, Cheng W W, et al. Application of ProteinChip array profiling in serum biomarker discovery for patients suffering from severe acute respiratory syndrome[J]. Methods Mol Biol,2007,382 (1):313~331
    [26]Badri M A, Rivard D, Coenen K, et al. SELDI-TOF MS procedure for the detection, quantitation, and preliminary characterization of low-molecular-weight recombinant proteins expressed in transgenic plants[J]. Proteomics,2009,9 (2):233~241
    [27]De Seny D, Ribbens C, Cobraiville G, et al. Proteomics studies on arthritis by SELDI-TOF-MS:identification of the S100 proteins family as proteins of interest[J]. Rev Med Liege, 2009,64 (1):29~35
    [28]Xu G, Xiang C Q, Lu Y, et al. SELDI-TOF-MS-based serum proteomic screening in combination with CT scan distinguishes renal cell carcinoma from benign renal tumors and healthy persons[J]. Technol Cancer Res Treat,2009,8 (3):225~230
    [29]Whelan L C, Power K A, McDowell D T, et al. Applications of SELDI-MS technology in oncology[J]. J Cell Mol Med,2008,12 (5A):1535-1547
    [30]Yang J, Dong X C, Leng Y. Conformation biases of amino acids based on tripeptide microenvironment from PDB database[J]. J Theor Biol,2006,240 (3):374~384
    [31]Lee J C, Hook V. Proteolytic fragments of chromogranins A and B represent major soluble components of chromaffin granules, illustrated by two-dimensional proteomics with NH(2)-terminal Edman peptide sequencing and MALDI-TOF MS[J]. Biochemistry,2009, 48 (23):5254-5262
    [32]Fuchs B, Schiller J. MALDI-TOF MS analysis of lipids from cells, tissues and body fluids[J]. Subcell Biochem,2008,49 (8):541~565
    [33]Sturiale L, Barone R, Palmigiano A, et al. Multiplexed glycoproteomic analysis of glycosylation disorders by sequential yolk immunoglobulins immunoseparation and MALDI-TOF MS[J]. Proteomics,2008,8 (18):3822~3832
    [34]Wang K Y, Chuang S A, Lin P C, et al. Multiplexed immunoassay:quantitation and profiling of serum biomarkers using magnetic nanoprobes and MALDI-TOF MS[J]. Anal Chem, 2008,80 (16):6159~6167
    [35]Li X, Wu X, Kim J M, et al. MALDI-TOF-MS analysis of small molecules using modified mesoporous material SBA-15 as assisted matrix [J]. J Am Soc Mass Spectrom,2009,20 (11):2167~2173
    [36]Lee J C, Hook V. Proteolytic fragments of chromogranins A and B represent major soluble components of chromaffin granules, illustrated by two-dimensional proteomics with NH(2)-terminal Edman peptide sequencing and MALDI-TOF MS[J]. Biochemistry,2009, 48 (23):5254~5262
    [37]Bhaumik U, Ghosh A, Sarkar A K, et al. Determination of ranolazine in human plasma by LC-MS/MS and its application in bioequivalence study[J]. J Pharm Biomed Anal,2008, 48 (5):1404-1410
    [38]Lang R, Yagar E F, Eggers R, et al. Quantitative investigation of trigonelline, nicotinic acid, and nicotinamide in foods, urine, and plasma by means of LC-MS/MS and stable isotope dilution analysis[J]. J Agric Food Chem,2008,56 (23):11114b~11121
    [39]Arndt T, Gierten B, Gussregen B, et al. False-positive ethyl glucuronide immunoassay screening associated with chloral hydrate medication as confirmed by LC-MS/MS and self-medication[J]. Forensic Sci Int,2009,184 (1-3):e27~29
    [40]Deventer K, Pozo O J, Van Eenoo P, et al. Development and validation of an LC-MS/MS method for the quantification of ephedrines in urine[J]. J Chromatogr B Analyt Technol Biomed Life Sci,2009,877 (4):369-374
    [41]Inoue K, Nitta S. Hino T, et al. LC-MS/MS and centrifugal ultrafiltration method for the determination of novobiocin in chicken, fish tissues, milk and human serum[J]. J Chromatogr B Analyt Technol Biomed Life Sci,2009,877 (4):461~464
    [42]Yang S Z, Liu X Y, MuBZ. The McLafferty rearrangement in the Glu residue in a cyclic lipopeptide determined by Q-TOF MS/MS[J]. J Mass Spectrom,2008,43(12):1673~ 1678
    [43]Danaceau J P, Scott Morrison M, Slawson M H. Quantitative confirmation of testosterone and epitestosterone in human urine by LC/Q-ToF mass spectrometry for doping control[J]. J Mass Spectrom,2008,43 (7):993~1000
    [44]Hamacher M, Eisenacher M, Meyer H E, et al. Pro teomics today:bioinformatics at its best. Proteomics and Bioinformatics--an inseparable couple[J]. Proteomics,2008,8 (22): 4616~4617
    [45]Lu G, Ni J. Highlighting computations in bioscience and bioinformatics:review of the Symposium of Computations in Bioinformatics and Bioscience (SCBB07)[J]. BMC Bioinformatics,2008,9 (6):S1
    [46]Grassi R, Lagalla R, Rotondo A. Genomics, proteomics, MEMS and SAIF:which role for diagnostic imaging?[J]. Radiol Med,2008,113 (6):775~778
    [47]Wang C Y, Staniforth V, Chiao M T, et al. Genomics and proteomics of immune modulatory effects of a butanol fraction of echinacea purpurea in human dendritic cells[J]. BMC Genomics,2008,9 (10):479
    [48]Jurisicova A, Jurisica I, Kislinger T. Advances in ovarian cancer proteomics:the quest for biomarkers and improved therapeutic interventions[J]. Expert Rev Proteomics,2008,5(4): 551-560
    [49]Roblick U J, Bader F G, Hammarstedt L, et al. Proteomic analysis of protein expression in human tonsillar cancer:differentially expressed proteins characterize human tonsillar cancer[J]. Acta Oncol,2008,47 (8):1493~1501
    [50]Kojima K, Asmellash S, Klug C A, et al. Applying proteomic-based biomarker tools for the accurate diagnosis of pancreatic cancer[J]. J Gastrointest Surg,2008,12 (10):1683~ 1690
    [51]Koelink C J, van Hasselt P, van der Ploeg A, et al. Tyrosinemia type I treated by NTBC:how does AFP predict liver cancer?[J]. Mol Genet Metab,2006,89 (4):310~315
    [52]Poon T C, Johnson P J. Proteome analysis and its impact on the discovery of serological tumor markers[J]. Clin Chim Acta,2001,313 (1-2):231-239
    [53]Sun S, Yi X, Poon R T, et al. A protein-based set of reference markers for liver tissues and hepatocellular carcinoma[J]. BMC Cancer,2009,9 (9):309
    [54]Polednak A P. Lung cancer incidence trends by histologic type in areas of California vs. other areas in the Surveillance, Epidemiology and End Results Program[J]. Cancer Epidemiol,2009,33 (5):319~324
    [55]Harris L J. Introduction:lung cancer[J]. Chest,2009,136 (5):25
    [56]Yang S Y, Xiao X Y, Zhang W G, et al. Application of serum SELDI proteomic patterns in diagnosis of lung cancer[J]. BMC Cancer,2005,5 (7):83
    [57]Rubporn A, Srisomsap C, Subhasitanont P, et al. Comparative proteomic analysis of lung cancer cell line and lung fibroblast cell line[J]. Cancer Genomics Proteomics,2009,6(4): 229~237
    [58]Dallaire F, Dewailly E, Rouja P. Cancer incidence and mortality rates in Bermuda[J]. West Indian Med J,2009,58 (4):367~374
    [59]Sanchez Munoz A, Gonzalez Martin A, Mendiola Fernandez C. Lights and shadows of the tumoral marker CA-125 in ovarian cancer[J]. Clin Transl Oncol,2008,10 (8):449~ 452
    [60]Wang J, Zhang X, Ge X, et al. Proteomic studies of early-stage and advanced ovarian cancer patients[J]. Gynecol Oncol,2008,111 (1):111~119
    [61]Dieplinger H, Ankerst D P, Burges A, et al. Afamin and apolipoprotein A-IV:novel protein markers for ovarian cancer[J]. Cancer Epidemiol Biomarkers Prev,2009,18(4):1127~ 1133
    [62]Dorjgochoo T, Gao Y T, Chow W H, et al. Plasma carotenoids, tocopherols, retinol and breast cancer risk:results from the Shanghai Women Health Study (SWHS)[J]. Breast Cancer Res Treat,2009,117 (2):381-389
    [63]Zeng Z, Hincapie M, Haab B B, et al. The development of an integrated platform to identify breast cancer glycoproteome changes in human serum[J]. J Chromatogr A,2009,1216(39): 6978-6988
    [64]Pietrowska M, Marczak L, Polanska J, et al. Mass spectrometry-based serum proteome pattern analysis in molecular diagnostics of early stage breast cancer[J]. J Transl Med,2009, 7 (1):60
    [65]Eckhardt S G, De Porre P, Smith D, et al. Patient-reported outcomes as a component of the primary endpoint in a double-blind, placebo-controlled trial in advanced pancreatic cancer[J]. J Pain Symptom Manage,2009,37 (2):135~143
    [66]Guo J, Wang W, Liao P, et al. Identification of serum biomarkers for pancreatic adenocarcinoma by proteomic analysis[J]. Cancer Sci,2009,100 (12):2292~2301
    [67]Fiedler G M, Leichtle A B, Kase J, et al. Serum peptidome profiling revealed platelet factor 4 as a potential discriminating Peptide associated with pancreatic cancer[J]. Clin Cancer Res, 2009,15 (11):3812~3819
    [68]Ng W T, Choi C W, Lee M C, et al. Familial nasopharyngeal carcinoma in Hong Kong: epidemiology and implication in screening[J]. Fam Cancer,2009,8 (2):103~108
    [69]Chen Y, Tang C E, Ouyang G L, et al. Identification of RKIP as a differentially tyrosine-phosphorylated protein in nasopharyngeal carcinoma and normal nasopharyngeal epithelial tissues by phosphoproteomic approach[J]. Med Oncol,2008,25 (4):442
    [70]Chan C M, Wong S C, Lam M Y, et al. Proteomic comparison of nasopharyngeal cancer cell lines C666-1 and NP69 identifies down-regulation of annexin II and beta2-tubulin for nasopharyngeal carcinoma[J]. Arch Pathol Lab Med,2008,132 (4):675~683
    [71]Huang Y J, Xuan C, Zhang B B, et al. SELDI-TOF MS profiling of serum for detection of nasopharyngeal carcinoma[J]. J Exp Clin Cancer Res,2009,28 (1):85
    [72]Abbas M, Farouk Y, Nasr M M, et al. Gastrointestinal stromal tumors (GISTs):clinical presentation, diagnosis, surgical treatment and its outcome[J]. J Egypt Soc Parasitol,2008, 38 (3):883-894
    [73]Mohri Y, Mohri T, Wei W, et al. Identification of macrophage migration inhibitory factor and human neutrophil peptides 1-3 as potential biomarkers for gastric cancer[J]. Br J Cancer, 2009,101 (2):295-302
    [74]Wu C, Luo Z, Chen X, et al. Two-dimensional differential in-gel electrophoresis for identification of gastric cancer-specific protein markers[J]. Oncol Rep,2009,21 (6): 1429-1437
    [75]Wong Y F, Cheung T H, Lo K W, et al. Protein profiling of cervical cancer by protein-biochips:proteomic scoring to discriminate cervical cancer from normal cervix[J]. Cancer Lett,2004,211 (2):227~234
    [76]Bae S M, Lee C H, Cho Y L, et al. Two-dimensional gel analysis of protein expression profile in squamous cervical cancer patients[J]. Gynecol Oncol,2005,99 (1):26~35
    [77]Ravaud A, Pasticier G, Davin J L, et al. Prostate carcinoma in the elderly[J]. Bull Cancer, 2008,95 (5):65-69
    [78]Pascual Mateo C, Lujan Galan M, Rodriguez Garcia N, et al. Clinical significance of prostatic intraepithelial neoplasm and atypical small acinar proliferation:relationship with prostate cancer[J]. Actas Urol Esp,2008,32 (7):680~685
    [79]Zheng Y, Xu Y, Ye B, et al. Prostate carcinoma tissue proteomics for biomarker discovery[J]. Cancer,2003,98 (12):2576-2582
    [80]M'Koma A E, Blum D L, Norris J L, et al. Detection of pre-neoplastic and neoplastic prostate disease by MALDI profiling of urine[J]. Biochem Biophys Res Commun,2007,353(3): 829-834
    [1]Ronckers C M, McCarron P, Ron E. Thyroid cancer and multiple primary tumors in the SEER cancer registries[J]. Int J Cancer,2005,117 (2):281~288
    [2]Jemal A, Siegel R, Ward E, et al. Cancer statistics,2008[J]. CA Cancer J Clin,2008, 58 (2):71~96
    [3]Detours V, Delys L, Libert F, et al. Genome-wide gene expression profiling suggests distinct radiation susceptibilities in sporadic and post-Chernobyl papillary thyroid cancers[J]. Br J Cancer,2007,97 (6):818~825
    [4]Seaberg R M, Eski S, Freeman J L. Influence of previous radiation exposure on pathologic features and clinical outcome in patients with thyroid cancer[J]. Arch Otolaryngol Head Neck Surg,2009,135 (4):355~359
    [5]Akulevich N M, Saenko V A, Rogounovitch T I, et al. olymorphisms of DNA damage response genes in radiation-related and sporadic papillary thyroid carcinoma[J]. Endocr Relat Cancer,2009,16 (2):491~503
    [6]Huang C C, Hsueh C, Liu F H, et al. Diagnostic and therapeutic strategies for minimally and widely invasive follicular thyroid carcinomas[J]. Surg Onco,2009,100 (7):87
    [7]Giovanella L, Maffioli M, Ceriani L, et al. Unstimulated high sensitive thyroglobulin measurement predicts outcome of differentiated thyroid carcinoma[J]. Clin Chem Lab Med,2009,47 (8):1001~1004
    [8]Ahmad T, Naeem M, Ahmad S, et al. Fine needle aspiration cytology (FNAC) and neck swellings in the surgical outpatient[J]. J Ayub Med Coll Abbottabad,2008,20 (3):30~ 32
    [9]Hayashi N, Kitaoka M. Fine-needle aspiration biopsy of the thyroid nodule:uses and limitations[J]. Nippon Rinsho,2007,65 (11):2003~2007
    [10]Hassan I, Osei-Agymang T, Osei-Agymang T, et al. Does fine-needle aspiration cytology optimize the surgical management of thyroid disorders in endemic goiter region? [J]. Endocr Pathol,2008,19 (1):34~39
    [11]Hayashi N, Kitaoka M. Fine-needle aspiration biopsy of the thyroid nodule:uses and limitations[J]. Nippon Rinsho,2007,65 (11):2003~2007
    [12]Rini J M, Lobsanov Y D. New animal lectin structures[J]. Curr Opin Struct Biol,1999, 9 (5):578-584
    [13]Bassen R, Brichory F, Caulet-Maugendre S, et al. Vertebrate galectins:structure and function, role in tumoral process[J]. Bull Cancer,2000,87 (10):703~707
    [14]Krzeslak A, Lipinska A. Galectin-3 as a multifunctional protein[J]. Cell Mol Biol Lett, 2004,9 (2):305~328
    [15]Cederfur C, Salomonsson E, Nilsson J, et al. Different affinity of galectins for human serum glycoproteins:galectin-3 binds many protease inhibitors and acute phase proteins[J]. Glycobiology,2008,18 (5):384~394
    [16]Goetz J G, Joshi B, Lajoie P. Concerted regulation of focal adhesion dynamics by galectin-3 and tyrosine-phosphorylated caveolin-1[J]. J Cell Biol,2008,180(6):1261~ 1275
    [17]Lohr M, Kaltner H, Lensch M, et al. Cell-type-specific expression of murine multifunctional galectin-3 and its association with follicular atresia/luteolysis in contrast to pro-apoptotic galectins-1 and-7[J]. Histochem Cell Biol,2008,130(3):567~581
    [18]Klima J, Lacina L, Dvorankova B, et al. Differential regulation of galectin expression/reactivity during wound healing in porcine skin and in cultures of epidermal cells with functional impact on migration[J]. Physiol Res,2009,58 (6):73~84
    [19]Vladimirova V, Waha A, Luckerath K, et al. Runx2 is expressed in human glioma cells and mediates the expression of galectin-3[J]. J Neurosci Res,2008,86(11):2450~2461
    [20]Balasubramanian K, Vasudevamurthy R, Venkateshaiah S U, et al. Galectin-3 in urine of cancer patients:stage and tissue specificity[J]. J Cancer Res Clin Oncol,2009,135(3): 355-363
    [21]Kapucuoglu N, Basak P Y, Bircan S, et al. Immunohistochemical galectin-3 expression in non-melanoma skin cancers[J]. Pathol Res Pract,2009,205 (2):97~103
    [22]Saussez S, Glinoer D, Chantrain G, et al. Serum galectin-1 and galectin-3 levels in benign and malignant nodular thyroid disease[J]. Thyroid,2008,18 (7):705~712
    [23]Saussez S, Lorfevre F, Lequeux T, et al. The determination of the levels of circulating galectin-1 and-3 in HNSCC patients could be used to monitor tumor progression and/or responses to therapy[J]. Oral Oncol,2008,44 (1):86~93
    [24]Turkoz H K, Oksuz H, Yurdakul Z, et al. Galectin-3 expression in tumor progression and metastasis of papillary thyroid carcinoma[J]. Endocr Pathol,2008,9(2):92~96
    [25]Saussez S, Decaestecker C, Mahillon V, et al. Galectin-3 upregulation during tumor progression in head and neck cancer[J]. Laryngoscope,2008,118 (9):1583~1590
    [26]Balan V, Nangia-Makker P, Schwartz A G, et al. Racial disparity in breast cancer and functional germ line mutation in galectin-3 (rs4644):a pilot study[J]. Cancer Res,2008, 68 (24):10045~10050
    [27]Inohara H, Segawa T, Miyauchi A, et al. Cytoplasmic and serum galectin-3 in diagnosis of thyroid malignancies[J]. Biochem Biophys Res Commun,2008,376(3):605~610
    [28]Savin S, Cvejic D, Isic T, et al. Thyroid peroxidase and galectin-3 immunostaining in differentiated thyroid carcinoma with clinicopathologic correlation[J]. Hum Pathol,2008, 39 (11):1656-1663
    [29]Semenov Diu, Pozharisskii K M, Boriskova M E et al. Galectin-3 in diagnosis of thyroid cancer[J]. Vopr Onkol,2008,54 (3):321~323
    [30]Ersoz S, Sert H, Yandi M, et al. The significance of Galectin-3 expression in the immunocytochemical evaluation of thyroid fine needle aspiration cytology[J]. Pathol Oncol Res,2008,14 (4):457~460
    [31]Lopez Mondejar P, Pico A, Segui J, et al. Usefulness of galectin-3 expression in the clinical behavior of differentiated thyroid carcinoma[J]. Med Clin (Barc),2008,130(5):161~ 164
    [32]Sawangareetrakul P, Srisomsap C, Chokchaichamnankit D, et al. Galectin-3 expression in human papillary thyroid carcinoma[J]. Cancer Genomics Proteomics,2008,5 (2): 117-122
    [33]Xu M R, Chen Y, Zhou S R. Expressions of RASSF1 A, Galectin-3 and TPO mRNA in papillary thyroid carcinoma and their clinical significance[J]. Zhonghua Zhong Liu Za Zhi, 2009,31 (5):356~360
    [34]Frame, M C, Inman G J. NCAM is at the heart of reciprocal regulation of E-cadherin-and integrin-mediated adhesions via signaling modulation[J]. Dev Cell,2008,15(4):494~ 496
    [35]van Roy F, Berx G. The cell-cell adhesion molecule E-cadherin[J]. Cell Mol Life Sci, 2008,65 (23):3756~3788
    [36]Rahnama F, Thompson B, Steiner M, et al. Epigenetic regulation of E-cadherin controls endometrial receptivity[J]. Endocrinology,2009,150 (3):1466~1472
    [37]Rosshart S, Hofmann M, Schweier O, et al. Interaction of KLRG1 with E-cadherin:new functional and structural insights[J]. Eur J Immunol,2008,38 (12):3354~3364
    [38]Margineanu E, Cotrutz C E, Cotrutz C Correlation between E-cadherin abnormal expressions in different types of cancer and the process of metastasis[J]. Rev Med Chir Soc Med Nat Iasi,2008,112 (2):432~436
    [39]Nurismah M I, Noriah O, Suryati M Y, et al. E-cadherin expression correlates with histologic type but not tumour grade in invasive breast cancer[J]. Asian Pac J Cancer Prev, 2008,9 (4):699-702
    [40]Suciu C, Cimpean A M, Muresan A M, et al. E-cadherin expression in invasive breast cancer[J]. Rom J Morphol Embryol,2008,49 (4):517-523
    [41]Lazar D, Taban S, Ardeleanu C, et al. The immunohistochemical expression of E-cadherin in gastric cancer; correlations with clinicopathological factors and patients' survival[J]. Rom J Morphol Embryol,2008,49 (4):459~467
    [42]Kuwabara Y, Yamada T, Yamazaki K, et al. Establishment of an ovarian metastasis model and possible involvement of E-cadherin down-regulation in the metastasis[J]. Cancer Sci, 2008,99 (10):1933~1939
    [43]Shi B, Laudon V, Yu S. E-cadherin tissue expression and urinary soluble forms of E-cadherin in patients with bladder transitional cell carcinoma[J]. Urol Int,2008,81 (3): 320-324
    [44]Nikiel B, Chekan M, Jaworska M, et al. Expression of the selected adhesive molecules (cadherin E, CD44, LGAL3 and CA50) in papillary thyroid carcinoma[J]. Endokrynol Pol, 2006,57 (4):326~335
    [45]Mitselou A, Ioachim E, Peschos D, et al. E-cadherin adhesion molecule and syndecan-1 expression in various thyroid pathologies[J]. Exp Oncol,2007,29(1):54~60
    [46]El Demellawy D, Nasr A, Alowami S. Application of CD56, P63 and CK19 immunohistochemistry in the diagnosis of papillary carcinoma of the thyroid[J]. Diagn Pathol,2008,3 (2):5
    [47]Laco J, Ryska A, Cap J, et al. Expression of galectin-3, cytokeratin 19, neural cell adhesion molecule and E-cadhedrin in certain variants of papillary thyroid carcinoma[J]. Cesk Patol, 2008,44 (4):103-107
    [48]Batistatou A, Charalabopoulos K, Nakanishi Y, et al. Differential expression of dysadherin in papillary thyroid carcinoma and microcarcinoma:correlation with E-cadherin[J].Endocr Pathol,2008,19 (3):197~202
    [49]Kawahara K, Nagano T, Matsui K, et al. Pleural sarcomatoid malignant mesothelioma consisting of histiocytoid cells[J]. Pathol Int,2007,57 (4):229~231
    [50]Saleh H A, El-Fakharany M, Makki H, et al. Differentiating reactive mesothelial cells from metastatic adenocarcinoma in serous effusions:the utility of immunocytochemical panel in the differential diagnosis[J]. Diagn Cytopathol,2009,37 (5):324~332
    [51]Hofman V, Lassalle S, Bonnetaud C, et al. Thyroid tumours of uncertain malignant potential:frequency and diagnostic reproducibility[J]. Virchows Arch,2009,455 (1): 21-33
    [52]Sun Y, Wu G P, Fang C Q, et al. Diagnostic utility of MOC-31, HBME-1 and MOC-31 mRNA in distinguishing between carcinoma cells and reactive mesothelial cells in pleural effusions[J]. Acta Cytol,2009,53 (6):619~624
    [53]Yu J, Nikiforova M N, Hodak S P, et al. Tumor-to-tumor metastases to follicular variant of papillary thyroid carcinoma:histologic, immunohistochemical, and molecular studies of two unusual cases[J]. Endocr Pathol,2009,20 (4):235~242
    [54]Nasr M R, Mukhopadhyay S, Zhang S, et al. Immunohistochemical markers in diagnosis of papillary thyroid carcinoma:Utility of HBME1 combined with CK19 immunostaining[J]. Mod Pathol,2006,19 (12):1631~1637
    [55]Nakamura N, Erickson L A, Jin L, et al. Immunohistochemical separation of follicular variant of papillary thyroid carcinoma from follicular adenoma[J]. Endocr Pathol,2006, 17 (3):213~223
    [56]Barroeta J E, Baloch Z W, Lal P, et al. Diagnostic value of differential expression of CK19, Galectin-3, HBME-1, ERK, RET, and p16 in benign and malignant follicular-derived lesions of the thyroid:an immunohistochemical tissue microarray analysis[J]. Endocr Pathol,2006,17 (3):225~234
    [57]Nga M E, Lim G S, SohCH, et al. HBME-1 and CK19 are highly discriminatory in the cytological diagnosis of papillary thyroid carcinoma[J]. Diagn Cytopathol,2008,36(8): 550-556
    [58]Saleh H A, Feng J, Tabassum F, et al. Differential expression of galectin-3, CK19, HBME1, and Ret oncoprotein in the diagnosis of thyroid neoplasms by fine needle aspiration biopsy[J]. Cytojournal,2009,6 (10):18
    [59]Baird D M. Mechanisms of telomeric instability[J]. Cytogenet Genome Res,2008,122 (3-4):308~314
    [60]Cesare A J, Reddel R R. Telomere uncapping and alternative lengthening of telomeres[J]. Mech Ageing Dev,2008,129 (1-2):99~108
    [61]Cukusic A, Skrobot Vidacek N, Sopta M, et al. Telomerase regulation at the crossroads of cell fate[J]. Cytogenet Genome Res,2008,122 (3-4):263-272
    [62]Gallardo F, Chartrand P. Telomerase biogenesis:The long road before getting to the end[J]. RNA Biol,2008,5 (4):212~215
    [63]Belgiovine C, Chiodi I, Mondello C. Telomerase:cellular immortalization and neoplastic transformation. Multiple functions of a multifaceted complex[J]. Cytogenet Genome Res, 2008,122 (3-4):255~262
    [64]Bellon M, Nicot C. Regulation of telomerase and telomeres:human tumor viruses take control[J]. J Natl Cancer Inst,2008,100 (2):98~108
    [65]Bennett A. Telomerase and other novel approaches to bladder cancer detection[J]. Clin Lab Sci,2008,21 (3):185~190
    [66]Cairney C J, Keith W N. Telomerase redefined:integrated regulation of hTR and hTERT for telomere maintenance and telomerase activity[J]. Biochimie,2008,90(1):13~23
    [67]Deng Y, Chan S S, Chang S. Telomere dysfunction and tumour suppression:the senescence connection[J]. Nat Rev Cancer,2008,8 (6):450~458
    [68]Cosme-Blanco W, Chang S. Dual roles of telomere dysfunction in initiation and suppression of tumorigenesis[J]. Exp Cell Res,2008,314 (9):1973-1979
    [69]Guerra L N, Miler E A, Moiguer S, et al. Telomerase activity in fine needle aspiration biopsy samples:application to diagnosis of human thyroid carcinoma[J]. Clin Chim Acta, 2006,370 (1-2) 180-184
    [70]Wang S L, Chen W T, Wu M T, et al. Expression of human telomerase reverse transcriptase in thyroid follicular neoplasms:an immunohistochemical study[J]. Endocr Pathol,2005, 16 (3):211-218
    [71]Ito Y, Yoshida H, Tomoda C, et al. Telomerase activity in thyroid neoplasms evaluated by the expression of human telomerase reverse transcriptase (hTERT)[J]. Anticancer Res, 2005,25 (1B):509~514
    [72]Asaad N Y, Abd El-Wahed M M, Mohammed A G. Human telomerase reverse transcriptase (hTERT) gene expression in thyroid carcinoma:diagnostic and prognostic role[J]. J Egypt Natl Canc Inst,2006,18 (1):8-16
    [73]Wang Y, Kowalski J, Tsai H L, et al. Differentiating alternative splice variant patterns of human telomerase reverse transcriptase in thyroid neoplasms[J]. Thyroid,2008,18(10): 1055-1063
    [74]Hsu F D, Nielsen T O, Alkushi A, et al. Tissue microarrays are an effective quality assurance tool for diagnostic immunohistochemistry[J]. Mod Pathol,2002,15(12):1374~ 1380
    [75]Gervasoni A, Monasterio Munoz R M, Wengler G S, et al. Molecular signature detection of circulating tumor cells using a panel of selected genes[J]. Cancer Lett,2008,263(2): 267-279
    [76]He X, Ge J, Wang K, et al. FSiNPs mediated improved double immunofluorescence staining for gastric cancer cells imaging[J]. Talanta,2008,76(5):1199-1206
    [77]Nishihara Y, Aishima S, Kuroda Y, et al. Biliary phenotype of hepatocellular carcinoma after preoperative transcatheter arterial chemoembolization[J]. J Gastroenterol Hepatol, 2008,23 (12):1860-1868
    [78]Yao H, Zhang Z, Xiao Z, et al. Identification of metastasis associated proteins in human lung squamous carcinoma using two-dimensional difference gel electrophoresis and laser capture microdissection[J]. Lung Cancer,2009,65 (1):41~48
    [79]Zheng H Y, Chen Q, Ye Y B, et al. mRNA expression of CK19 and CE A in peripheral blood of patients with breast cancer detected by real-time quantitative PCR[J]. Zhonghua Yi Xue Za Zhi,2008,88 (32):226-2270
    [80]Kuo F Y, Swanson P E, Yeh M M. Pancreatic acinar tissue in liver explants:a morphologic and immunohistochemical study[J]. Am J Surg Pathol,2009,33 (1):66~71
    [81]Bonzanini M, Amadori P L, Sagramoso C, et al. Expression of cytokeratin 19 and protein p63 in fine needle aspiration biopsy of papillary thyroid carcinoma[J]. Acta Cytol,2008, 52 (5):541-548
    [82]Giovanella L, Ceriani L, Ghelfo A, et al. Circulating cytokeratin 19 fragments in patients with benign nodules and carcinomas of the thyroid gland[J]. Int J Biol Markers,2008,23 (1):54~57
    [83]Flanagan J N, Pineda P, Knapp P E, et al. Expression of cytokeratin 19 in the diagnosis of thyroid papillary carcinoma by quantitative polymerase chain reaction[J]. Endocr Pract, 2008,14 (2):168-174
    [84]Saleh H A, Jin B, Barnwell J, et al. Utility of immunohistochemical markers in differentiating benign from malignant follicular-derived thyroid nodules[J]. Diagn Pathol, 2010,5 (2):9
    [85]Komatsu N. Thrombopoietin(TPO)[J]. Nippon Rinsho,1999,57 (Suppl):413~417
    [86]Savin S, Cvejic D, Isic T, et al. The efficacy of the thyroid peroxidase marker for distinguishing follicular thyroid carcinoma from follicular adenoma[J]. Exp Oncol,2006, 28 (1):70-74
    [87]Ishikawa T, Miwa M, Uchida K. Quantitation of thyroid peroxidase mRNA in peripheral blood for early detection of thyroid papillary carcinoma[J]. Thyroid,2006,16(5):435~ 442
    [88]Savin S, Cvejic D, Isic T. Thyroid peroxidase immunohistochemistry in differential diagnosis of thyroid tumors[J]. Endocr Pathol,2006,17 (1):53~60
    [89]Yousaf U, Christensen L H, Rasmussen A K, et al. Immunohistochemical staining for thyroid peroxidase (TPO) of needle core biopsies in the diagnosis of scintigraphically cold thyroid nodules[J]. Clin Endocrinol (Oxf),2008,68 (6):996~1001
    [90]de Micco C, Savchenko V, Giorgi R, et al. Utility of malignancy markers in fine-needle aspiration cytology of thyroid nodules:comparison of Hector Battifora mesothelial antigen-1, thyroid peroxidase and dipeptidyl aminopeptidase IV[J]. Br J Cancer,2008, 98 (4):818-823
    [91]Caballero-Calabuig E, Cano-Terol C, Sopena-Monforte R, et al. Influence of the thyroid remnant in the elevation of the serum thyroglobulin after thyroidectomy in differentiated thyroid carcinoma. Importance of the diagnostic iodine total-body scanning[J]. Eur J Nucl Med Mol Imaging,2008,35 (8):1449~1456
    [92]Lin J D. Thyroglobulin and human thyroid cancer[J]. Clin Chim Acta,2008,388(1-2): 15-21
    [93]Lucchini R, Puxeddu E, Calzolari F, et al. Recurrences of thyroid well differentiated cancer: ultrasonography-guided surgical treatment[J]. Minerva Chir,2008,63 (4):257~260
    [94]Wong J, Lu Z, Doery J, et al. Lessons from a review of thyroglobulin assays in the management of thyroid cancer[J]. Intern Med J,2008,38 (6):441~444
    [95]Kloos R T. Approach to the patient with a positive serum thyroglobulin and a negative radioiodine scan after initial therapy for differentiated thyroid cancer[J]. J Clin Endocrinol Metab,2008,93 (5):1519-1525
    [96]Tachi Y, Iwano S, Kato K, et al. Diagnostic whole-body scanning before radioiodine therapy for pulmonary metastases of differentiated thyroid cancer:predictive value and recommendations[J]. Clin Nucl Med,2008,33 (12):845~851
    [97]Sasaki T, Tanno S, Shibukawa K, et al. Administration of VEGF receptor tyrosine kinase inhibitor increases VEGF production causing angiogenesis in human small-cell lung cancer xenografts[J]. Int J Oncol,2008,33 (3):525-532
    [98]Bendardaf R, Buhmeida A, Hilska M, et al. VEGF-1 expression in colorectal cancer is associated with disease localization, stage, and long-term disease-specific survival[J]. Anticancer Res,2008,28 (6B):3865~3870
    [99]Zhang H Y, Meng X, Du Z X, et al. Significance of survivin, caspase-3, and VEGF expression in thyroid carcinoma[J]. Clin Exp Med,2009,9 (3):207~213
    [100]Katoh R, Miyagi E, Kawaoi A, et al. Expression of vascular endothelial growth factor (VEGF) in human thyroid neoplasms[J]. Hum Pathol,1999,30 (8):891-897
    [101]de Araujo-Filho V J, Alves V A, de Castro I V, et al. Vascular endothelial growth factor expression in invasive papillary thyroid carcinoma[J]. Thyroid,2009,19(11):1233~ 1237