D3菌株在土壤和番茄根部的存活及毒死蜱原位修复研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本实验检测了D3菌株对常用抗生素的抗性情况,其结果为:D3菌株对卡那霉素、四环素的抗性小于10μg·mL~(-1),对氯霉素、链霉素、氨苄青霉素的抗性小于5μg·mL~(-1),对新霉素、红霉素的抗性更小,分别为2μg·mL~(-1)和小于0.5μg·mL~(-1)。并对D3菌株进行了氯霉素的抗性驯化,使其对氯霉素的抗性达到30μg·mL~(-1)。对抗性驯化的菌株D3-X和出发菌株D3进行了降解毒死蜱能力的测定比较,结果显示,抗性驯化后并未影响出发菌株D3的降解毒死蜱的能力。
     将驯化菌株D3-X接种到土壤中研究其在土壤中的存活情况。结果表明,驯化菌株在自然土壤和灭菌土壤中均可以存活,在灭菌土壤中的定殖水平略高于自然土壤。驯化菌株接种到土壤后5d之内就已达到最高定殖水平,第5d时灭菌土壤处理的菌株定殖密度为4.9×10~7cfu/g土,而在自然土壤处理的定殖密度为2.3×10~7cfu/g土,随着时间的推移,定殖数量均呈下降趋势。在30d时向土壤中加入蛋白胨和酵母膏营养后,驯化菌株在自然土壤中的定殖水平会上升。驯化菌株在黄棕壤、黄红壤与砂姜黑土中的存活力研究表明,D3-X菌株在以上三种土壤中均可以存活且无明显差异,说明D3-X菌株在不同性状的土壤中均具有较强的定殖能力,适合土壤和植物根际污染修复。
     利用根盒实验研究D3-X菌株在植物根部的存活情况,结果发现,驯化菌株在土壤中垂直方向上主要定殖在0-10cm根段间,且随深度增加而降低。在蕃茄播种后10d以内D3-X就达到了最高定殖水平。第5d时,驯化菌株D3-X已经延伸到蕃茄种子以下根长6cm以内,在0-2cm和2-4cm根段的根际定殖密度分别为4.94×10~6cfu/g根土和3.22×10~6cfu/g根土。虽然此时有些番茄根长超过了6cm,但6cm以下根段并未检测到驯化菌株D3-X。到第10d时,番茄主根长已超过8cm,但驯化菌株主要定殖在8cm以内,在8cm以下根段根表土壤中未检测到驯化菌株。到第50d时,10cm根段以内根际和根表土壤中均有驯化菌株存活,2-4cm根段的根际定殖密度为8.45×10~2cfu/g根土,0-2cm根段的根表定殖密度也高达1.11×10~4 cfu/g根。无论在根表还是根际土壤中,在番茄根尖部位都未检测到菌株。由此可见,驯化菌株是从种子向根尖方向扩散的,但并不与根的生长同步,而是稍迟于根的伸长生长。
     比较接种菌株在番茄根际与根表定殖密度之间的关系,结果发现,根表的定殖密度高于根际土壤中的定殖密度。在番茄播种后同一时间检测驯化菌株,驯化菌株的定殖数量总体上是顺着根向下呈现出逐渐降低的趋势,即驯化菌株在离番茄种子越近的根段定殖数量越高;同一根段驯化菌株的根际定殖数量随着时间的延长而逐渐降低。
     利用盆栽实验研究D3菌株对土壤中毒死蜱污染的修复,结果表明,D3菌株对毒死蜱的降解随着初始菌量的增加,土壤中毒死蜱降解速率加快,半衰期缩短,修复作用和菌量成正相关。在相同的施菌量下对不同污染浓度的毒死蜱土壤进行修复时,在低污染浓度的土壤中,菌株对污染物修复效果好,毒死蜱的降解速率快,而在高污染浓度的土壤中修复效果略差一些,毒死蜱降解速率要慢一些。随着农药浓度的增加,修复效果依次下降。在同一施菌量下,种植番茄与不种植番茄的土壤中,种植番茄土壤中的毒死蜱降解速度要快于不种植番茄的土壤,特别是在低施菌量的条件下,种植植物对毒死蜱的降解动态的影响更为显著。
D3 (Rhodococcus rhodochrous.) strains that had a capability to utilize chlorpyrifos as the sole carbon and energy sources. D3 strains resistant to commonly antibiotics is studied in paper, the results that D3 strain on kanamycin, tetracycline resistance is less than 10μg .mL(-1), for chloramphenicol, streptomycin, ammonia Benzyl penicillin resistance is less than 5μg .mL(-1), the neomycin, erythromycin resistance is smaller, 2μg .mL(-1) and less than 0.5μg .mL(-1) respectively. D3 strain of chloramphenicol resistance to the domestication, to the chloramphenicol resistance to 30μg .mL(-1).The domestication had no serious effect on the chlorpyrifos -degradation ability of the strain .
     After the domesticated strain D3-X was inoculated into the soil, the colonizing dynamics of the D3-X in soil were studied by the method of enumeration of luminescent colonies on agar media. The results showed that D3-X successfully colonized both in the sterile soil and unsterile soil, and colonizing level of D3-X in sterile soil was higher than that of unsterile soil. The population of D3-X reached to the highest level, 4.9×10~7cfu/g and 2.3×10~7cfu/g soil respectively in the sterile soil and unsterile soil after 5 days.With time delaying the population decreased. The population of D3-X rised when peptone and barm paste were added into soil. The results of survival ability of D3-X in Yellow-Brown Soil,Yellow -red Soil and Shajiang Black Soil meant that strain D3-X could compete with other microbes for space and nutrition in different soils.
     Being prepared as microbial inoculant and inoculated on seeds of tomato, the colonizing dynamics and distribution of the strain D3-X in soil and rhizosphere of tomato plant in rhizoboxes were studied by the method of enumeration of luminescent colonies on agar media. The results showed that the strain colonized mainly in 0-10cm root segment in vertical direction. The population of D3-X reached to the highest level before 10 days after seeds planted. On the 5th day D3-X spread 6cm below seeds, the population in 0-2cm and 2-4cm root segment was 4.94×10~6cfu/g rhizosphere soil, 3.22×10~6cfu/g rhizosphere soil respectively. No luminescent bacteria were detected below 6cm, although wheat root length was beyond 6cm. On the 10th day, D3strain colonized mainly in 0-8cm root segment, although tomato root length was beyond 10cm, and on the 50th day, the population of D3-X in 0-2cm root segment reached to 1.11×10~3cfu/g root-soil and in 2-4cm8.45×10~2cfu/g root respectively in tomato rhizosphere and tomato rhizoplane. The results of rhizobox culture experiment showed that D3-X spread from seeds toward the direction of root tip, but not synchronized with the stretch of roots. D3-X was not detected in the region of tomato root tip.
     Colonizing level of D3-X in tomato rhizoplane was higher than that of tomato rhizosphere, and the population of D3-X decreased gradually along the root. The data indicated that the colonizing level of strain D3-X was relative to the distance between the root segment and the seeds, the shorter the distance was, the higher the coloning level was. In addition, the population of D3-X in the same root segment decreased gradually with time delaying.
     Resarching the effect of D3 strain of Chlorpyrifos on Bioremediation, the results indicated that D3 strain on the degradation of chlorpyrifos as the initial amount of the increase, the rate of soil degradation of chlorpyrifos accelerated, shortening the half-life, bacteria and repair of a positive correlation .In same amount of bacteria,the effect of plant on the decomposition half life of Chlorpyrifos is very remarkable. The degradation rate of chlorpyrifos in soil planted tomatoes is faster than that in soil not planted tomatoes.
引文
[1]杨光启,侯祥麟,时钧,等.中国大百科全书(化工卷),北京、上海:中国大百科全书出版社,1987
    [2]韩熹莱,钱传范,陈馥衡,等.中国农业百科全书(农药卷),北京:农业出版社,1993
    [3]阮少江,刘洁,赵永芳,等.微生物降解甲胺磷农药的进展.宁德师专学报,2000,12(3):177-180
    [4]Wagrowsk D M,Hites P A.Polycycle aromatic hydrocarbon accumulation in urban,suburban and rural vegetation.Environ Sci Technol,1997,31:279-282
    [5]王保军,刘志培,杨慧芳.甲单脒农药的微生物降解代谢研究.环境科学学报,1998,18(3):298-302
    [6]陈坚.环境生物技术.北京:中国轻工业出版社,1999.279-319
    [7]Alexander M.Biodegradation of chemical of environmental concern,science.1981.211:132-138
    [8]李顺鹏,蒋建东.农药污染土壤的微生物修复研究进展.土壤,2004,36(6):577-583
    [9]Chen W.Mulchandani A.The use of live biocatalysts for pesticide detoxification.Trends in Biotechnology,1998,16(2):71-76
    [10]杨小红,李俊,葛诚,沈德龙.微生物降解农药的研究新进展.微生物学通报,2003,30(6):93-96
    [11]尤民生,刘新.农药污染的生物降解与生物修复.生态学杂志.2004,23(1):73-77
    [12]郑金来,李君文,晁福寰.常见农药降解微生物研究进展及展望.环境科学研究,2001,14(2):62-64
    [13]陈文新.土壤和环境微生物学.北京:北京农业大学出版社,1990.234-248
    [14]Sabate J,Grifool M,Vi(n|¨)M,et al.Isolation and characterization of a 2-methyphenantheme utilizing bacterium:Identification of ring cleavage metabolites.Appl Microbil Biotechnol,1999,52:704-712
    [15]钞亚鹏,赵永芳,刘斌斌,等.甲基营养菌WB-1甲胺磷降解酶的产生、部分纯化及性质.微生物学报,2000,40(5):523-527
    [16]阮少江,刘洁,王银善,等.微生物酶催化甲胺磷降解机理初探.武汉大学学报(自然科学版),2000,46(4):471-474
    [17]张宏军,崔海兰,周志强,等.莠去津微生物降解的研究进展.农药学报,2002,4(4):10-16
    [18]王永杰,李顺鹏,沈标,等.有机磷农药广谱活性降解菌的分离及其生理性研究.南京农业大学学报,1999,22(2):42-45
    [19]崔中立,李顺鹏.化学农药的微生物降解及其机制.江苏环境科技,1998,3:1-5
    [20]虞云龙,樊德方,陈鹤鑫.农药微生物降解的研究现状与繁殖策略.环境科学进展,1996,4(3):28-36
    [21]石利利,林玉锁,徐亦钢,等.DLL-l菌对甲基对硫磷农药的降解作用及其降解机理.农村生态环境,2002,18(3):26-29
    [22]沈东升,徐向阳,冯孝善.微生物共代谢在氯代有机物生物降解中的作用.环境科学,1994,15(4):84-87
    [23]朱南文,胡茂林,等.甲胺磷对土壤微生物活性的影响.农业环境保护,1999,18(1):4-7.
    [24]Sato K.1994.Effect of nutrients on interaction between pesticide pentachlorophenol microorgan isms in so il.Bioremediation through rhizosphere technology[M].Washington,DC(USA).A~nercan Chemical Society.,43-55.
    [25]Wau AJ,Stratton GW.1994.Co pper toxicity towards a pen—tachlorophenol-degrading flavobacteriumsp[J].Bull.Environ.Contain.Toxicol.,52(4):590-597.
    [26]方玲.2000.降解有机氯农药的微生物菌株分离筛选及其应用效果[J].应用生态学报,11(2):249-252.
    [27]郭萍,蒋细良,田云龙,朱昌雄.农业立体污染与生物修复技术进展.现代化工,2006,26(4):19-23.
    [28]丁克强,骆永明.2001.生物修复石油污染土壤[J].土壤,34(4):179-184.
    [29]刘乾开.1993.新编农药使用手册[M].上海:上海科学技术出版社.84-86
    [30]吴慧明,朱国念.2003.毒死蜱在灭菌和非灭菌土壤中的降解研究[J].农药学学报,5(4):65-60
    [31]BianQL(边全乐).The safety of chlorpyrifos.Chin Agri Sci Bull(中国农学通报),1997,13(6):71
    [32]Gao XW(高希武).农药原理与应用Peking(北京):New Fime Press(新时代出版社),1997
    [33]B.Liu,L.L.McConnell,A.Torrents,Hydrolysis of chlorpyfifos in natural waters of the Chesapeake Bay.Chemosphere,2001,44:1315-1323;
    [34]钟决龙 国内毒死蜱应用现状及前景展望 农药市场信息 2006(19);
    [35]王焕民,张子明.新农药手册.见:农业部农药检定所.北京:中国农业出版社,1989.3
    [36]秦钰慧,王以燕.美国关于毒死蜱的最新决定.农药,2000,39(8):45
    [37]Lee S R,Mourer C R,Shibamoto T.Analysis and after cookingprocesses of a t race chlorpyrifos spiked in polished rice.J.Agric.Food Chem.,1991,39(5):906-908
    [38]Byme S L,Pinkerton S L.The effect of cooking on chlorpyrifos and 3,5,62t richloro222pyridinol levels in chlorpyrifos2fortified produce for use in refining dietary exposure.J.Agric.Food Chem.,2004,52(25):7567-7573
    [39]Maghraby E S.Bioavailability and toxicologyical to rat s of bound 14 C2chlorpyrifos residues in soybeans.Bulletin oft he National Research Cent re Cairo,2000,25(3):259-268
    [40]Gonzalez R H.Management of kiwif ruit pest s in Chile:1、Degra2 dation of residues of t he insecticides chlorpyrifos and phosmet.Revista Fruticola,1989,10(2):35-43
    [41]李莹,高成仁,吴剑英,等.40%毒死蜱乳油在稻田土壤中的消解动态.农药,2000,39(6):25-27
    [42]石利利,林玉锁,徐亦钢,等.毒死蜱农药环境行为研究.土壤与环境,2000,9(1):73-74
    [43]Yen J H,Law F H,Wang Y S,et al.Dissipation of organophos2phorus insecticide chlorpyrifos in soil.Journal of the Chinese Agricultural Chemical Society,1997,35(3):310-318
    [44]Sundaram B,Koolana R S,Rawendra N,et al.Degradation of bifent hrin,chlorpyrifos and imidacloprid in soil and bedding materials at termiticidal application rates.Pestic Sci.,1999,55(12):1222-1228
    [45]刘玉焕,钟英长.2000.真菌降解有机磷农药乐果的研究.环境科学学报,20(1):95-99
    [46]Omar SA.Availability of phosphorus and sul r of insecticide origin by fungi.Biodegradation,1998,9(5):327-336;
    [47]Sikora L J.Kaufman D.Hornog I C.Enzyme activity in soils showing degradation of organophosphOsphate insecticides.BiologY and Fertility of Soils。1990.9(1):14-18;
    [48]Mallick K,Bharatl K,Banedi A.et al.Bacterial degradation of chlorpyrifos in pure cultures and in soil.Bull.Environ.Contam.Toxicol.,1999,62(1)t48-54;
    [49]Raeke K D,Laskowski D A,Schuhz M R,et al.Resistance of chlorpyrifos to enhanced biodegradalion in soil.J.Agric.Food Chem.,1990,38:1430-1436;
    [50]Racke K D,Robbins S T.Factors affecting the degradation of 3,5.6-trichloro-2-pyridinol in soil.ACS Symposium Series.1991,459:93-107;
    [51]Feng Y C Raeke K D Bollag J M et al.Isokation and characterization of a chlorinated-pyridinol -degrading bacterium.Appl.Environ.M icrobiol.,1997,63(10):4096-4098;
    [52]刘新,尤民生,魏英智等.降解毒死蜱曲霉Y的分离和降解效能测定.应用与环境生物学报。2003.9(1):78-80;
    [53]王金花,朱鲁生,王军等.3株真菌对毒死蜱的降解特性.应用与环境生物学报。2005,11(2):211-214;
    [54]吴祥为等 毒死蜱降解菌的分离鉴定与降解效能测定 环境科学学报 2006,26(9):1433-1439;
    [55]王晓等 毒死蜱降解菌株Bacillus latersprorus DSP的降解特性及其功能定位 土壤学报2006,43(4):648-654;
    [56]Wall AJ,Stratton GW.1994.Copper toxicity towards a pentaclorphenol degrading flavobacterium sp.Bulltein of Enviromenal Contamination and Toxicology,52(4):590-597
    [57]方玲.2000.降解有机氯农药的微生物君主分离筛选及其应用效果.应用生态学报,11(2):249-252[41]
    [58]周启星.污染土壤修复的技术再造与展望.环境污染治理技术与设备,2002,3(8):36-40
    [59]郑金来,李君文,晁福寰.常见农药降解微生物研究进展及展望.环境科学研究,2001,14(2):62-64
    [60]李顺鹏,沈标,等.甲基对硫磷降解菌的生态效应及应用.土壤学报,1996,33(4):380-384
    [61]郑重.1990.农药的微生物降解.环境科学,11(2):68-72
    [62]孙洁梅,崔中利,邱珊莲,等.luxAB基因标记甲基对硫磷降解菌DLL-1在土壤和植株根部的生态行为研究[J].农村生态环境,2003,19(1):43-46
    [63]de Lorenzo V.Cleaning up behinds us[J].EMBO Report,2001,2:357-359
    [64]秦钰慧,王以燕编译.美国关于毒死蜱的最新决定.农药,2000,39(8):45-46;
    [65]伊冰摘.与毒死蜱有关的出生缺陷:4例病例报告.国外医学卫生分册,1996,23(5):307-309
    [66]胡云平摘,薛寿征较.毒死蜱的神经发育毒性:细胞学机制,国外医学卫生分册,1996,23(5):307-309
    [67]石成春,郭养浩.环境微生物降解有机磷农药研究进展.上海环境科学,2003,22(12):863-867
    [68]王平,胡正嘉,李阜棣.土壤因子对发光酶基因标记的荧光假单胞菌X1612在小麦根圈定殖的影响[J].微生物学报,2000,40(3):312-317
    [69]刘健,李俊,葛诚,等.荧光假单胞菌Asl.867和3-PHB的luxAB基因标记及其在小麦根际的定殖[J].华东理工大学学报,2002,28(6):606-609
    [70]刘健,李俊,葛诚,等.巨大芽胞杆菌luxAB标记菌株的根际定殖研究[J].微生物学通报,2001,28(6):1-4
    [71]王平,胡正嘉,李阜棣.发光酶基因标记的荧光假单胞菌X1612在小麦根圈的定殖动态[J].微生物学报,2000,40(2):150-154
    [72]叶维青,张维谦,张玉龙,等译.[日]土壤微生物研究会编.土壤微生物实验法[M].北京:科学出版社,1983
    [73]岳永德,王如意,汤锋,刘坤,毒死蜱在土壤中的光催化降解.安徽农业大学学报,2002,29(1):1-3
    [74]岳永德主编.农药残留分析.中国农业出版社.北京:2004
    [75]Matsumura F.Murti CRK.1983.Biodegradation of Pesticides.New York and London:Plenum Ptes.67-87.
    [76]刘新,尤民生,廖金英,魏英智,土壤中毒死蜱和微生物相互作用的研究.2004,15(7):1174-1176
    [77]Zhu N.w(朱南文),Min H(闵航),Chen M.C(陈美慈).1999.The change effect of soil bacteria after treated with methamidophos and isolation and identification of pers~tence bacteria.Chin J Soil(±壤通报),30(1):44~45(in Chines)
    [78]张素琴,罗如新.微生物对环境遗传适应和质粒的分子生态效应.应用生态学报,1999,10(4):506-510.
    Zhang S Qo LuoR X.Microbial genetic adaptability to envioum ent an d molecular ecologicaleficiency of plasmid(In Chinese).Chin.J.Appl.Ecol.,1999,10(4):506-510
    [79]Pemberton J M.Degradafive plasmids./n:Bourne G H,Daniellie JF.eds.International Review of Cytology.New York an d Lo ndon:Academic Press,1983.155-181
    [80]张炳欣,张平,陈晓斌.影响引入微生物根部定殖的因素[J].应用生态学报,2000,11(6):951-953
    [81]郭荣君,李世东,章力建,等.土壤农药污染与生物修复研究进展.中国生物防治,2005,21(3):129-135
    [82]陈建刚 刘汉湖.土壤中农药污染的植物一微生物联合修复.江苏环境科技.2001,14(4):14-15
    [83]陈志良,罗军,王成刚,等.土壤有机农药污染的降解机理与生物修复技术.环境污染治理技术与设备.2003,4(8):73-77