无机氧化物介孔材料的自组装构筑及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
介孔材料以其特有的孔道结构和可调节的孔表面性质在催化、吸附、分离、纳米反应器、模板和光控器件等方面发挥着越来越重要的作用,它的合成和应用研究也成了人们关注的一个热点。寻找一种简单而快速的制备方法,来控制合成无机介孔材料,已经成为实现它们在这些领域应用的关键所在。本文在这一领域进行了初步的探索,并取得了一些有意义的结果,主要包括:
     1.双模板体系控制合成形貌和孔结构的有序介孔二氧化硅
     利用十六烷基三甲基溴化铵(CTAB)和双-2-乙基己基硫代琥珀酸钠(AOT)作为双模板表面活性剂,可控制备出二氧化硅纳米结构。通过简单控制AOT/CTAB的质量比(只改变AOT的质量),可以分别得到二氧化硅纳米球、椭圆体、纳米线和多壳层空心球结构。N2吸附-解吸分析结果显示得到的二氧化硅材料具有高比表面积、大孔容量和单分散孔径分布曲线。TEM分析表明得到的纳米线内部含有有序的手性介孔结构。
     2.动态乳液模板制备特殊形貌的二氧化硅空心球及其原位封装、缓释有机分子
     低沸点溶剂乙醚被用作乳液模板,利用乙醚的易挥发性形成动态模板(dynamic template),得到二氧化硅空心结构;乙醚挥发形成的孔道使得二氧化硅的表面含有大量的褶皱结构。利用乙醚的疏水性,能够原位封装有机分子;利用空心球表面含有的乙醚挥发形成的狭缝,能够对封装的有机分子起到很好的缓释效果。当乙二醇单乙醚代替乙醚作为共溶剂,利用它们分子结构的微小差异性,得到二氧化硅介孔球结构。
     3.自组装合成新型介孔二氧化锰纳米结构及其氧化降解甲醛
     在油酸/水乳液体系,高锰酸钾作为氧化剂,在乳液界面发生氧化还原反应,形成二氧化锰晶核沉积在乳液表面,最终形成水钠锰矿型二氧化锰纳米结构。在较低高锰酸钾浓度条件下,得到单分散的蜂窝状纳米球结构;在较高高锰酸钾浓度条件下,得到空心纳米球结构。得到的二氧化锰纳米结构都是由纳米片组装而成,表现出很好的结构稳定性。所制备的材料在低温条件下,均表现出对甲醛较高的氧化降解活性。
     4.简单合成单分散锰氧化合物纳米结构及水处理应用
     将制备的水钠锰矿型二氧化锰纳米结构作为前驱物,分别于不同温度进行热处理,最后得到形貌保持、但晶型发生转变的锰氧化合物的纳米结构。测试结果表明,材料晶型由水钠锰矿型转变为软锰矿。水处理结果表明,制备的材料对有机污染物具有很高的吸附速率和吸附容量;并且材料通过燃烧处理能够循环利用,仍保持较高的吸附速率和吸附容量。
     5.挥发诱导合成发芽状二氧化硅胶体球
     快速挥发诱导粒子自组装,形成发芽状二氧化硅胶体球。通过严格控制反应的温度和最终溶液的后处理方式,可以得到不同形貌的二氧化硅胶体球。
     6.非手性模板一步制备功能化的手性介孔二氧化硅纳米棒
     利用非手性表面活性剂CTAB作为模板,同时加入含有功能化基团的有机硅烷作为共结构引导剂,一步合成功能化的手性介孔二氧化硅纳米棒。其作为废水处理剂,表现出对Hg2+离子的很高的选择吸附特性。
Mesoporous materials are playing the more and more important roles in catalysis, adsorption, seperation, nanoreactors, templates and photocontrolled devices etc., due to their unique pore structures and tunable properties on pore surface. Its syntheses and applications are paid more attentions. Facile and excellent synthesized routes to prepare controlled inorganic mesoporous materials, have become the key point to achieve their applications. The achievements have made in this thesis are summarized as follows:
     1. Fine control over the morphology and structure of mesoporous silica nanomaterials by a dual-templating approach
     Mesoporous silica nanomaterials of different structures, including nanospheres, nanoellipsoids, helical nanorods and multi-lamellar nanovesicles, were synthesized finely-controlled, simply by taloring the weight ratio of two common surfactants (AOT and CTAB). N2 sorption analysis showed the prepared silica materials have high specific surface area, large pore volume, and uniform pore size distribution. TEM results showed ordered chrical mesopores run in the internal structure of the synthesized silica nanowires.
     2. Porous silica nanocapsules and nanospheres: dynamic self-assembly synthesis and application in encapsulation in situ and controlled release
     Porous silica nanocapsules and silica nanospheres have been successfully fabricated by a novel combination of stabilizing condensation and dynamic self-assembly. When ethyl ether was used as the co-solvent, porous silica nanocapsules were obtained. Ethyl ether not only functioned as a dynamic template for the formation of the nanocapsule, but played a critical role in the formation of the porous shell by gasification as well. In contrast, when 2-ethoxyethanol was used, which only has a small difference in its molecular structure from ethyl ether, silica porous nanospheres were produced. The approach using ethyl ether allowed ready in situ encapsulation of organic molecules into silica nanocapsules, and the encapsulated molecules could be released in a controlled way into aqueous media.
     3. Self-assembly of novel mesoporous manganese oxide nanostructures and their application in oxidative decomposition of formaldehyde
     Mesoporous nanostructures of birnessite-type MnO2 (KxMnO2) were synthesized at room temperature. It involves a redox reaction of KMnO4 and oleic acid at the O/W interface, followed by self-assembly of formed KxMnO2 nanoplatelets into KxMnO2 nanostructures. These new nanomaterials showed morphology-dependent catalytic activities for decomposition of formaldehyde with significant high activity. Complete conversion of HCHO to CO2 and H2O could be achieved at low temperatures.
     4. Facile synthesis of monodisperse manganese oxide nanostructures and their application in water treatment
     Porous manganese oxide nanostructures with the same morphology were prepared. The phase structure of manganese oxide nanostructure was controlled by treating the precursor at different temperatures, transforming the precursor from layered manganese oxide to tetragonal hausmannite structure. Water treatment experiments indicated that the prepared manganese oxide nanomaterials exhibited higher removal capacity and rate of organic polluents in neutral solutions.
     5.Rapid evaporation-induced synthesis of monodisperse budded silica spheres Rapid evaporation-induced synthetic approach was used to fabricate budded silica spheres. The temperature of the sol-gel reaction and the following post-treatment were found to play crucial roles in determining the surface morphology of obtained silica spheres.
     6. One-step synthesis of functional chiral porous silica nanorods using a achiral surfactant
     Using CTAB as surfactant, and organoalkoxysilane with functional group as the co-structure-directing agent, chiral porous silica nanorods were synthesized via an one-step process. The chiral nanorods could be used as a highly selective adsorbent for Hg2+ ions in wastewater.
引文
1. Barrer, R. M. Hydrothermal Chemistry of Zeolites; Academic Press: London, 1982.
    2. Cundy, C. S.; Cox, P. A. The Hydrothermal Synthesis of Zeolites: History and Development from the Earliest Days to the Present Time, Chem. Rev. 2003, 103, 663.
    3. Pinnavaia, T. J.“Nanoporous layered materials”, in materials chemistry: an emerging discipline, Advances in Chemistry Series 245, ACS, Washington, DC 1995, p283.
    4. Davis, M. E. Ordered Porous Materials for Emerging Applications, Nature 2002, 417, 813.
    5. Kresge, C. T.; Leonowicz, M. E.; Roth W. J.; Vartuli, J. C.; Beck, J. S. Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism, Nature 1992, 359, 710.
    6. Beck, J. S.; Vartuli, J. C.; Roth, W. J.; Leonowicz, M. E.; Kresge, C. T.; Schmitt, K. D.; Chu, C. T. W.; Olson, D. H.; Sheppard, E. W. A new family of mesoporous molecular sieves prepared with liquid crystal templates, J. Am. Chem. Soc. 1992, 114, 10834.
    7. (a)徐如人,庞文琴等著,分子筛与多孔材料化学,科学出版社:北京,2004,第九章内容及相关引用文献. (b)施周,张文辉著.环境纳米技术.化学工业出版社:北京,2003.
    8. (a)汪信,刘孝恒著.纳米材料化学。化学工业出版社:北京,2006. (b)张立德,牟季美著,纳米材料和纳米结构,科学出版社:北京. 2001, p136.
    9. Whitesides, G. M.; Mathias, J. P.; Seto, C. T.; Moleular self-assembly and nanochemistry-a chemical strategy for the synthesis of nanostructures, Science 1991, 254, 1312.
    10.肖丰收,韩宇,裘式纶.由沸石纳米粒子自组装制备具有高催化活性中心和水热稳定的新型介孔分子筛材料,催化学报. 2003, 24, 149.
    11. Chen, H.; He, J.; Tang, H.; Yan, C. Porous silica nanocapsules and nanospheres:dynamic self-assembly synthesis and application in controlled release, Chem. Mater. 2008, 20, 5894.
    12. Chen, H.; He, J. Facile synthesis of monodisperse manganese oxide nanostructures and their application in water treatment, J. Phys. Chem. C 2008, 112, 17540.
    13. Chen, H.; He, J.; Zhang, C.; He, H. Self-assembly of novel mesoporous manganese oxide nanostructures and their application in oxidative decomposition of formaldehyde, J. Phys. Chem. C 2007, 111, 18033.
    14. Chen, H.; He, J. Self-assembly of birnessite mangnese oxide into monodisperse honeycomb and hollow nanospheres, Chem. Lett. 2007, 36, 174-175.
    15.贺军辉,陈洪敏,层状介孔水钠锰矿型MnO2蜂窝状纳米球和空心纳米球制备方法和用途,中国专利,申请号:200610113421.0.公开号:CN 101152962A.
    16.贺军辉,陈洪敏,层状介孔水钠锰矿型MnO2蜂窝状纳米球的用途,申请号: 200610171607.1.中国专利,公开号:CN 101209414A.
    17.贺军辉,陈洪敏,表面具有特殊结构的多孔二氧化硅纳米球的制备方法及多孔二氧化硅纳米球,中国专利,申请号:200710122109.2.
    18. Service, R. F. Self-assembly comes together, Science 1994, 265. 316.
    19. Gesiraju, G. R. Crystal Engineering: the design of organic solids, Elesvier, New York, 1989.
    20. Isaacs, L.; Chin, D. N.; Bowden, N.; Xia, Y.; Whitesides, G. M. in supramolecular technology, Reinhoudt, D. N. Ed., Wiley, New York, 1999, p1-46.
    21. Muthukumar, M.; Ober, C. K.; Thomas, E. L. competing interactions and levels of ordering in self-organizing polymeric materials, Science 1997, 277, 1225.
    22.徐莜杰.超分子建筑-从分子到材料.北京:科学技术文献出版社,2000.
    23.毛传斌,李恒德,崔福斋.无机材料的仿生合成,化学进展. 1998, 10, 246.
    24.王连洲,施剑林,禹剑.六方楞柱结构介孔氧化硅材料的合成及其机制探讨,无机材料学报. 1999, 14, 558.
    25. Cushing, B. L.; Kolesnichenko, V. L.; O’Connor, C. J. Recent Advances in the Liquid-Phase Syntheses of Inorganic Nanoparticles, Chem. Rev. 2004, 104, 3893.
    26. (a) Kresge, C. T.; Leonowicz, M. E.; Roth, W. J.; Vartuli, J. C.; Beck, J. S. Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism, Nature 1992, 359, 710.
    (b) Beck, L. S.; Vartuli, J. C.; Roth, W. J.;Leonowicz, M. E.; Kresge, C. T.; Schmitt, K. D.; Chu, C. T. W.; Olson, D. H.; Sheppard, E. W.; Mccullen, S. B.; Higgins, J. B.; Schlenkert, J. L. A new family of mesoporous molecular sieves prepared with liquid crystal templates, J. Am. Chem. Soc. 1992, 114, 10834.
    27. (a) Firouzi, A.; Kumar, D.; Bull, L. M.; Besier, T.; Sieger, P.; Huo, Q.; Walker, S. A.; Zasadzinski, J. A.; Glinka, C.; Nicol, J.; Margolese, D.; Stucky, G. D.; Chmelka, B. F. Cooperative organization of inorganic-surfactant and biomimetic assemblies, Science 1995, 267, 1138.
    (b) Huo, Q.; Margolese, D. I.; Ciesla, U.; Feng, P.; Gier, T. E.; Sieger, P.; Leon, R.; Petroff, P. M.; Schuth, F.; Stucky, G. D. Generalized synthesis of periodic surfactant/inorganic composite materials, Nature 1994, 368, 317.
    28. Monnier, A.; Schuth, F.; Huo, Q.; Kumar, D.; Margolese, D.; Maxwell, R. S.; Stucky, G. D.; Krishnamurty, M.; Petroff, P.; Firouzi, A.; Janicle, M.; Chmelka, B. F. Cooperative formation of inorganic-organic interfaces in the synthesis of silicate mesostructures, Science 1993, 261, 1299.
    29. Inagaki, S.; Fukushima, Y.; Kuroda, K. Synthesis of highly ordered mesoporous materials from a layered polysilicate, Chem. Commun. 1993, 680. 30. Attard, G. S.; Glyde, J. C.; Goltner, C. G. Liquid-crystalline phases as templates for the synthesis of mesoporous silica, Nature 1995, 378, 366.
    31. (a) Goltner, C. G.; Henke, S.; Weissenberger, M. C.; Antonietti, M. Mesoporous Silica from Lyotropic Liquid Crystal Polymer Templates, Angew. Chem. Int. Ed. 1998, 37, 613.
    (b) Goltner, C. G.; Antonietti, M. Mesoporous materials by templating of liquid crystalline phases, Adv. Mater. 1997, 9, 431.
    32. (a) Chen, C. Y.; Burkett, S. L.; Li, H. X.; Davis, M. E. Studies on mesoporous materialsⅡ. Synthesis mechanism of MCM-41, Micropor. Mater. 1993, 2, 27.
    (b) Bagshaw, S. A.; Prouzet, E.; Pinnavaia, T. J. Templating of mesoporousmolecular sieves by nonionic polyethylene oxide surfactants, Science 1995, 269, 1242.
    33. (a) Cai, Q.; Luo, Z.; Pang, W.; Fan, Y.; Chen, X.; Cui, F. Dilute Solution Routes to Various Controllable Morphologies of MCM-41 Silica with a Basic Medium Chem. Mater. 2001, 13, 258.
    (b) Yang, H.; Coombs, N.; Sokolov, I.; Ozin, G. A. Registered growth of mesoporous silica films on graphite, J. Mater. Chem. 1997, 7, 1285.
    (c) Yang, H.; Coombs, N.; Ozin, G. A. Morphogenesis of shapes and surface patterns in mesoporous silica, Nature 1997, 386, 692.
    (d) Oliver, S.; Kuperman, A.; Coombs, N.; Lough, A.; Ozin, G. A. Lamellar aluminophosphates with surface patterns that mimic diatom and radiolarian microskeletons, Nature 1995, 378, 47.
    34. (a) Huo, Q. S.; Margolese, D. I.; Stucky, G. D. Surfactant control of phases in the synthesis of mesoporous silica-based materials, Chem. Mater. 1996, 8, 1147.
    (b) Huo, Q. S.; Leon, R.; Petroff, P. M.; Stucky, G. D. Mesostructure with gemini surfactants: supercage formation in a three-dimensional hexagonal array. Science 1995, 268, 1324.
    (c) Firouzi, A.; Atef, F.; Oertli, A. G.; Stucky, G. D.; Chmelka, B. F. Alkaline Lyotropic Silicate?Surfactant Liquid Crystals, J. Am. Chem. Soc. 1997, 119, 3596.
    35. Chen, C. Y.; Li, H. X.; Davis, M. E. Studies on mesoporous materials.Ⅰ. Synthesis and characterization of MCM-41, Micropor. Mater. 1993, 2, 17.
    36. (a) Huo, Q. S.; Margolese, D. I. Ciesla, U. Organization of organic-molecules with inorganic molecular-species into nanocomposite biphase arrays, Chem. Mater. 1994, 6, 1176.
    (b) Stucky, G. D.; Huo, Q. S. Firouzi, A. Directed hybrid organic/inorganic composite structures, Progress in Zeolite and Microporous Materials, 1997, 3-28.
    (c) Stucky, G. D.; Monnier, A.; Schuth, F.; Huo, Q.; Margolese, D.; Kumar, D.; Krishnamurty, M.; Petroff, P.; Firouzi, A.; Janicke, M.; Chmelka, B. F. Molecularand atomic arrays in nano- and mesoporous materials synthesis, Mol. Cryst. Liq. Cryst. 1994, 240, 187.
    37. Lu, A. H.;Schüth, F. Nanocasting: a versatile strategy for creating nanostructured porous materials, Adv. Mater. 2006, 18, 1793.
    38. Corma, A.; Nanarro, M. T.; Pariente, J. P. Synthesis of an ultralarge pore titanium silicate isomorphous to MCM-41 and its application as a catalyst for selective oxidation of hydrocarbons, J. Chem. Soc-Chem. Commun. 1994, 147.
    39. Yu, J. C.; Wang, X. C.; Ho, W. Sono- and photochemical routes for the formation of highly dispersed gold nanoclusters in mesoporous titania filims, Adv. Funct. Mater. 2004, 14, 1178.
    40. Zhao, Z. G.; Miyauchi, M. Nanoporous-Walled Tungsten Oxide Nanotubes as Highly Active Visible-Light-Driven Photocatalysts, Angew. Chem. Int. Ed. 2008, 47, 7051.
    41. Kozhevnikov, I. V.; Sinnema, A.; Jansen, R. J. J. New acid catalyst comprising heteropoly acid on a mesoporous molecular-sieve MCM-41, Catal. Lett. 1995, 30, 241.
    42. Li, H.; Liu, J.; Xie, S. H.; Qiao, M. H.; Lu, Y. Fen, Li, H. X. Vesicle-Assisted Assembly of Mesoporous Ce-Doped Pd Nanospheres with a Hollow Chamber and Enhanced Catalytic Efficiency, Adv. Funct. Mater. 2008, 18, 3235.
    43. Sinha, A. K.; Suzuki, K.; Takahara, M.; Azuna, H.; Nonaka, T.; Fukumoto, K. Mesostructured Manganese Oxide/Gold Nanoparticle Composites for Extensive Air Purification, Angew. Chem. Int. Ed. 2007, 46, 2891.
    44. (a) Sun, Y. Y.; Zhu, L.; Lu, H. J. Sulfated zirconia supported in mesoporous materials, Appl. Catal. A: Gen. 2002, 237, 21.
    (b)袁兴东,沈健,李国辉. SBA-15介孔分子筛表面的璜酸基改性及其催化性能,催化学报2002, 23, 435.
    45.周午纵。MCM41中孔分子筛,科学1998, 50, 35.
    46. (a) Yuan, Q.; Yin, A. X.; Luo, C.; Sun, L. D.; Zhang, Y. W.; Duan, W. T.; Liu, H. C.; Yan, C. H. Facile synthesis for ordered mesoporousγ-aluminas with high thermal stability, J. Am. Chem. Soc. 2008, 130, 3465.
    (b) Morris, S. M.; Fulvio, P. F.; Jaroniec, M. Ordered mesoporous alumina-supported metal oxides, J. Am. Chem. Soc. 2008, 130 , 15210.
    47. Wang, Y.; Cao, J.; Wang, S.; Guo, X.; Zhang, J.; Xia, H.; Zhang, S.; Wu, S. H. Facile Synthesis of Porousα-Fe2O3 Nanorods and Their Application in Ethanol Sensors, J. Phys. Chem. C 2008, 112, 17804.
    48. Martinez, C. J.; Hockey, B.; Montgomery, C. B.; Semancik, S. Porous Tin Oxide Nanostructured Microspheres for Sensor Applications, Langmuir 2005, 21, 7937.
    49. Zhao, Q. R.; Gao, Y.; Bai, C.; Wu, C. Z.; Xie, Y. Facile Synthesis of SnO2 Hollow Nanospheres and Applications in Gas Sensors and Electrocatalysts, Eur. J. Inorg. Chem. 2006, 1643.
    50. Li, B. X.; Xie, Y.; Jing, M.; Rong, G. X.; Tang, Y. C.; Zhang, G. Z. In2O3 Hollow Microspheres: Synthesis from Designed In(OH)3 Precursors and Applications in Gas Sensors and Photocatalysis, Langmuir 2006, 22, 9380.
    51. Yu, H. G.; Yu, J. G.; Liu, S. W.; Mann, S. Template-free Hydrothermal Synthesis of CuO/Cu2O Composite Hollow Microspheres, Chem. Mater. 2007, 19, 4327.
    52. Zhang, H. G.; Zhu, Q., S.;Zhang, Y.; Wang, Y.; Zhao, L.; Yu, B. One-Pot Synthesis and Hierarchical Assembly of Hollow Cu2O Microspheres with Nanocrystals-Composed Porous Multishell and Their Gas-Sensing Properties, Adv. Funct. Mater. 2007, 17, 2766.
    53.张绍园,姜兆春,王菊思.饮用水消毒副产物控制技术研究现与发展.水处理技术1998, 24,713.
    54.孙鹤,石方,王榕树.功能性介孔分子筛用于环境水体净化的研究.环境科学学报2000, 20,38.
    55. Liu, Z. Y.; Sun, D. D.; GUo, P.; Leckie, J. O. One-Step Fabrication and High Photocatalytic Activity of Porous TiO2 Hollow Aggregates by Using a Low-Temperature Hydrothermal Method Without Templates, Chem. Eur. J. 2007, 13, 1851.
    56. (a) Li, L. L.; Chu, Y.; Liu, Y.; Dong, L. H. Template-Free Synthesis and Photocatalytic Properties of Novel Fe2O3 Hollow Spheres, J. Phys. Chem. C 2007, 111, 2123.
    (b) Zou, X. X.; Li, G. D.; Guo, M. Y.; Li, X. H.; Liu, D. P.; Su, J.; Chen, J. S. Heterometal Alkoxides as Precursors for the Preparation of Porous Fe- and Mn-TiO2 Photocatalysts with High Efficiencies, Chem. Eur. J. 2008, 14, 11123.
    57. Cao, S.; Zhu, Y. Hierarchically Nanostructuredα-Fe2O3 Hollow Spheres: Preparation, Growth Mechanism, Photocatalytic Property, and Application in Water Treatment, J. Phys. Chem. C 2008, 112, 6253.
    58. Deng, Y. H.; Qi, D. W.; Deng, C. H.; Zhang, X. M.; Zhao, D. Y. Superparamagnetic high-magnetization microspheres with an Fe2O3@SiO2 core and perpendicularly aligned mesoporous SiO2 shell for removal of microsytins, J. Am. Chem. Soc. 2008, 130, 28.
    59.王榕树,成弘等.水体中铅的物化行为及其净化机理研究.中国科学(B辑) . 1994, 24, 7.
    60.栾兆坤,汤鸿霄.硫酸铁氧化物的表征及其对重金属吸附作用的研究.环境科学学报1994, 14, 129.
    61.陆昌盛,马世豪,张忠祥.污水综合排放标准.北京:中国标准出版社. 1991.
    62.王榕树,成弘.水体中铅的物化行为及其净化机理研究.中国科学: B缉. 1994, 24, 7.
    63. (a) Comma, A.; Navarro, M. T.; Parlente, J. P. Synthesis of ultralarge pore titanium silicate isomorphous to MCM-41 and its appllication as a catalyst for selective oxidation of hydrocarbons. J Chem. Soc.,Chem Commun. 1994, 147.
    (b) Guo, L. M.; Li, J. T.; Zhang, L. X.; Li, J. B.; Li, Y. S.; Yu, C. C>; Shi, J. L.; Ruan, M. L.; Feng, J. W. A facile route to synthesize magnetic particles within hollow mesoporous spheres and their performance as separable Hg2+ adsorbents, J. Mater. Chem. 2008, 18, 2733.
    (c) Zhang, L. X.; Zhang, W. H.; Shi, J. L.; Hua, Z. L.; Li, Y. S.; Yan, J. N. A new thioether functionalized organic-inorganic mesoporous composite as a highly selective and capacious Hg2+ adsorbent, Chem. Commun. 2003, 210.
    64.徐应明,王榕树.介孔钛硅分子筛的表面化学特征及除铅机制研究.环境科学学报1999, 19, 515.
    65. Mercierand, L.; Detellier, C. Preparation, characterization and applications asheavy metal sorbents by covalently grafted thiol functionalities on the interlammellar surface of montmorillonite. Environ Sci Technol, 1995, 29, 1318.
    66. Celis, R.; Carmenhermos?n, M.; Cornejo, J. Heavy Metal Adsorption by Functionalized Clays. Environ Sci Technol, 2000, 34, 4593.
    67. Izatt,R. M.; Bradshaw,J. S.; Bruening, R. L. Accomplishment of difficult chemical separations using solid phase extraction. Pure & Appl. Chem, 1996, 68, 1237.
    68.刘丰祎,符连社,林君,张洪杰,王淑彬;徐庆红,丁红,邹永纯.新型无机-有机杂化介孔发光材料(phen)2Eu/MCM-41的合成与表征.应用化学2001, 18, 380.
    69. Ganschow, M.; Wark, M.; Wh?rle, D.; Schulz-Ekloff, G. Anchoring of Functional Dye Molecules in MCM-41 by Microwave-Assisted Hydrothermal Cocondensation. Angew. Chem. Int. Ed. 2000, 39, 161.
    70.徐应明,李军幸,戴晓华,张泽,高怀友.介孔分子筛表面功能膜的制备及对水体中铅汞镉的去除作用.应用化学2002, 19, 641.
    71. Ellerby, L. M.; Nishida, C. R.; Nishida, F.; Yamanaka, S. A.; Dunn, B.; Valentine, J. S.; Zink, J. I. Encapsulaton of proteins in transparent porous silicate glassed prepared by the sol0gel method, Science 1992, 255, 1113.
    72. Shiomi, T.; Tsunoda, T.; Kawai, A.; Matsuura, S.; Mizukami, F.; Sakaguchi, K. Synthesis of a Cagelike Hollow Aluminosilicate with Vermiculate Micro-Through-Holes and its Application to Ship-In-Bottle Encapsulation of Protein,Small 2009, 5, 67.
    73. Lin, H. A.; Liu, C. H.; Huang, W. C.; Liou, S. C.; Chu, M. W.; Chen, C. H.; Lee, J. F.; Yang, C. M. Novel magnetically separable mesoporous Fe2O3@SBA-15 nanocomposite with fully open mesochannels for protein immobilization, Chem. Mater. 2008, 20, 6617.
    74. (a) Katiyar, A.; Pinto, N. G. Visualization of Size-Selective Protein Separations on Spherical Mesoporous Silicates, Small 2006, 2, 644. (b) Liu, L.; Li, C. M.; Yang, Q. H.; Yang, J.; Li, C. Morphological and Structural Evolution of Mesoporous Silicas in a Mild Buffer Solution and LysozymeAdsorption, Langmuir 2007, 23, 7255.
    75. Xu, X.; Tian, B. Z.; Kong, J. L.; Liu, B. H.; Zhao, D. Y. Ordered mesoporous niobium oxide film: a novel matrix for assembling functional proteins for bioeletrochemical applications, Adv. Mater. 2003, 15, 1932.
    76. Martin, C. R. The emerging field of nanotube biotechnology, Nat. Rev. Drug. Discov. 2003, 2, 29.
    77. Xu, Z. P.; Zeng, Q. H.; Lu, G. Q.; Yu, A. B. Inorganic nanoparticles as carriers for efficient cellular delivery, Chem. Eng. Sci. 2006, 61, 1027.
    78. Sokolova, V.; Epple, M. Inorganic Nanoparticles as Carriers of Nucleic Acids into Cells, Angew. Chem. Int. Ed. 2008, 47, 1382.
    79. Yang, Q.; Wang, S. C.; Fan, P. W.; Wang, L. F.; Di, Y.; Lin, K. F.; Xiao, F. S. pH-responsive carrier system based on carboxylic acid modified mesoporous silica and polyeletrolyte for drug delivery, Chem. Mater. 2005, 17, 5999.
    80. Song, S. W.; Hidajat, K.; Kawi, S. pH-controllable drug release using hydrogel encapsulated mesoporous silica, Chem. Commun. 2007, 4396.
    81. Zhu, Y. F.; Shi, J. L.; Shen, W. H.; Dong, X. P.; Feng, J. W.; Ruan, M. L.; Li, Y. S. Stimuli-responsive controlled drug release form a hollow mesoporous silica sphere/polyelectrolyte multilayer core-shell structure, Angew. Chem. Int. Ed. 2005, 44, 5083.
    82. Garnweitner, G.; Smarsly, B.; Assink, R.; Ruland, W.; Bond, E.; Brinker, C. J. Self-assembly of an environmentally responsive polymer/silica nanocomposite, J. Am. Chem. Soc. 2003, 125, 5625.
    83. (a) Tartaj, P.; Gonzalez-Carreno, T.; Serna, C. J. From hollow to dense spheres: control of dipolar interactions by tailing the architecture in colloidal aggregates of superparamagnetic iron oxide nanocrystals, Adv. Mater. 2004, 16, 529. (b) Tartaj, P.; Gonzalez-Carreno, T.; Serna, C. J. Single-step nanoengineering of silica coated maghemite hollow spheres with tunable magnetic properties, Adv. Mater. 2001, 21, 1620.
    84. Coradin, T.; Larionova, J.; Smith, A. A.; Rogez, G.; Clerac, R.; Guerin, C.; Blondin, G.; Winpenny, R. E. P.; Sanchez, C.; Mallah, T. Magneticnanocomposites built by controlled incorporation of magnetic clusters into mesoporous silicates, Adv. Mater. 2002, 14, 896.
    85. (a) Piao, Y. Z.; Kim, J.; Na, H. B.; Kim, D.; Baek, J. S.; Ko, M. K.; Lee, J. H.; Shokouhimehr, M.; Hyeon, E. Wrap-bake-peel process for nanostructural transformation fromβ-FeOOH nanorods to biocompatible iron oxide nanocapsules, Nature Materials 2008, 7, 242. (b) Zhao, W. R.; Gu, J. L.; Chen, H. R.; Shi, J. L. Fabrication of Uniform Magnetic Nanocomposite Spheres with a Magnetic Core/Mesoporous Silica Shell Structure, J. Am. Chem. Soc. 2005, 127, 8916.
    86. Mal, N. K.; Fujiwara, M.; Tanaka, Y. Photo-controlled reversible release of guest molecules from coumarin-modified mesoporous silica, Nature 2003, 421, 350.
    87. Liu, N. G.; Dunphy, D. R.; Atanassov, P.; Bunge, S. D.; Chen, Z.; Lopez, G. P.; Boyle, T. J.; Brinker, C. J. Photoregulation of mass transport through a photo-responsive azobenzene-modified nanoporous membrane, Nano lett. 2004, 4, 551.
    88. Torney, F.; Trewyn, B. G.; Lin, V. S.–Y.; Wang, K. Mesoporous silica nanoparticles deliver DNA and chemicals into plants, Nature Nanotechnology 2007, 2, 295.
    89. Feng, Z. G.; Li, Y. S.; Niu, D. C.; Li, L.; Zhao, W. R.; Chen, H. R.; Li, L.; Gao, J. H.; Ruan, M. L.; Shi, J. L. A facile route to hollow nanospheres of mesoporous silica with tunable size, Chem. Commun. 2008, 2629.
    90. Botterhuis, N. E.; Sun, Q. Y.; Magusin, P. C. M. M.; van Santen, R. A.; Sommerdijk, N. A. J. M. Hollow silica spheres with an ordered pore structure and their application in controlled release studies, Chem. Eur. J. 2005, 12, 1448.
    91. Lou, X.; Archer, L. A. A General Route to Nonspherical Anatase TiO2 Hollow Colloids and Magnetic Multifunctional Particles, Adv. Mater. 2008, 20, 1853.
    92. Lou, X. W.; Wang, Y.; Yuan, C. L.; Lee, Y.; Archer, L. A. Template-free synthesis of SnO2 hollow nanostructures with high lithium storage capacity, Adv. Mater. 2006, 18, 2325.
    93. Mao, L. J.; Liu, C. Y.; Li, J. Template-free syntheis of VOx hierarchical hollowspheres, J. Mater. Chem. 2008, 18, 1640.
    94. Liu, S.; Zhang, L.; Zhou, J.; Xiang, J.; Sun, J.; Guan, J. Fiberlike Fe2O3 macroporous nanomaterials fabricated by calcinating regenerate cellulose composite fibres, Chem. Mater. 2008, 20, 3623.
    95. Marschall, R.; Bannat, I.; Feldhoff, A.; Wang, L. Z.; Lu, G. Q.; Wark, M. Nanoparticles of Mesoporous SO3H-Functionalized Si-MCM-41 with Superior Proton Conductivity, Small 2009, 5, 854.
    96. Chou, T. P.; Zhang, Q. F.; Fryxell, G. E.; Cao, G. Z. Hierarchically-structured ZnO film for dye-sensitized solar cells with enhanced energy conversion efficiency, Adv. Mater. 2007, 19, 2588.
    1. Kresge, C. T.; Leonowicz, M. E.; Roth, W. J. Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism, Nature 1992, 359, 710.
    2. Beck, J. S.; Vartuli, J. C.; Roth, W. J.; Leonowicz, M. E.; Kresge, C. T.; Schmitt, K. D.; Chu, C. T. W.; Olson, D. H.; Sheppard, E. W. A new family of mesoporous molecular sieves prepared with liquid crystal templates, J. Am. Chem. Soc. 1992, 114, 10834.
    3. Chen, C. Y.; Li, H. X.; Davis, M. E. Studies on mesoporous materials : I. Synthesis and characterization of MCM-41, Microporous Mater. 1993, 2, 17.
    4. (a) P. T. Tanev.; Chibwe, M.; Pinnavaia, T. J. Titanium-containing mesoporous molecular sieves for catalytic oxidation of aromatic compounds, Nature 1994, 368, 321.
    (b) P. T. Tanev.; Pinnavaia, T. J. A Neutral Templating Route to Mesoporous Molecular Sieves, Science 1995, 267, 865.
    5. Ryoo, R.; Kim, J. M.; Ko, C. H. Disordered Molecular Sieve with Branched Mesoporous Channel Network, J. Phys. Chem. 1996, 100, 17718.
    6. (a) Zhao, D. Y.; Feng, J. L.; Huo, Q. S. Triblock Copolymer Syntheses of Mesoporous Silica with Periodic 50 to 300 Angstrom Pores, Science 1998, 279, 548.
    (b) Zhao, D. Y.; Huo, Q. S.; Feng, J. L. Nonionic Triblock and Star Diblock Copolymer and Oligomeric Surfactant Syntheses of Highly Ordered, Hydrothermally Stable, Mesoporous Silica Structures, J. Am. Chem. Soc. 1998, 120, 6024.
    7. (a) Yang, P.; Zhao, D.; Margolese, D. I.; Chmelka, B. F.; Stucky, G. D. Generalized syntheses of large-pore mesoporous metal oxides with semicrystalline frameworks, Nature 1998, 396, 152.
    (b) Tian, Z. R.; Tong, W.; Wang, J. Y.; Duan, N. G.; Krishnan, V. V.; Suib, S. L. Manganese Oxide Mesoporous Structures: Mixed-Valent Semiconducting Catalysts, Science 1997, 276, 926.
    (c) Crepaldi, E. L.; de A. A. Soler-Illia, G. J.; Grosso, D.; Cagnol, F.; Ribot, F.; Sanchez, C. J. Am. Chem. Soc. 2003, 125, 9770.
    (d) Ulagappan, N.; Rao, C. N. R. Mesoporous phases based on SnO2 and TiO2, Chem. Commun. 1996, 1685.
    (e) Xu, X.; Tian, B. Z.; Kong, J. L.; Zhang, S.; Liu, B. H.; Zhao, D. Y. Ordered Mesoporous Niobium Oxide Film: A Novel Matrix for Assembling Functional Proteins for Bioelectrochemical Applications, Adv. Mater. 2003, 15, 1932.
    (f) Jiao, F.; Harrison, A.; Jumas, J.; Chadwick, A. V.; Kockelmann, W.; Bruce, P. G. J. Am. Chem. Soc. 2006, 128, 5468.
    (g) Tian, B.; Yang, H.; Liu, X.; Xie, S.; Yu, C.; Fan, J.; Tu, B.; Zhao, D. Fast preparation of highly ordered nonsiliceous mesoporous materials via mixed inorganic precursors, Chem. Commun. 2002, 1824.
    8. (a) Huh, S.; Chen, H. T.; Wiench, J. W.; Pruski, M.; Lin, V. S. Y. Controlling the Selectivity of Competitive Nitroaldol Condensation by Using a Bifunctionalized Mesoporous Silica Nanosphere-Based Catalytic System, J. Am. Chem. Soc., 2004, 126, 1010.
    (b) Lin, V. S. Y.; Radu, D. R.; Han, M. K.; Deng, W.; Kuroki, S.; Shanks, B. H.; Pruski, M. Oxidative Polymerization of 1,4-Diethynylbenzene into Highly Conjugated Poly(phenylene butadiynylene) within the Channels of Surface-Functionalized Mesoporous Silica and Alumina Materials, J. Am. Chem. Soc., 2002, 124, 9040.
    9. (a) Radu, D. R.; Lai, C. Y.; Wiench, J. W.; Pruski, M.; Lin, V. S. Y. Gatekeeping Layer Effect: A Poly(lactic acid)-coated Mesoporous Silica Nanosphere-Based Fluorescence Probe for Detection of Amino-Containing Neurotransmitters, J. Am. Chem. Soc., 2004, 126, 1640.
    (b) Casasus, R.; Marcos, M. D.; Martinez-Manez, R.; Ros-Lis, J. V.; Soto, J.; Villaescusa, L. A.; Amoros, P.; Beltran, D.; Guillem, C.; Latorre, J. Toward the Development of Ionically Controlled Nanoscopic Molecular Gates, J. Am. Chem. Soc., 2004, 126, 8612.
    10. (a) Wang, H.; Wang, Y.; Zhou, X.; Zhou, L.; Tang, J.; Lei, J.; Yu, C. Z. Siliceous Unilamellar Vesicles and Foams by Using Block-Copolymer Cooperative Vesicle Templating, Adv. Funct. Mater., 2007, 17, 613.
    (b) Liu, J.; Li, C.; Yang, Q.; Yang, J.; Li, C. Morphological and Structural Evolution of Mesoporous Silicas in a Mild Buffer Solution and Lysozyme Adsorption, Langmuir, 2007, 23, 7255.
    11. (a) Trewyn, B. G.; Whitman, C. M.; Lin, V. S. Y. Morphological Control of Room-Temperature Ionic Liquid Templated Mesoporous Silica Nanoparticles for Controlled Release of Antibacterial Agents, Nano Lett., 2004, 4, 2139.
    (b) Torney, F.; Trewyn, B. G.; Lin, V. S. Y.; Wang, K. Mesoporous Silica Nanoparticles Deliver DNA and Chemicals into Plants, Nature Nanotech., 2007, 2, 295.
    (c) Jiang, X.; Brinker, C. J. erosol-Assisted Self-Assembly of Single-Crystal Core/Nanoporous Shell Particles as Model Controlled Release Capsules, J. Am. Chem. Soc., 2006, 128, 4512.
    12. (a) Holland, P. M.; Rubingh, D. N. Mixed surfactant Systems; American Chemical Society: Washington, DC, 1992.
    (b) Yin, H.; Zhou, Z.; Huang, J.; Zheng, R.; Zhang, Y. Temperature-Induced Micelle to Vesicle Transition in the Sodium Dodecylsulfate/Dodecyltriethylammonium Bromide System, Angew. Chem., Int. Ed., 2003, 42, 2188.
    13. (a) Djijiputro, H.; Zhou, X. F.; Qiao, S. Z.; Wang, L. Z.; Yu, C. Z.; Lu, G. Q. Periodic Mesoporous Organosilica Hollow Spheres with Tunable Wall Thickness, J. Am. Chem. Soc., 2006, 128, 6320.
    (b) Yuan, P.; Yang, S.; Wang, H.; Yu, M.; Zhou, X.; Lu, G.; Zou, J.; Yu, C. Z. Structure Transition from Hexagonal Mesostructured Rodlike Silica to Multilamellar Vesicles. Langmuir, 2008, 24, 5038.
    14. Yang, S.; Zhou, X.; Yuan, P.; Yu, M.; Xie, S.; Lu, G. Q.; Yu, C. Z. Siliceous Nanopods from a Compromised Dual-Templating Approach, Angew. Chem., Int. Ed., 2007, 46, 8579.
    15. (a) Che, S.; Liu, Z.; Ohsuna, T.; Sakamoto, K.; Tersaki, O.; Tatsumi, T. Synthesis and Characterization of Chiral Mesoporous Silica, Nature, 2004, 429, 281.
    (b) Ohsuna, T.; Liu, Z.; Che, S.; Terasaki, O. Characterization of Chiral Mesoporous Materials by Transmission Electron Microscopy, Small, 2005, 1, 233.
    16. Che, S.; Garcia-Bennett, A. E.; Yokoi, T.; Sakamoto, K.; Kunieda, H.; Terasaki, O.; Tatsumi, T. A Novel Anionic Surfactant Templating Route for Synthesizing Mesoporous Silica with Unique Structure, Nature Mater., 2003, 2, 801.
    17. Wu, X.; Ruan, J.; Ohsuna, T.; Terasaki, O.; Che, S. A Novel Route for Synthesizing Silica Nanotubes with Chiral Mesoporous Wall Structures, Chem. Mater., 2007, 19, 1577.
    18. (a) Yang, Y.; Nakazawa, M.; Suzuki, M.; Kimura, M.; Shirai, H.; Hanabusa, K. Formation of Helical Hybrid Silica Bundles, Chem. Mater., 2004, 16, 3791.
    (b) Yang, Y.; Suzuki, M.; Shirai, H.; Kurose, A.; Hanabusa, K. Nanofiberization of Inner Helical Mesoporous Silica using Chiral Gelator as Template under a Shear Flow, Chem. Commun., 2005, 2032.
    (c) Yang, Y.; Suzuki, M.; Owa, S.; Shirai, H.; Hanabusa, K. Preparation of Helical Nanostructures using Chiral Cationic Surfactants, Chem. Commun., 2005, 4462.
    (d) Yang, Y.; Suzuki, M.; Fukui, H.; Shirai, H.; Hanabusa, K. Preparation of Helical Mesoporous Silica and Hybrid Silica Nanofibers Using Hydrogelator, Chem. Mater., 2006, 18, 1324.
    (e) Yang, Y.; Nakazawa, M.; Suzuki, M.; Shirai, H.; Hanabusa, K. Fabrication of Helical Hybrid Silica Bundles, J. Mater. Chem., 2007, 17, 2936.
    19. Wu, X.; Jin, H.; Liu, Z.; Ohsuna, T.; Terasaki, O.; Sakamoto, K.; Che, S. Racemic Helical Mesoporous Silica Formation by Achiral Anionic Surfactant, Chem. Mater., 2006, 18, 241.
    20. Kresge, C. T.; Leonowicz, M. E.; Roth, W. J.; Vartuli, J. C.; Beck, J. S. Ordered Mesoporous Molecular Sieves Synthesized by a Liquid-Crystal Template Mechanism, Nature, 1992, 359, 710.
    21. (a) Tang, B.; Vyas, S. M.; Lehmler, H.; Knutson, B. L.; Rankin, S. E. Synthesis of Inorganic and Organic-Inorganic Hybrid Hollow Particles Using a Cationic Surfactant with a Partially Fluorinated Tail, Adv. Funct. Mater., 2007, 17, 2500.
    (b) Kruk, M.; Jaroniec, M. Gas Adsorption Characterization of Ordered Organic-Inorganic Nanocomposite Materials, Chem. Mater., 2001, 13, 3169.
    22. Yang, S.; Zhao, L.; Yu, C. Z.; Zhou, X.; Tang, J.; Yuan, P.; Chen, D.; Zhao, D. On the Origin of Helical Mesostructures, J. Am. Chem. Soc., 2006, 128, 10460.
    23. Shioi, A.; Hatton, T. A. Model for Formation and Growth of Vesicles in Mixed Anionic/Cationic (SOS/CTAB) Surfactant Systems, Langmuir, 2002, 18, 7341.
    24. (a) Chen, B.; Lin, H.; Chao, M.; Mou, C.; Tang, C. Mesoporous Silica Platelets with Perpendicular Nanochannels via a Ternary Surfactant System, Adv. Mater., 2004, 16, 1657.
    (b) Yeh, Y.; Chen, B.; Lin, H.; Tang, C. Model for Formation and Growth of Vesicles in Mixed Anionic/Cationic (SOS/CTAB) Surfactant Systems, Langmuir, 2006, 22, 6.
    25. Antonietti, M.; Forster, S. Vesicles and Liposomes: A Self-Assembly Principle Beyond Lipids, Adv. Mater., 2003, 15, 1323.
    1. (a) Pouget, E.; Dujardin, E.; Cavalier, A.; Moreac, A.; Valéry, C.; Marchi-Artzner, V.; Weiss, T.; Renault, A.; Paternoster, M.; Artzner, F., Hierarchical architecturesby synergy between dynamical template self-assembly and biomineralization, Nature Mater. 2007, 6, 434.
    (b) Tan, B.; Lehmler, H. J.; Vyas, S. M.; Knutson, B. L.; Rankin, S. E. Fluorinated-Surfactant-Templated Synthesis of Hollow Silica Particles with a Single Layer of Mesopores in Their Shells, Adv. Mater. 2005, 17, 2368.
    (c) Tan, B.; Vyas, S. M.; Lehmler, H. J.; Knutson, B. L.; Rankin, S. E. Synthesis of Inorganic and Organic-Inorganic Hybrid Hollow Particles Using a Cationic Surfactant with a Partially Fluorinated Tail, Adv. Funct. Mater. 2007, 17, 2500.
    (d) Wang, H.; Wang, Y.; Zhou, X.; Zhou, L.; Tang, J.; Lei, J.; Yu, C. Z. Siliceous Unilamellar Vesicles and Foams by Using Block-Copolymer Cooperative Vesicle Templating, Adv. Funct. Mater. 2007, 17, 613.
    2. (a) Chen, H.; He, J. Rapid Evaporation-Induced Synthesis of Monodisperse Budded Silica Spheres, J. Colloidal Interface Sci. 2007, 316, 211.
    (b) Yang, M.; Ma, J.; Zhang, C.; Yang, Z. Z.; Lu, Y. F. General Synthetic Route toward Functional Hollow Spheres with Double-Shelled Structures, Angew. Chem., Int. Ed. 2005, 44, 6727.
    (c) Tan, B.; Lehmler, H. J.; Vyas, S. M.; Knutson, B. L.; Rankin, S. E. Controlling Nanopore Size and Shape by Fluorosurfactant Templating of Silica, Chem. Mater. 2005, 17, 916.
    (d) Yu, M.; Wang, H.; Zhou, X.; Yuan, P.; Yu, C. Z. One Template Synthesis of Raspberry-like Hierarchical Siliceous Hollow Spheres, J. Am. Chem. Soc. 2007, 129, 14576.
    3. (a) D?hne, L.; Leporatti, S.; Donath, E.; M?hwald, H. Fabrication of Micro Reaction Cages with Tailored Properties, J. Am. Chem. Soc. 2001, 123, 5431.
    (b) Ibarz, G.; D?hne, L.; Donath, E.; M?hwald, H. Smart Micro- and Nanocontainers for Storage, Transport, and Release, Adv. Mater. 2001, 13, 1324.
    (c) Tang, J.; Zhou, X.; Zhao, D.; Lu, G.; Zou, J.; Yu, C. Z. Hard-Sphere Packing and Icosahedral Assembly in the Formation of Mesoporous Materials, J. Am. Chem. Soc. 2007, 129, 9044.
    4. (a) He, J.; Chen, H.; Zhang, L. Advances in Inorganic Hollow Micro/Nanospheres, Prog. Chem. 2007, 19, 1488.
    (b) Arnal, P. M.; Weidenthaler, C.; Schüth, F. Highly Monodisperse Zirconia-Coated Silica Spheres and Zirconia/Silica Hollow Spheres with Remarkable Textural Properties, Chem. Mater. 2006, 18, 2733.
    (c) Ji, X. L.; Hu, Q. Y.; Hampsey, J. E.; Qiu, X. P.; Gao, L. X.; He, J. B.; Lu, Y. F. Synthesis and Characterization of Functionalized Mesoporous Silica by Aerosol-Assisted Self-Assembly, Chem. Mater. 2006, 18, 2265.
    5. (a) Lvov, Y.; Antipov, A. A.; Mamedov, A.; M?hwald, H.; Sukhorukov, G. B. Urease Encapsulation in Nanoorganized Microshells, Nano Lett. 2001, 1, 125.
    (b) Gao, C.; Donath, E.; M?hwald, H.; Shen, J. Spontaneous Deposition of Water-Soluble Substances into Microcapsules: Phenomenon, Mechanism, and Application, Angew. Chem., Int. Ed. 2002, 41, 3789.
    6. (a) Xu, A.; Yu, Q.; Dong, W.; Antonietti, M.; C?lfen, H. Stable Amorphous CaCO3 Microparticles with Hollow Spherical Superstructures Stabilized by Phytic Acid, Adv. Mater. 2005, 17, 2217.
    (b) Sanchez, C.; Arribart, H.; Madeleine, M.; Guille, G. Biomimetism and bioinspiration as tools for the design of innovative materials and systems, Nature Mater. 2005, 4, 277.
    7. Lu, A.; Schüth, F. Nanocasting: A Versatile Strategy for Creating Nanostructured Porous Materials, Adv. Mater. 2006, 18, 1793.
    8. Titirici, M.; Thomas, A.; Antonietti, M. Replication and Coating of Silica Templates by Hydrothermal Carbonization, Adv. Funct. Mater. 2007, 17, 1010.
    9. Mal, N. K.; Fujiwara, M.; Tanaka, Y. Photocontrolled reversible release of guest molecules from coumarin-modified mesoporous silica, Nature 2003, 421, 350.
    10. Jiang, X. M.; Brinker, C. J. Aerosol-Assisted Self-Assembly of Single-Crystal Core/Nanoporous Shell Particles as Model Controlled Release Capsules, J. Am. Chem. Soc. 2006, 128, 4512.
    11. (a) Zhu, Y. F.; Shi, J. L.; Shen, W. H.; Dong, X. P.; Feng, J. W.; Ruan, M. L.; Li, Y. S. Stimuli-Responsive Controlled Drug Release from a Hollow Mesoporous Silica Sphere/Polyelectrolyte Multilayer Core-Shell Structure, Angew. Chem., Int. Ed. 2005, 44, 5083.
    (b) Kreilgaard, M. Pulsatile drug release control using hydrogels, Adv. Drug Deliv. Rev. 2002, 54, 77.
    12. Liu, N. G.; Dunphy, D. R.; Atanassov, P.; Bunge, S. D.; Chen, Z.; López, G. P.; Boyle, T. J.; Brinker, C. J. Photoregulation of Mass Transport through a Photoresponsive Azobenzene-Modified Nanoporous Membrane, Nano Lett. 2004, 4, 551.
    13. Torney, F.; Trewyn, B. G.; Lin, V. S. Y.; Wang, K. Mesoporous silica nanoparticles deliver DNA and chemicals into plants, Nature Nanotech. 2007, 2, 295.
    14. Sharma, K. K.; Asefa, T. Efficient Bifunctional Nanocatalysts by Simple Postgrafting of Spatially Isolated Catalytic Groups on Mesoporous Materials, Angew. Chem., Int. Ed. 2007, 46, 2879.
    15. Caruso, F.; Caruso, R. A.; M?hwald, H. Nanoengineering of Inorganic and Hybrid Hollow Spheres by Colloidal Templating, Science 1998, 282, 1111.
    16. (a) Suárez, F. J.; Sevilla, M.;álvarez, S.; Valdés-solis, T.; Fuertes, A. B. Synthesis of Highly Uniform Mesoporous Sub-Micrometric Capsules of Silicon Oxycarbide and Silica, Chem. Mater. 2007, 19, 3096.
    (b) Wu, X.; Tian, Y.; Cui, Y.; Wei, L.; Wang, Q.; Chen, Y. Raspberry-like Silica Hollow Spheres: Hierarchical Structures by Dual Latex?Surfactant Templating Route, J. Phys. Chem. C 2007, 111, 9704.
    17. Yang, Z. Z.; Niu, Z.; Lu, Y.; Hu, Z.; Han, C. C. Templated Synthesis of Inorganic Hollow Spheres with a Tunable Cavity Size onto Core-Shell Gel Particles, Angew. Chem., Int. Ed. 2003, 42, 1943.
    18. Khanal, A.; Inoue, Y.; Yada, M.; Nakashima, K. Synthesis of Silica Hollow Nanoparticles Templated by Polymeric Micelle with Core?Shell?Corona Structure, J. Am. Chem. Soc. 2007, 129, 1534.
    19. Djojoputro, H.; Zhou, X. F.; Qiao, S. Z.; Wang, L. Z.; Yu, C. Z.; Lu, G. Q. Periodic Mesoporous Organosilica Hollow Spheres with Tunable Wall Thickness, J. Am. Chem. Soc. 2006, 128, 6320.
    20. Wang, J.; Xiao, Q.; Zhou, H.; Sun, P.; Yuan, Z.; Li, B.; Ding, D.; Shi, A.; Chen, T. Budded, Mesoporous Silica Hollow Spheres: Hierarchical Structure Controlled by Kinetic Self-Assembly, Adv. Mater. 2006, 18, 3284.
    21. (a) Liu, J.; Li, C.; Yang, Q.; Yang, J.; Li, C. Morphological and Structural Evolution of Mesoporous Silicas in a Mild Buffer Solution and Lysozyme Adsorption, Langmuir 2007, 23, 7255.
    (b) Zhang, H.; Wu, J.; Zhou, L.; Zhang, D.; Qi, L. Facile Synthesis of Monodisperse Microspheres and Gigantic Hollow Shells of Mesoporous Silica in Mixed Water?Ethanol Solvents, Langmuir 2007, 23, 1107.
    22. (a) Chen, H.; He, J. Self-assembly of Birnessite Mangnese Oxide into Monodisperse Honeycomb and Hollow Nanospheres, Chem. Lett. 2007, 36, 174.
    (b) Chen, H.; He, J.; Zhang, C.; He, H. Self-Assembly of Novel Mesoporous Manganese Oxide Nanostructures and Their Application in Oxidative Decomposition of Formaldehyde, J. Phys. Chem. C 2007, 111, 18033.
    (c) Cheng, X.; Liu, S.; Lu, L.; Sui, X.; Meynen, V.; Cool, P.; Vansant, E. F.; Jiang, J. Fast fabrication of hollow silica spheres with thermally stable nanoporous shells, Micro. Meso. Mater. 2007, 98, 41.
    23. (a) Oliver, S.; Kuperman, A.; Coombs, N.; Lough, A.; Ozin, G. A. Lamellar aluminophosphates with surface patterns that mimic diatom and radiolarian microskeletons, Nature 1995, 378, 47.
    (b) Hou, Q.; Leon, R.; Petroff, P. M.; Stucky, G. D. Mesostructure Design with Gemini Surfactants: Supercage Formation in a Three-Dimensional Hexagonal Array, Science 1995, 268, 1324.
    24. Li, W.; Sha, X.; Dong, W.; Wang, Z. Synthesis of stable hollow silica microspheres with mesoporous shell in nonionic W/O emulsion, Chem. Commun. 2002, 2434.
    25. Sun, Q. Y.; Kooyman, P. J.; Grossmann, J. G.; Bomans, P. H. H.; Frederik, P. M.; Magusin, P. C. M. M.; Beelen, T. P. M.; van Santen, R. A.; Sommerdijk, N. A. J. M. The Formation of Well-Defined Hollow Silica Spheres with Multilamellar Shell Structure, Adv. Mater. 2003, 15, 1097.
    26. Fujiwara, M.; Shiokawa, K.; Sakakura, I.; Nakahara, Y. Silica Hollow Spheres with Nano-Macroholes Like Diatomaceous Earth, Nano Lett. 2006, 6, 2925.
    27. (a) Lebedev, O. I.; van Tendeloo, G.; Collart, O.; Cool, P.; Vansant, E. F. Structure and microstructure of nanoscale mesoporous silica spheres, Solid State Sci. 2004, 6, 489.
    (b) Grün, M.; Latter, I.; Unger, K. K. The synthesis of micrometer- and submicrometer-size spheres of ordered mesoporous oxide MCM-41, Adv. Mater. 1997, 9, 254.
    (c) Pauwels, B.; van Tendeloo, G.; Thoelen, C.; van Rhijn, W.; Jacobs, P.A. Structure Determination of Spherical MCM-41 Particles, Adv. Mater. 2001, 13, 1317.
    (d) Nooney, R. I.; Thirunavukkarasu, D.; Chen, Y.; Josephs, R.; Ostafin, A. E. Synthesis of Nanoscale Mesoporous Silica Spheres with Controlled Particle Size, Chem. Mater. 2002, 14, 4721.
    (e) Liu, S.; Cool, P.; Collart, O.; van Der Voort, P.; Vansant, E. F.; Lebedev, O. I.; van Tendeloo, G.; Jiang, M. The Influence of the Alcohol Concentration on the Structural Ordering of Mesoporous Silica: Cosurfactant versus Cosolvent, J. Phys. Chem. B 2003, 107, 10405.
    28. Equation: Weight percentage of pyrene (%) =100 (W1-W0) /W1 (Where W1 (g) is the weight of the sample prepared by adding pyrene into the reaction solution, W0
    (g) is the weight of the sample prepared without adding pyrene into the reaction solution).
    29. Han, Y.; Ying, J. Y. Generalized Fluorocarbon-Surfactant-Mediated Synthesis of Nanoparticles with Various Mesoporous Structures, Angew. Chem., Int. Ed. 2005, 44, 288.
    30. (a) Sing, K. S. W.; Everett, D. H.; Haul, R. A. W.; Moscou, L.; Piertti, R. A.; Rouquèrol, J.; Siemieniewska, T. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984), Pure Appl. Chem. 1985, 57, 603.
    (b) Lowell, S.; Shields, J. E. Powder Surface Area and Porosity; New York: Chapman and Hall, 1991.
    31. (a) Beck, J. S.; Vartuli, J. C.; Roth, W. J.; Leonowicz, M. E.; Kresge, C. T.; Schmitt, K. D.; Chu, C. T-W.; Olson, D. H.; Sheppard, E. W.; Mccullen, S. B.; Higgins, J. B.; Schlenkert, J. L. A new family of mesoporous molecular sieves prepared with liquid crystal templates, J. Am. Chem. Soc. 1992, 114, 10834.
    (b) Kresge, C. T.; Leonwicz, M. E.; Roth, W. J.; Vartuli, J. C.; Beck, J. S. Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism, Nature 1992, 359, 710.
    32. Kim, I.; Lee, K. Effect of various additives on pore size of polysulfone membrane by phase-inversion process, J. Appl. Poly. Sci. 2003, 89, 2562.
    33. Brinker, C. J.; Lu, Y.; Sellinger, A.; Fan, H. Evaporation-Induced Self-Assembly: Nanostructures Made Easy, Adv. Mater. 1999, 11, 579.
    34. (a) Jagannathan, N. R.; Venkateswaran, K.; Herring, F. G.; Patey, G. N.; Walker, D. C. Localization of methanol, ethanol, and 2-propanol at micelles in water: an NMR T1-relaxation study, J. Phys. Chem. 1987, 91, 4553.
    (b) Tan, B.; Rankin, S. E. Interfacial Alignment Mechanism of Forming Spherical Silica with Radially Oriented Nanopores, J. Phys. Chem. B 2004, 108, 20122.
    35. Botterhuis, N. E.; Sun, Q.; Magusin, P. C. M. M.; van Santen, R. A.; Sommerdijk, N. A. J. M. Hollow Silica Spheres with an Ordered Pore Structure and Their Application in Controlled Release Studies, Chem. Eur. J. 2006, 12, 1448.
    36. (a) Cho, S. Y.; Allcock, H. R. Dendrimers Derived from Polyphosphazene?Poly(propyleneimine) Systems: Encapsulation and Triggered Release of Hydrophobic Guest Molecules, Macromolecules 2007, 40, 3115.
    (b) Zhang, X.; Zhang, X.; Shi, W.; Meng, X.; Lee, C.; Lee, S. Morphology-Controllable Synthesis of Pyrene Nanostructures and Its Morphology Dependence of Optical Properties, J. Phys. Chem. B 2005, 109, 18777.
    37. Li, H.; Bian, Z.; Zhu, J.; Zhang, D.; Li, G.; Huo, Y.; Li, H.; Lu, Y. Mesoporous Titania Spheres with Tunable Chamber Stucture and Enhanced Photocatalytic Activity, J. Am. Chem. Soc. 2007, 129, 8406.
    1. (a) Hu, J. T.; Odom, T. W.; Lieber, C. M. Chemistry and Physics in One Dimension: Synthesis and Properties of Nanowires and Nanotubes, Acc. Chem. Res. 1999, 32, 435.
    (b) Hupp, J. T.; Poeppelmeier, K. R. Better Living Through Nanopore Chemistry, Science 2005, 309, 2008.
    2. (a) Huang, M. H.; Mao, S.; Feick, H.; Yan, H.; Wu, Y.; Kind, H.; Weber, E.; Russo, R.; Yang, P. Room-Temperature Ultraviolet Nanowire Nanolasers, Science 2001, 292, 1897.
    (b) Chen, J.; Xu, L. N.; Li, W. Y.; Gou, X. L.α-Fe2O3 Nanotubes in Gas Sensor and Lithium-Ion Battery Applications, Adv. Mater. 2005, 17, 582.
    3. (a) Tian, Z.; Tong, W.; Wang,W. J.; Duan, N.; Krishnan, V. V.; Suib, S. L. Manganese Oxide Mesoporous Structures: Mixed-Valent Semiconducting Catalysts, Science 1997, 276, 926.
    (b) Toberer, E. S.; Seshadri, R. Spontaneous Formation of Macroporous Monoliths of Mesoporous Manganese Oxide Crystals, Adv. Mater. 2005, 17, 2244.
    4. (a) Chen, H.; He, J. Self-assembly of Birnessite Mangnese Oxide into Monodisperse Honeycomb and Hollow Nanospheres, Chem. Lett. 2007, 36, 174.
    (b) Mao, Y. B.; Kanungo, M.; Benny, T. H.; Wong, S. S. Synthesis and Growth Mechanism of Titanate and Titania One-Dimensional NanostructuresSelf-Assembled into Hollow Micrometer-Scale Spherical Aggregates, J. Phys. Chem. B 2006, 110, 702.
    (c) Lou, X. W.; Wang, Y.; Yuan, C. L.; Lee, J. Y.; Archer, L. A. Template-Free Synthesis of SnO2 Hollow Nanostructures with High Lithium Storage Capacity, Adv. Mater. 2006, 18, 2325.
    (d) Li, X. H.; Zhang, D. H.; Chen, J. S. Synthesis of Amphiphilic Superparamagnetic Ferrite/Block Copolymer Hollow Submicrospheres, J. Am. Chem. Soc. 2006, 128, 8382.
    (e) Wang, S. T.; Feng, L.; Jiang, L. One-Step Solution-Immersion Process for the Fabrication of Stable Bionic Superhydrophobic Surfaces, Adv. Mater. 2006, 18, 767.
    (f) Caruso, F.; Spasova, M.; Susha, A.; Giersig, M.; Caruso, R. A. Magnetic Nanocomposite Particles and Hollow Spheres Constructed by a Sequential Layering Approach, Chem. Mater. 2001, 13, 109.
    5. Cushing, B. L.; Kolesnichenko, V. L.; O’Connor, C. J. Recent Advances in the Liquid-Phase Syntheses of Inorganic Nanoparticles, Chem. Rev. 2004, 104, 3893.
    6. (a) Thackeray, M. M. Manganese oxides for lithium batteries, Prog. Solid State Chem. 1997, 25, 1.
    (b) Espinal L, Suib S L and Rusling J F, Electrochemical Catalysis of Styrene Epoxidation with Films of MnO2 Nanoparticles and H2O2, J. Am. Chem. Soc. 2004, 126, 7676.
    7. Armstrong, A. R.; Bruce, P. G. Synthesis of layered LiMnO2 as an electrode for rechargeable lithium batteries, Nature 1996, 381, 499.
    8. Ammundsen, B.; Paulsen, J. Novel Lithium-Ion Cathode Materials Based on Layered Manganese Oxides, Adv. Mater. 2001, 13, 943.
    9. Winter, M.; Brodd, R. J. What Are Batteries, Fuel Cells, and Supercapacitors? Chem. Rev. 2004, 104, 4245.
    10. Toupin, M.; Brousse, T.; Bélanger, D. Influence of Microstucture on the Charge Storage Properties of Chemically Synthesized Manganese Dioxide, Chem. Mater. 2002, 14, 3946.
    11. Cheng, F. Y.; Zhao, J.; Song, W.; Li, C.; Ma, H.; Chen, J.; Shen, P. Facile Controlled Synthesis of MnO2 Nanostructures of Novel Shapes and Their Application in Batteries, Inorg. Chem. 2006, 45, 2038.
    12. Wills, A. S.; Raju, N. P.; Greedan, J. E. Low-Temperature Structure and Magnetic Properties of the Spinel LiMn2O4: A Frustrated Antiferromagnet and Cathode Material, Chem. Mater. 1999, 11, 1510.
    13. (a) Segal, S. R.; Park, S. H.; Suib, S. L. Thin Films of Octahedral Molecular Sieves of Manganese Oxide, Chem. Mater. 1997, 9, 98.
    (b) Greedan, J. E.; Raju, N. P.; Wills, A. S.; Morin, C.; Shaw, S. M. Structure and Magnetism inλ-MnO2. Geometric Frustration in a Defect Spinel, Chem. Mater. 1998, 10, 3058.
    14. Yamamoto, S.; Matsuoka, O.; Fukada, I.; Ashida, Y.; Honda. T.; Yamamotoy, N. Using Atomic Force Microscopy to Image the Surface of the Powdered Catalyst KMn8O16, J. Catal. 1996, 159, 401.
    15. (a) Yuan, J. K.; Li, W. N.; Gomez, S.; Suib, S. L. Shape-Controlled Synthesis of Manganese Oxide Octahedral Molecular Sieve Three-Dimensional Nanostructures, J. Am. Chem. Soc. 2005, 127, 14184.
    (b) Yuan, J.; Laubernds, K.; Zhang, Q.; Suib, S. L. Self-Assembly of Microporous Manganese Oxide Octahedral Molecular Sieve Hexagonal Flakes into Mesoporous Hollow Nanospheres, J. Am. Chem. Soc. 2003, 125, 4966.
    16. Li, Z. Q.; Ding, Y.; Xiong, Y. J.; Yang, Q.; Xie, Y. One-step solution-based catalytic route to fabricate novelα-MnO2 hierarchical structures on a large scale, Chem. Commun. 2005, 918.
    17. (a) Ma, Y.; Luo, J.; Suib, S. L. Syntheses of Birnessites Using Alcohols as Reducing Reagents: Effects of Synthesis Parameters on the Formation of Birnessites, Chem. Mater. 1999, 11, 1972.
    (b) Feng, Q.; Kanoh, H.; Ooi, K. Manganese oxide porous crystals, J. Mater. Chem. 1999, 9, 319.
    (c) Golden, D. C.; Chen, C. C.; Dixon, J. B. Transformation of Birnessite to Buserite, Todorokite, and Manganite under Mild Hydrothermal Treatment, Clays Clay Miner. 1987, 35, 271.
    18. Lina, A. A.; Dyer, A.; Harjula, R. Uptake of radionuclides on microporous and layered ion exchange materials, J. Mater. Chem. 2003, 13, 2963.
    19. Aronson, B. J.; Kinser, A. K.; Passerini, S.; Smyrl, W. H.; Stein, A. Synthesis, Characterization, and Electrochemical Properties of Magnesium Birnessite and Zinc Chalcophanite Prepared by a Low-Temperature Route, Chem. Mater. 1999, 11, 949.
    20. Nakayama, M.; Konishi, S.; Tagashira, H.; Ogura, K. Electrochemical Synthesis of Layered Manganese Oxides Intercalated with Tetraalkylammonium Ions, Langmuir 2005, 21, 354.
    21. (a) Mori, S.; Chen, C. H.; Cheonq, S. W. Pairing of charge-ordered stripes in (La,Ca)MnO3, Nature 1998, 392, 473.
    (b) Ge, J.; Zhuo, L.; Yang, F.; Tang, B.;Wu, L. Z.; Tung, C. One-Dimensional Hierarchical Layered KxMnO2 (x<0.3) Nanoarchitectures: Synthesis, Characterization, and Their Magnetic Properties, J. Phys. Chem. B 2006, 110, 17854.
    22. (a) Ahn, M.; Fillry, T. R.; Jafvert, C. T.; Nies, L.; Hua, I.; Cruz, J. Photodegradation of Decabromodiphenyl Ether Adsorbed onto Clay Minerals, Metal Oxides, and Sediment, Environ. Sci. Technol. 2006, 40, 215.
    (b) Barrett, K. A.; Mcbride, M. B. Oxidative Degradation of Glyphosate and Aminomethylphosphonate by Manganese Oxide, Environ. Sci.Technol. 2005, 39, 9223.
    (c) Sekine, Y. Oxidative decomposition of formaldehyde by metal oxides at room temperature, Atmos. Environ. 2002, 36, 5543.
    23. Gaillot, A. C.; Lanson, B.; Drits, V. A. Structure of Birnessite Obtained from Decomposition of Permanganate under Soft Hydrothermal Conditions. 1. Chemical and Structural Evolution as a Function of Temperature, Chem. Mater. 2005, 17, 2959.
    24. Ching, S.; Roark, J. L.; Duan, N.; Suib, S. L. Sol?Gel Route to the Tunneled Manganese Oxide Cryptomelane, Chem. Mater. 1997, 9, 750.
    25. Yang, X.; Tang, W.; Feng, Q.; Ooi, K. Single Crystal Growth of Birnessite- and Hollandite-Type Manganese Oxides by a Flux Method, Cryst. Growth Des. 2003, 3, 409.
    26. Omomo, Y.; Sasaki, T.; Wang, L.; Watanabe, M. Redoxable Nanosheet Crystallites of MnO2 Derived via Delamination of a Layered Manganese Oxide, J. Am. Chem. Soc. 2003, 125, 3568.
    27. Collins, J. J.; Ness, R.; Tyl, R. W.; Krivanek, N.; Esmen, N. A.; Hall, T. A. A Review of Adverse Pregnancy Outcomes and Formaldehyde Exposure in Human and Animal Studies, Regul. Toxicol. Pharm. 2001, 34, 17.
    28. (a)álvarez-Galván, M. C.; de la Pe?a O′Shea, V. A.; Fierro, J. L. G.; Arias, P. L. Alumina-supported manganese- and manganese–palladium oxide catalysts for VOCs combustion, Catal. Commun. 2003, 4, 223.
    (b) Imamura, S.; Uchihori, D.; Utani, K. Oxidative decomposition of formaldehyde on silver-cerium composite oxide catalyst, Catal. Lett. 2004, 24, 377.
    29. (a) Tang, X. F.; Huang, X. M.; Shao, J. J.; Liu, J. L.; Li, Y. G.; Xu, Y. D.; Shen, W. J. Synthesis and Catalytic Performance of Manganese Oxide Octahedral Molecular Sieve Nanorods for Formaldehyde Oxidation at Low Temperature, Chin. J. Catal. 2006, 27, 97.
    (b)álvarez-Galván, M. C.; Pawelec, B.; de la Pe?a O′Shea, V. A.; Fierro, J. L. G.; Arias, P. L. Formaldehyde/methanol combustion on alumina-supported manganese-palladium oxide catalyst, Appl. Catal. B: Environ. 2004, 51, 83.
    30. Sinha, A. K.; Suzuki, K.; Takahara, M.; Azuma, H.; Nonaka, T.; Fukumoto, K. Mesostructured Manganese Oxide/Gold Nanoparticle Composites for Extensive Air Purification, Angew. Chem. Int. Ed. 2007, 46, 2891.
    31. Fessenden, R. J.; Fessenden, J. S. Organic Chemistry. Willard Grant Press: Boston, Massachusetts. p413, 1979.
    32. (a) Zhang, C.; He, H.; Tanaka, K. Perfect catalytic oxidation of formaldehyde over a Pt/TiO2 catalyst at room temperature, Catal. Commun. 2005, 6, 211.
    (b) Zhang, C.; He, H.; Tanaka, K. Catalytic performance and mechanism of a Pt/TiO2 catalyst for the oxidation of formaldehyde at room temperature, Appl. Catal. B: Environ. 2006, 65, 37.
    33. (a) Villalobos, M.; Lanson, B.; Manceau, A.; Toner, B.; Sposito, G. Structural model for the biogenic Mn oxide produced by Pseudomonas putida, Amer. Miner. 2006, 91, 489.
    (b) Drits, V. A.; Silvester, E.; Gorshov, A. I.; Manceau, Structure of synthetic monoclinic Na-rich birnessite and hexagonal birnessite .1. Results from X-ray diffraction and selected-area electron diffraction, A. Amer. Miner. 1997, 82, 946.
    34. (a) Zhong, L.; Hu, J.; Liang, H.; Cao, A.; Song, W.; Wan, L. Self-Assembled 3D Flowerlike Iron Oxide Nanostructures and Their Application in Water Treatment, Adv. Mater. 2006, 18, 2426.
    (b) Liu, B.; Zeng, H. C. Mesoscale Organization of CuO Nanoribbons: Formation of“Dandelions”, J. Am. Chem. Soc. 2004, 126, 8124.
    35. Caruso, F.; Caruso, R. A.; M?hwald, H. Nanoengineering of Inorganic and Hybrid Hollow Spheres by Colloidal Templating, Science 1998, 282, 1111.
    36. (a) Wang, D.; Song, C.; Hu, Z.; Fu, X. Fabrication of Hollow Spheres and Thin Films of Nickel Hydroxide and Nickel Oxide with Hierarchical Structures, J. Phys. Chem. B 2005, 109, 1125.
    (b) Cao, A.; Hu, J.; Liang, H.; Wan, L. Self-Assembled Vanadium Pentoxide (V2O5) Hollow Microspheres from Nanorods and Their Application in Lithium-Ion Batteries, Angew. Chem. Int. Ed. 2005, 44, 4391.
    37. Lameiras, F. S. Ostwald ripening: an approach with dynamical systems, Mater. Res. 1999, 2, 139.
    38. He, J.; Kunitake, T. Are ceramic nanofilms a soft matter?, Soft Matter 2006, 2, 119.
    39. Wu, C.; Xie, Y.; Wang, D.; Yang, J.; Li, T. Selected-Control Hydrothermal Synthesis ofγ-ΜnO2 3D Nanostructures, J. Phys. Chem. B 2006, 107, 13583.
    40. Wang, X. L.; Yan, C. L.; Zou, L. J.; Xue, D. F. Chemical Preparation of MgO Whiskers, Inter. J. Nanosci. 2006, 5, 219.
    41. Cheng, X.; Liu, S.; Lu, L.; Sui, X.; Meynen, V.; Cool, P.; Vansant, E. F.; Jiang, J. Fast fabrication of hollow silica spheres with thermally stable nanoporous shells, Micro. Meso. Mater. 2006, 98, 41.
    42. Huang, J.; Xie, Y.; Li, B.; Liu, Y.; Qian, Y.; Zhang, S. n-Situ Source-Template-Interface Reaction Route to Semiconductor CdS Submicrometer Hollow Spheres, Adv. Mater. 2000, 12, 808.
    43. Sing, K. S. W.; Everett, D. H.; Haul, R. A. W.; Moscou, L.; Piertti, R. A.; Rouquèrol, J.; Siemieniewska, T. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984), Pure Appl. Chem. 1985, 57, 603.
    44. Cellier, C.; Ruaux, V.; Lahousse, C.; Grange, P.; Gaigneaux, E. M. Extent of the participation of lattice oxygen fromγ-MnO2 in VOCs total oxidation: Influence of the VOCs nature, Catal. Today. 2006, 117, 350.
    1. Hu, J. S.; Ren, L. L.; Guo, Y. G.; Liang, H. P.; Cao, A. M.; Wan, L. J.; Bai, C. L. Mass Production and High Photocatalytic Activity of ZnS Nanoporous Nanoparticles,Angew. Chem., Int. Ed. 2005, 44, 1269.
    2. Cao, S.; Zhu, Y. Hierarchically Nanostructuredα-Fe2O3 Hollow Spheres: Preparation, Growth Mechanism, Photocatalytic Property, and Application in Water Treatment,J. Phys. Chem. C 2008, 112, 6253.
    3. Li, Y. Z.; Kunitake, T.; Fujikawa, S. Efficient Fabrication and Enhanced Photocatalytic Activities of 3D-Ordered Films of Titania Hollow Spheres,J. Phys. Chem. B 2006, 110, 13000.
    4. Xu, Y.; Chen, D.; Jiao, X.; Xue, K. Nanosized Cu2O/PEG400 Composite Hollow Spheres with Mesoporous Shells, J. Phys. Chem. C 2007, 111, 16284.
    5. (a) Ahn, M.; Fillry, T. R.; Jafvert, C. T.; Nies, L.; Hua, I.; Cruz, J. Photodegradation of Decabromodiphenyl Ether Adsorbed onto Clay Minerals, Metal Oxides, and Sediment, Environ. Sci. Technol. 2006, 40, 215.
    (b) Barrett, K. A.; Mcbride, M. B. Oxidative Degradation of Glyphosate and Aminomethylphosphonate by Manganese Oxide, Environ. Sci. Technol. 2005, 39, 9223.
    (c) Sekine, Y. Oxidative decomposition of formaldehyde by metal oxides at room temperature, Atmos. Environ. 2002, 36, 5543.
    6. (a) Hernandez-Ramirez, O.; Holmes, S. M. Novel and modified materials for wastewater treatment applications, J. Mater. Chem. 2008, 18, 2751.
    (b) Liu, A.; Hidajat, K.; Kawi, S.; Zhao, D. A new class of hybrid mesoporous materials with functionalized organic monolayers for selective adsorption of heavy metal ions, Chem. Commun. 2000, 1145.
    (c) Lam, K.; Yeung, K.; Nckay, G. Efficient Approach for Cd2+ and Ni2+ Removal and Recovery Using Mesoporous Adsorbent with Tunable Selectivity, Environ. Sci. Technol. 2007, 41, 3329.
    7. (a) Wang, S.; Li, H. T. Structure directed reversible adsorption of organic dye on mesoporous silica in aqueous solution, Micro. Meso. Mater. 2006, 97, 21.
    (b) Wang, S.; Li, H. T.; Xie, S. J.; Liu, S. L.; Xu, L. Y. Physical and chemical regeneration of zeolitic adsorbents for dye removal in wastewater treatment, Chemosphere 2006, 65, 82.
    (c) Wang, S.; Wu, H. W. Environmental-benign utilisation of fly ash as low-cost adsorbents, J. Hazard. Mat. 2006, 136, 482.
    8. (a) Zhang, L.; Zhang, W.; Shi, J.; Hua, Z.; Li, Y.; Na, J. A new thioether functionalized organic–inorganic mesoporous composite as a highly selective and capacious Hg2+ adsorbent, Chem. Commun. 2003, 210.
    (b) Guo, L.; Li, J.; Zhang, L.; Li, J.; Li, Y.; Yu, C.; Shi, J.; Ruan, M.; Feng, J. A facile route to synthesize magnetic particles within hollow mesoporous spheres and their performance as separable Hg2+ adsorbents, J. Mater. Chem. 2008, 18, 2733.
    9. Hernandez-Ramirez, O.; Hill, P. I.; Doocey, D. J.; Holmes, S. M. Removal and immobilisation of cobalt ions by a novel, hierarchically structured, diatomite/zeolite Y composite, J. Mater. Chem. 2007, 17, 1804.
    10. Li, C.; Li, G. Study on water decontamination of freshly formed manganese dioxide. Ph. D dissertation. Harbin Institute of Technology. 2002.05.
    11. Chen, H.; He, J.; Zhang, C.; He, H. Self-Assembly of Novel Mesoporous Manganese Oxide Nanostructures and Their Application in Oxidative Decomposition of Formaldehyde, J. Phys. Chem. C 2007, 111, 18033.
    12. Cushing, B. L.; Kolesnichenko, V. L.; O’Connor, C. J. Recent Advances in the Liquid-Phase Syntheses of Inorganic Nanoparticles, Chem. Rev. 2004, 104, 3893.
    13. Chen, H.; He, J. Self-assembly of Birnessite Mangnese Oxide into Monodisperse Honeycomb and Hollow Nanospheres, Chem. Lett. 2007, 34, 174.
    14. (a) Villalobos, M.; Lanson, B.; Manceau, A.; Toner, B.; Sposito, G. Structural model for the biogenic Mn oxide produced by Pseudomonas putida, Amer. Miner. 2006, 91, 489.
    (b) Drits, V. A.; Silvester, E.; Gorshov, A. I.; Manceau, Structure of synthetic monoclinic Na-rich birnessite and hexagonal birnessite .1. Results from X-ray diffraction and selected-area electron diffraction, A. Amer. Miner. 1997, 82, 946.
    15. Hu, C.; Wu, Y.; Chang, K. Low-Temperature Hydrothermal Synthesis of Mn3O4 and MnOOH Single Crystals: Determinant Influence of Oxidants, Chem. Mater. 2008, 20, 2890.
    16. (a) Wang, X.; Li, Y. Synthesis and Formation Mechanism of Manganese Dioxide Nanowires/Nanorods, Chem. Eur. J 2003, 9, 300.
    (b) Pike, J.; Hanson, J.; Zhang, L.; Chan, S. Synthesis and Redox Behavior of Nanocrystalline Hausmannite (Mn3O4), Chem. Mater. 2007, 19, 5609.
    17. Shen, Y. F.; Zerger, R. P.; Suib, S. L.; McCurdy, L.; Potter, D. I.; O’Young, C. L. Manganese Oxide Octahedral Molecular Sieves: Preparation, Characterization, and Applications, Science 1993, 260, 511.
    18. (a) Yuan, J. K.; Li, W. N.; Gomez, S.; Suib, S. L. Shape-Controlled Synthesis of Manganese Oxide Octahedral Molecular Sieve Three-Dimensional Nanostructures, J. Am. Chem. Soc. 2005, 127, 14184.
    (b) Yuan, J.; Laubernds, K.; Zhang, Q.; Suib, S. L. Self-Assembly of Microporous Manganese Oxide Octahedral Molecular Sieve Hexagonal Flakes into Mesoporous Hollow Nanospheres, J. Am. Chem. Soc. 2003, 125, 4966.
    19. (a) Liang, S.; Teng, F.; Bulgan, G.; Zong, R.; Zhu, Y. Effect of Phase Structure of MnO2 Nanorod Catalyst on the Activity for CO Oxidation, J. Phys. Chem. C 2008, 112, 5307.
    (b) Vazquez-Olmos, A.; Redon, R.; Rodriguez-Gattorno, G.; Mata-Zamora, M. E.; Morales-Leal, F.; Fernandez-Osorio, A. L.; Saniger, J. M. One-step synthesis of Mn3O4 nanoparticles: Structural and magnetic study, J. Colloidal Interface Sci. 2005, 291, 175.
    (c) Du, J.; Gao, Y.; Chai, L.; Zou, G.; Li, Y.; Qian, Y. Hausmannite Mn3O4 nanorods: synthesis, characterization and magnetic properties, Nanotechnology 2006, 17, 4923.
    20. Wang, J.; Hu, J.; Tang, D.; Liu, X.; Zhen, Z. Oleic acid (OA)-modified LaF3:Er,Yb nanocrystals and their polymer hybrid materials for potential optical-amplification applications, J. Mater. Chem. 2007, 17, 1597.
    21. Sing, K. S. W.; Everett, D. H.; Haul, R. A. W.; Moscou, L.; Piertti, R. A.; Rouquèrol, J.; Siemieniewska, T. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984), Pure Appl. Chem. 1985, 57, 603
    22. (a) Athouel, L.; Moser, F.; Dugas, R.; Crosnier, O.; Belanger, D.; Brousse, T. Variation of the MnO2 Birnessite Structure upon Charge/Discharge in an Electrochemical Supercapacitor Electrode in Aqueous Na2SO4 Electrolyte, J. Phys. Chem. C 2008, 112, 7270.
    (b) Savage, N.; Diallo, M. S. Nanomaterials and Water Purification: Opportunities and Challenges, J. Nanopart. Res. 2005, 7, 331.
    23. Zhong, L. S.; Hu, J. S.; Liang, H. P.; Cao, A. M.; Song, W. G.; Wan, L. J. Self-Assembled 3D Flowerlike Iron Oxide Nanostructures and Their Application in Water Treatment, Adv. Mater. 2006, 18, 2426.
    24. Oliveira, L. C. A.; Petkowicz, D. I.; Smaniotto, A.; Pergher, S. B. C. Magnetic zeolites: a new adsorbent for removal of metallic contaminants from water, Water Res. 2004, 38, 3699.
    25. Wu, R. C.; Qu, J. H.; Chen, Y. S. Magnetic powder MnO–Fe2O3 composite—a novel material for the removal of azo-dye from water, Water Res. 2005, 39, 630.
    26. Wu, R. C.; Qu, H. H.; He, H.; Yu, Y. B. Removal of azo-dye Acid Red B (ARB) by adsorption and catalytic combustion using magnetic CuFe2O4 powder, Appl. Catal. B 2004, 48, 49.
    27. (a) Wang, S.; Boyjoo, Y.; Choueib, A.; Zhu, Z. H. Removal of dyes from aqueous solution using fly ash and red mud, Water Res. 2005, 39, 129.
    (b) Wang, S.; Li, H.; Xu, L. Application of zeolite MCM-22 for basic dye removal from wastewater, J. Colloid Interface Sci. 2006, 295, 71.
    28. Bernard, S.; Chazal, P.; Mazet, M. Removal of organic compounds by adsorption on pyrolusite (β-MnO2), Water Res. 1997, 31, 1216.
    29. Cai, M.; Ren, Q. Removal of methylene blue from aqueous solution onto manganese oxide with various crystal structures, Acta Sci. Circum. 2006, 26, 1971.
    30. Fei, J. B.; Cui, Y.; Yan, X. H.; Qi, W.; Yang, Y.; Wang, K. W.; He, Q.; Li, J. B. Controlled Preparation of MnO2 Hierarchical Hollow Nanostructures and Their Application in Water Treatment, Adv. Mater. 2008, 20, 452.
    31. Zacaria, R.; Claire, G.; Yves, A.; Pierre, L. C. Adsorption of Several Metal Ions onto a Low-Cost Biosorbent: Kinetic and Equilibrium Studies, Environ. Sci. Technol. 2002, 36, 2067.
    1. Iler, R. K. The Colloid Chemistry of Silica and Silicates, Cornell University Press, Ithaca, New York, 1955, p169-174.
    2. Jeong, U.; Wang, Y.; Ibisate, M.; Xia, Y. Some New Developments in the Synthesis, Functionalization, and Utilization of Monodisperse Colloidal Spheres, Adv. Funct. Mater. 2005, 15, 1907.
    3. Birdi, K. S. (Eds.) Handbook of Surface and Colloid Chemistry, 2nd ed., CRC Press, Boca Raton, London, New York and Washington, D. C., 2003, Chapter 8and 11.
    4. Wright, J. D.; Sommerdijk, N. A.J.M. Sol-Gel Materials: Chemistry and Applications, Gordon and Breach Science Publishers, 2001, p1-94.
    5. St?ber, W.; Fink, A. Controlled growth of monodisperse silica spheres in the micron size range, J. Colloid Interface Sci. 1968, 26, 62.
    6. Blaaderen, A. V.; Geest, J. V.; Vrij, A. Monodisperse colloidal silica spheres from tetraalkoxysilanes: Particle formation and growth mechanism, J. Colloid Interface Sci. 1992, 154, 481.
    7. Yokoi, T.; Sakamoto, Y.; Terasaki, O.; Kubota, Y.; Okubo, T.; Tatsumi, T. Periodic Arrangement of Silica Nanospheres Assisted by Amino Acids, J. Am. Chem. Soc. 2006, 128, 13664.
    8. van Blaaderen, A.; Kentgens, A.P.M. Particle morphology and chemical microstructure of colloidal silica spheres made from alkoxysilanes, J. Non-Cryst. Solids 1992, 149, 161.
    9. Ibisate, M.; Zou, Z.; Xia, Y. Arresting, Fixing, and Separating Dimers Composed of Uniform Silica Colloidal Spheres, Adv. Funct. Mater. 2006, 16, 1627.
    10. Wang, J.; Xiao, Q.; Zhou, H.; Sun, P.; Yuan, Z.; Li, B.; Ding, D.; Shi, A.; Chen, T. Budded, Mesoporous Silica Hollow Spheres: Hierarchical Structure Controlled by Kinetic Self-Assembly, Adv. Mater. 2006, 18, 3284.
    11. He, J.; Fujikawa, S.; Kunitake, T.; Nakao, A. Preparation of Porous and Nonporous Silica Nanofilms from Aqueous Sodium Silicate, Chem. Mater. 2003, 15, 3308.
    12. Zhang, L.; Chen, H.; Sun, J.; Shen, J. Layer-by-Layer Deposition of Poly(diallyldimethylammonium chloride) and Sodium Silicate Multilayers on Silica-Sphere-Coated Substrate-Facile Method to Prepare a Superhydrophobic Surface, Chem. Mater. 2007, 19, 948.
    13. Liu, X.; He, J. Hierarchically structured superhydrophilic coatings fabricated by self-assembling raspberry-like silica nanospheres, J. Colloid Interface Sci. 2007, 314, 341.
    14. Rabani, E.; Reichman, D. R.; Geissler, P. L.; Brus, L. E. Drying-mediated self-assembly of nanoparticles, Nature 2003, 426, 271.
    15. Talapin, D. V.; Murray, C. B. PbSe Nanocrystal Solids for n- and p-Channel Thin Film Field-Effect Transistors, Science 2005, 310, 86.
    16. Dinsmore, A. D.; Hsu, M. F.; Nikolaides, M. G.; Marquez, M.; Bausch, A. R.; Weitz, D. A. Colloidosomes: Selectively Permeable Capsules Composed of Colloidal Particles, Science 2002, 298, 1006.
    17. Masuda, Y.; Itoh, T.; Koumoto, K. Self-Assembly and Micropatterning of Spherical-Particle Assemblies, Adv. Mater. 2005, 17, 841.
    18. Shukla, B. S.; Johari, G. P. Effect of ethanol on the density and morphology of monolithic SiO2 glass prepared by the sol-gel method, J. Non-Cryst. Solids 1988, 101, 263.
    19. Bigioni, T. P.; Lin, X.; Nguyen, T. T.; Corwin, E. I.; Witten, T. A.; Jaeger, H. M. Kinetically driven self assembly of highly ordered nanoparticle monolayers, Nat. Mater. 2006, 5, 265.
    20. Andersson, N.; Kronberg, B.; Corkery, R.; Alberius, P. Combined Emulsion and Solvent Evaporation (ESE) Synthesis Route to Well-Ordered Mesoporous Materials, Langmuir 2007, 23, 1459.
    21. Onada, G. Y. Direct observation of two-dimensional, dynamic clustering and ordering with colloids, Phys. Rev. Lett. 1985, 55, 226.
    22. Manoharan, V. N.; Elsesser, M. T. Pine, D. J. Dense Packing and Symmetry in Small Clusters of Microspheres, Science 2003, 301, 483.
    23. Korgel, B. A.; Fitzmaurice, D. Condensation of Ordered Nanocrystal Thin Films, Phys. Rev. Lett. 1998, 80, 3531.
    24. Ohara, P. C.; Leff, D. V.; Heath, J. R.; Gelbart, W. M. Crystallization of Opals from Polydisperse Nanoparticles, Phys. Rev. Lett. 1995, 75, 3466.
    25.徐如人,庞文琴等著,分子筛与多孔材料化学,科学出版社:北京,2004.
    26. Wang, Q.; Zhong, L.; Sun, J.; Shen, J. A Facile Layer-by-Layer Adsorption and Reaction Method to the Preparation of Titanium Phosphate Ultrathin Films, Chem.Mater. 2005, 17, 3563.
    27. Sun, J.; Wu, T.; Liu, F.; Wang, Z.; Zhang, X.; Shen, J. Covalently Attached Multilayer Assemblies by Sequential Adsorption of Polycationic Diazo-Resins and Polyanionic Poly(acrylic acid), Langmuir 2000, 16, 4620.
    28. Jiang, Z. J.; Liu, C. Y.; Sun, L. W. Catalytic Properties of Silver Nanoparticles Supported on Silica Spheres, J. Phys. Chem. B 2005, 109, 1730.
    29. Wang, W.; Gu, B.; Liang, L.; Hamilton, W. Fabrication of Near-Infrared Photonic Crystals Using Highly-Monodispersed Submicrometer SiO2 Spheres, J. Phys. Chem. B 2003, 107, 12113.
    30. Wang, W.; Gu, B.; Liang, L.; Hamilton, W. A. Fabrication of Two- and Three-Dimensional Silica Nanocolloidal Particle Arrays, J. Phys. Chem. B 2003, 107, 3400.
    31. Wang, J.; Li, Q.; Knoll, W.; Jonas, U. Preparation of Multilayered Trimodal Colloid Crystals and Binary Inverse Opals, J. Am. Chem. Soc. 2006, 128, 15606.
    32. Zhang, G.; Wang, D. Y.; Gu, Z. Z.; M?hwald, H. Fabrication of Superhydrophobic Surfaces from Binary Colloidal Assembly, Langmuir 2005, 21, 9143.
    33. Sun, T.; Feng, L.; Feng, X.; Jiang, L. Bioinspired Surfaces with Special Wettability, Acc. Chem. Res. 2005, 38, 644.
    1. (a) Huh, S.; Chen, H. T.; Wiench, J. W.; Pruski, M.; Lin, V. S. Y. Controlling the Selectivity of Competitive Nitroaldol Condensation by Using a Bifunctionalized Mesoporous Silica Nanosphere-Based Catalytic System, J. Am. Chem. Soc. 2004, 126, 1010.
    (b) Lin, V. S. Y.; Radu, D. R.; Han, M.-K.; Deng, W.; Kuroki, S.; Shanks, B. H.; Pruski, M. Oxidative Polymerization of 1,4-Diethynylbenzene into Highly Conjugated Poly(phenylene butadiynylene) within the Channels of Surface-Functionalized Mesoporous Silica and Alumina Materials, J. Am. Chem. Soc. 2002, 124, 9040.
    (c) Jin, H. Y.; Liu, Z.; Ohsuna, T.; Terasaki, O.; Inoue, Y.; Sakamoto, K.; Nakanish, T.; Ariga, K.; Che, S. Control of Morphology and Helicity of Chiral Mesoporous Silica, Adv. Mater. 2006, 18, 593. and references in.
    2. (a) Radu, D. R.; Lai, C. Y.; Wiench, J. W.; Pruski, M.; Lin, V. S. Y. Gatekeeping Layer Effect: A Poly(lactic acid)-coated Mesoporous Silica Nanosphere-Based Fluorescence Probe for Detection of Amino-Containing Neurotransmitters, J. Am. Chem. Soc. 2004, 126, 1640.
    (b) Casasus, R.; Marcos, M. D.; Martinez-Manez, R.; Ros-Lis, J. V.; Soto, J.; Villaescusa, L. A.; Amoros, P.; Beltran, D.; Guillem, C.; Latorre, J. Toward the Development of Ionically Controlled Nanoscopic Molecular Gates, J. Am. Chem. Soc. 2004, 126, 8612.
    3. (a) Wang, H.; Wang, Y.; Zhou, X.; Zhou, L.; Tang, J.; Lei, J.; Yu, C. Z. Siliceous Unilamellar Vesicles and Foams by Using Block-Copolymer Cooperative Vesicle Templating, Adv. Funct. Mater. 2007, 17, 613.
    (b) Liu, J.; Li, C.; Yang, Q.; Yang, J.; Li, C. Morphological and Structural Evolution of Mesoporous Silicas in a Mild Buffer Solution and Lysozyme Adsorption, Langmuir 2007, 23, 7255.
    4. (a) Trewyn, B. G.; Whitman, C. M.; Lin, V. S. Y. Morphological Control of Room-Temperature Ionic Liquid Templated Mesoporous Silica Nanoparticles for Controlled Release of Antibacterial Agents, Nano Lett. 2004, 4, 2139.
    (b) Torney, F.; Trewyn, B. G.; Lin, V. S. Y.; Wang, K. Mesoporous silica nanoparticles deliver DNA and chemicals into plants, Nature Nanotech. 2007, 2, 295.
    (c) Jiang, X.; Brinker, C. J. Aerosol-Assisted Self-Assembly of Single-Crystal Core/Nanoporous Shell Particles as Model Controlled Release Capsules, J. Am. Chem. Soc. 2006, 128, 4512.
    (d) Zhang, L.; Qiao, S. Z.; Jin, Y. G.; Cheng, L. N.; Yan, Z. F.; Lu, G. Q. Hydrophobic Functional Group Initiated Helical Mesostructured Silica for Controlled Drug Release, Adv. Funct. Mater. 2008, 18, 3834.
    5. (a) Holland, P. M.; Rubingh, D. N. Mixed surfactant Systems; American Chemical Society: Washington, D C, 1992.
    (b) Yin, H.; Zhou, Z.; Huang, J.; Zheng, R.; Zhang, Y. Temperature-Induced Micelle to Vesicle Transition in the Sodium Dodecylsulfate/Dodecyltriethylammonium Bromide System, Angew. Chem., Int. Ed. 2003, 42, 2188.
    6. (a) Che, S.; Liu, Z.; Ohsuna, T.; Sakamoto, K.; Tersaki, O.; Tatsumi, T. Synthesis and Characterization of Mesoporous Silica with Chiral structure, Nature 2004, 429, 281.
    (b) Ohsuna, T.; Liu, Z.; Che, S.; Terasaki, O. Characterization of Chiral Mesoporous Materials by Transmission Electron Microscopy, Small 2005, 1, 233.
    7. Che, S.; Garcia-Bennett, A. E.; Yokoi, T.; Sakamoto, K.; Kunieda, H.; Terasaki, O.; Tatsumi, T. Mesoporous Silica of Novel Structures with Periodic Modulations Synthesized by Anionic Surfactant Templating Route, Nature Mater. 2003, 2, 801.
    8. Wu, X.; Ruan, J.; Ohsuna, T.; Terasaki, O.; Che, S. A Novel Route for Synthesizing Silica Nanotubes with Chiral Mesoporous Wall Structures, Chem. Mater. 2007, 19, 1577.
    9. Chen, H.; He, J.; Tang, H.; Yan, C. Porous Silica Nanocapsules and Nanospheres: Dynamic Self-Assembly Synthesis and Application in Controlled Release, Chem. Mater. 2008, 20, 5894.
    10. Chen, H.; He, J. Fine control over the morphology and structure of mesoporous silica nanomaterials by a dual-templating approach, Chem. Commun. 2008, 4422.
    11. (a) Yang, Y.; Nakazawa, M.; Suzuki, M.; Kimura, M.; Shirai, H.; Hanabusa, K. Formation of Helical Hybrid Silica Bundles, Chem. Mater. 2004, 16, 3791.
    (b) Yang, Y.; Suzuki, M.; Shirai, H.; Kurose, A.; Hanabusa, K. Nanofiberization of inner helical mesoporous silica using chiral gelator as template under a shear flow, Chem. Commun. 2005, 2032.
    (c) Yang, Y.; Suzuki, M.; Owa, S.; Shirai, H.; Hanabusa, K. Preparation of helical nanostructures using chiral cationic surfactants, Chem. Commun. 2005, 4462.
    (d) Yang, Y.; Suzuki, M.; Fukui, H.; Shirai, H.; Hanabusa, K. Preparation of Helical Mesoporous Silica and Hybrid Silica Nanofibers Using Hydrogelator, Chem. Mater. 2006, 18, 1324.
    (e) Yang, Y.; Nakazawa, M.; Suzuki, M.; Shirai, H.; Hanabusa, K. Fabrication of helical hybrid silica bundles, J. Mater. Chem. 2007, 17, 2936.
    12. (a) Djijiputro, H.; Zhou, X. F.; Qiao, S. Z.; Wang, L. Z.; Yu, C. Z.; Lu, G. Q. Periodic Mesoporous Organosilica Hollow Spheres with Tunable Wall Thickness, J. Am. Chem. Soc. 2006, 128, 6320.
    (b) Yuan, P.; Yang, S.; Wang, H.; Yu, M.; Zhou, X.; Lu, G.; Zou, J.; Yu, C. Z. Structure Transition from Hexagonal Mesostructured Rodlike Silica to Multilamellar Vesicles, Langmuir 2008, 24, 5038.
    13. Yang, S.; Zhou, X.; Yuan, P.; Yu, M.; Xie, S.; Lu, G. Q.; Yu, C. Z. Siliceous Nanopods from a Compromised Dual-Templating Approach, Angew. Chem., Int. Ed. 2007, 46, 8579.
    14. Wang, B.; Chi, C.; Shan, W.; Zhang, Y. H.; Ren, N.; Yang, W. L.; Tang, Y. Chiral Mesostructured Silica Nanofibers of MCM-41, Angew. Chem., Int. Ed. 2006, 45, 2088.
    15. Kobler, J.; M?ller, K.; Bein, T. Colloidal Suspensions of Functionalized Mesoporous Silica Nanoparticles, ACS nano 2008, 2, 791.
    16. (a) Wang, Y.; Caruso, F. Mesoporous Silica Spheres as Supports for Enzyme Immobilization and Encapsulation, Chem. Mater. 2005, 17, 953.
    (b) Lai, C. Y.; Trewyn, B. G.; Jeftinija, D. M.; Jeftibija, K.; Xu, S.; Jeftibija, S.; Lin, V. S. Y. A Mesoporous Silica Nanosphere-Based Carrier System with Chemically Removable CdS Nanoparticle Caps for Stimuli-Responsive Controlled Release of Neurotransmitters and Drug Molecules, J. Am. Chem. Soc. 2003, 125, 4451.
    17. (a) Huh, S.; Wiench, J. W.; Yoo, J. C.; Pruski, M.; Lin, V. S. Y. Organic Functionalization and Morphology Control of Mesoporous Silicas via a Co-Condensation Synthesis Method, Chem. Mater. 2003, 15, 4247.
    (b) Huh, S.; Wiench, J. W.; Trewyn, B. G.; Song, S.; Pruski, M.; Lin, V. S. Y. Tuning of particle morphology and pore properties in mesoporous silicas with multiple organic functional groups, Chem. Commun. 2003, 2364.
    (c) Mouawia, R.; Mehdi, A.; Reyé, C.; Robert, J. P. Corriu, Bifunctional ordered mesoporous materials: direct synthesis and study of the distribution of two distinct functional groups in the pore channels, J. Mater. Chem. 2008, 18, 4193.
    18. (a) Zhang, L.; Zhang, W.; Shi, J.; Hua, Z.; Li Y.; Na, J. A new thioether functionalized organic–inorganic mesoporous composite as a highly selective and capacious Hg2+ adsorbent, Chem. Commun. 2003, 210.
    (b) Guo, L.; Li, J.; Zhang, L.; Li, J.; Li, Y.; Yu, C.; Shi, J.; Ruan, M.; Feng, J. A facile route to synthesize magnetic particles within hollow mesoporous spheres and their performance as separable Hg2+ adsorbents, J. Mater. Chem. 2008, 18, 2733.
    19. Wu, X.; Jin, H.; Liu, Z.; Ohsuna, T.; Terasaki, O.; Sakamoto, K.; Che, S. Racemic Helical Mesoporous Silica Formation by Achiral Anionic Surfactant, Chem. Mater. 2006, 18, 241.
    20. Kresge, C. T.; Leonowicz, M. E.; Roth, W. J.; Vartuli, J. C.; Beck, J. S. Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism, Nature 1992, 359, 710.
    21. Jin, H. Y.; Liu, Z,; Ohsuna, T.; Terasaki, O.; Inoue, Y.; Sakamoto, K.; Nakanishi, T.; Ariga, K.; Che, S. Control of Morphology and Helicity of Chiral Mesoporous Silica, Adv. Mater. 2006, 18, 593.
    22. Colthup, N. B.; Daly, L. H.; Wiberley, S. E. Introduction to Infrared and Raman Spectroscopy III; Academic Press: San Diego, 1990; pp 360?375.
    23. Balas, F.; Manzano, M.; Horcajada, P.; Vallet-Regi, M. Confinement and Controlled Release of Bisphosphonates on Ordered Mesoporous Silica-Based Materials, J. Am. Chem. Soc. 2006, 128, 8116.
    24. Yuan, J.; Wan, D.; Yang, Z. A Facile Method for the Fabrication of Thiol-Functionalized Hollow Silica Spheres, J. Phys. Chem. C, 2008, 112, 17156.
    25. (a) Okabayashi, H.; Izawa, K.; Yamamoto, T.; Masuda, H.; Nishio, E.; O’Connor, C. J. Surface structure of silica gel reacted with 3-mercaptopropyltriethoxysilane and 3-aminopropyltriethoxysilane: formation of the S–S bridge structure and itscharacterization by Raman scattering and diffuse reflectance Fourier transform spectroscopic studies, Colloid Polym. Sci. 2002, 280, 135.
    (b) Nakamura, T.; Yamada, Y.; Yano, K. Direct synthesis of monodispersed thiol-functionalized nanoporous silica spheres and their application to a colloidal crystal embedded with gold nanoparticles, J. Mater. Chem. 2007, 17, 3726.
    26. Kruk, M.; Jaroniec, M. Gas Adsorption Characterization of Ordered Organic?Inorganic Nanocomposite Materials, Chem. Mater. 2001, 13, 3169.
    27. Hoffmann, F.; Cornelius, M.; Morell, J.; Fr?ba, M. Silica-Based Mesoporous Organic-Inorganic Hybrid Materials, Angew. Chem., Int. Ed. 2006, 45, 3216.
    28. (a) Yu, S. H.; C?lfen, H.; Tauer, K.; Antonietti, M. Tectonic arrangement of BaCO3 nanocrystals into helices induced by a racemic block copolymer, Nature Mater. 2005, 4, 51.
    (b) Yang, S.; Zhao, L. Z.; Yu, C. Z.; Zhou, X. F.; Tang, J. W.; Yuan, P.; Chen, D. Y.; Zhao, D. Y. On the Origin of Helical Mesostructures, J. Am. Chem. Soc. 2006, 128, 10460.
    29. (a) Chen, B.; Lin, H.; Chao, M.; Mou, C.; Tang, C. Mesoporous Silica Platelets with Perpendicular Nanochannels via a Ternary Surfactant System, Adv. Mater. 2004, 16, 1657.
    (b) Yeh, Y.; Chen, B.; Lin, H.; Tang, C. Synthesis of Hollow Silica Spheres with Mesostructured Shell Using Cationic?Anionic-Neutral Block Copolymer Ternary Surfactants, Langmuir 2006, 22, 6.