我国温室气体本底采样分析过程中的质控方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在温室气体本底浓度观测及其影响因素研究中,建立一套完整、可行的质量控制方法和流程至关重要。本论文从大气样品的flask瓶采样及存储方法、实验室前-后处理方法和过程、CO_2浓度及其碳氧稳定同位素分析、CO_2通量观测,以及全流程的质量控制措施及方法等方面进行综合分析与研究,初步形成了较为系统的质控流程和方法。
     首先,调研并设计实验方案,对国产采样器和flask采样瓶、恒温烘箱脱附系统、真空检测-平衡系统进行综合测试,根据测试条件和相应结果进一步优化流程和方法,表明,用plourel O圈/玻璃阀芯的硬质玻璃flask采样瓶可显著降低材质对所存储的大气样品的影响;flask采样瓶首次使用前,经60℃、72h抽真空内表面热脱附,可基本去除新瓶内壁吸附的水汽和室温下不易挥发的杂质,使采集和存储的大气样品尽可能不失真。
     其次,每次大气样品分析完毕,需将flask采样瓶抽真空后进行24h真空检测,并在系统真空条件下充填平衡气(其中CO_2浓度明显低于自然大气浓度),再发往采样站进行大气样品采集,以监控双瓶平行采样前是否用当地混合较均匀的大气冲洗完全。
     再次,根据本底大气样品的分析精度要求,设计不同实验流程联合测试与调试,最终选择优化的条件及流程,实验室气体稳定同位素比分析系统(包括商业化MAT253主机及GasBench、自设计组装的16位自动进样系统、国外研发的Airtrap高效预浓缩气体捕集阱)对标气CO_2的碳氧稳定同位素比分析精度可分别达到0.02‰、0.05‰。
     最后,在实验室对通量观测中常用的存储样品的气袋进行检测与处理,包括剖析气袋结构、气袋存储实验、分析过程中采取严格的工作标气穿插分析,对采样、运输及分析流程进行优化,形成了一套与温室气体本底浓度分析-质控-标校相一致的流程和方法,以保证通量观测数据与大气本底浓度观测数据的可比性,并为它们之间的互用建立了联系;在此基础上,获得了青海瓦里关地区CO_2、CH_4呼吸通量观测结果。
It is crucial to use a complete and feasible quality control method and procedure in researching observation of concentration variety of background greenhouse gases and its factors.From the method of flask sampling and atmospheric sample storage, flask treatment process in laboratory,concentration of and CO_2 carbon and oxygen isotope analysis,observation of fluxes of greenhouse gases three aspects as well as generally analysis and research of the full-flow quality control measures and methods,this study eventually basically formed a systemic quality control procedures and methods.
     First of all,the experimental programs were designed and researched.Home-made auto-sampler and flasks,constant temperature oven and high vacuum flask cleaning system were tested.According to the test conditions and the corresponding results,further optimization of processes and methods was done.Through various laboratory tests,plourel O ring-glass spool rigid glass flasks can be made to significantly minimize the material quality of sampling bottle to the impact of gas storage.Before the fist storage of the new flask, vacuumizing and thermal desorption of inner surface of flasks in 60℃,72h can remove the water vapor adsorption not volatile at room temperature,as well as impurities as much as possible to ensure that storage gas is not contaminated;
     Secondly,when the analysis of atmospheric samples was finished,sampling flask vacuumizing-storage for 24 hours-the vacuum check of the flasks was needed.On the vacuum conditions of the high vacuum flask cleaning system,filling the checked flasks with balance gas(CO_2 concentration was significantly lower than that of the concentration of natural atmosphere),then the flasks were sent to sampling stations.These measures were carried out to monitor whether the dual-parallel flasks were completely washed with well mixed local atmosphere before sampling;
     Thirdly,according to the analysis accuracy of background greenhouse gases,a variety of experimental procedures were designed as well as joint testing and debugging were carried out,finaliy optimized conditions and procedures were selected.CO_2 stable isotope laboratory analysis system including commercial MAT253 host system and Gasbench injection system, home-made 16-bit auto-injection system,foreign R & D airtrap efficient pre-concentration trapping gases trap)was debugged to meet the analysis requirements.The final accuracy of carbon and oxygen isotope ratio analysis were 0.02‰,0.05‰;
     Finally,the air bags storing samples frequently-used in flux observation were detected and deled,including the structural analysis of airbags,airbag storage experiments.Strict standard working gases were used to interspersing during analysis process of the sample.In accordance with the testing results,some adjustments were applied in the sampling and transportation to minimize pollution of the samples.Rigorous analysis-quality controlcalibration procedures and methods that were consistent with that of analyzing and correcting the concentration of atmospheric background greenhouse gases were formed to ensure the data obtained using the two different observing methods could be accuracy compared.Then the relationship of the values mutually used between two systems-observation system of background greenhouse gases and that of greenhouse gases was established.On this basis, high-quality observing data of fluxes of CO_2,CH_4 in Mt.Waliguan were obtained.
引文
[1]IPCC,2007.Climate Change 2007:The Physical Science Basis[R].Cambridge University Press,2007.
    [2]WMO Greenhouse Gas Bulletin:the State of Greenhouse Gases in the Atmosphere Using Global Observations through 2007[R].Geneva:WMO,2008.
    [3]王明星,张仁健,郑循华.温室气体的源与汇[J].气候与环境研究,2000,5(1):75-79.
    [4]http://news.xinhuanet.com/ziliao/2002-09/03/content_548525.html
    [5]Bousquetp.,Ciais P.,peylinp.,et al.Inverse modeling of annual atmospheric CO2 sources and sinks.1.Method and control inversion[J].J.Geophysics.Res.,1999,104:26161-26193.
    [6]Flanagan L.B.Carbon isotope discrimination during photosynthesis and the isotope ratio of respired CO_2 in boreal forest ecosystems[J].Global Biogeochemical.Cycles,1996,10:629-640.
    [7]Francy R J et al.Changes in oceanic and terrestrial uptake since 1982[J].Nature,1995,373:326-330.
    [8]Fung.Carbon 13 exchanges between the atmosphere and biosphere[J].Global Biogeochemical Cycles,1997,11:507-533.
    [9]Jochen Hoeff,et al.李季花,石学法,卜文瑞(译).稳定同位素地球化学[M].北京:海洋出版社.2002.
    [10]Tans P P,et al.Oceanic 13C/12C observations:A new window on ocean CO2 uptake[J].Global Biogeochemical cycles,1993,7(2):353-368.
    [11]Lin Guanghni,Ke Yuan.Stable isotope techniques and global change research[J].Science Press.1995:161-188.
    [12]Miller J B,Tans P P,White W C,et al.The atmospheric signal of terrestrial carbon isotopic discrimination and its implication for partition carbon fluxes[J].Tellus,2003,55:197-206.
    [13]Zhou L X,James W,White C,et al.Long-term record of atmospheric CO_2 and stable isotopic ratios at Waliguan Observatory:Seasonally averaged 1991-2002 source/sink signals,and a comparison of 1998-2002 record to the 11 selected sites in the Northern Hemisphere[j].Global biogeochem.Cycles,2006,20:1-10.
    [14]周凌晞,李金龙,温玉璞,等.瓦里关山大气CO_2及其δ~(13)C本底变化[J].环境科学学报,2003,23(3):295-300.
    [15]Prosenjit Ghosh and Willi A.Brand.The effect of N_2O on the isotopic composition of air-CO_2 samples.Rapid Commun[J].Mass Spectrom.2004,18:1830-1838.
    [16]周凌晞.中国大陆地区主要温室气体本底特征研究[D].北京大学环境科学中心博士论文,2001.
    [17]WMO,12thWMO/IAEA Meeting of experts on carbon dioxide concentration and related tracers measurement techniques.No.161[R].Toronto,Canada,2005.
    [18]Conway T J,Tans P P,Waterman L S,et al.Evidence for inter-annual variability of the carbon cycle from the NOAA/CMDL global air sampling network[J].J.Geophysics.Res.,1994,99:22831-22855.
    [19]Alison C E,R J Francey.δ~(13)C of atmospheric CO_2 at Cape Grim:The in sire record,the flask record,air standards and the CG92 calibration scale[R].Australia,Atmospheric Research,Aspendale,Victoria 3195,1999,45-56.
    [20]Komhyr W D,Gammon R H,Harris T B,et al.Global atmospheric CO_2 distribution and variations from 1968-1982 NOAA/GMCC CO_2 flask sample data[J],J.Geophysics.Res.,1985,90:5567-5596.
    [21]Tans,P.P,Thoning K.W.,Elliott W.P.,et al.Background atmospheric CO_2 patterns from weekly flask samples at Barrow,Alaska:Optimal signal recovery and error estimates,in NOAA Tech.Memo.(ERL ARL-173)[J].Environmental Research Laboratories,BoNder,CO,1989b.131.
    [22]http://www.wmo.int/web/arep
    [23]http://www.wmo.int/web/arep/gaw/gaw_home.html
    [24]WMO.Strategy for the Implementation of the Global Atmosphere Watch Programme:2008-2015,a contribution to the implementation of the WMO strategic plan:2008-2011.
    [25]WMO,The Global Atmosphere Watch Guide.GAW No.168[R].Boulder,Colorado,USA,2006.
    [26]http://www.esrl.noaa.gov/gmd/ccgg
    [27]http://www.bgc-jena.mpg.de/service/iso_gas_lab/gas_lab/central_flask/
    [28]http://www.bgc.mpg.de/service/iso_gas_lab/central_flask/index.shtml
    [29]王木林,李兴生.大气本底监测站的CH_4,CO_2和CO浓度的初步分析[M].北京:气象出版社,1986,172-185.
    [30]王明星,刘卫卫,Rasmussen R A,等.我国西北部沙漠地区大气甲烷浓度的季节变化的长期变化趋势.科学通报,1989,9:684-686.
    [31]温玉璞,邵志清,张晓春,赵玉成.瓦里关大气CO_2浓度变化及地表排放影响的研究.应用气象学报,1997,8(2):129-136.
    [32]王庚辰,温玉璞,孔琴心,等.中国大陆上空CO_2的本底浓度及其变化.科学通报,2002,47(10):780-783.
    [33]周秀骥.中国大气本底基准观象台进展总结报告[M].北京:气象出版社,2005.
    [34]周凌晞,周秀骥,张晓春,等.瓦里关温室气体本底研究的主要进展[J].气象学报,2007,65(3):458-467.
    [35]周凌晞,刘立新,张晓春,等.我国温室气体本底浓度网络化观测的初步结果[J].应用气象学报,2008,19(6):641-645.
    [36]周凌晞,刘立新,张晓春,等.我国4个国家级本底站大气CO_2浓度变化特征[J].中国科学,2009,39(2):222-228.
    [37]http://instaar.colorado.edu/sil/analyses/analysis_detail.php?analysis_ID=1
    [38]http://www.igcas.ac.cn/laboratory/info-274-296.html
    [39]http://ssa.chinalab.gov.cn
    [40]邹建文,黄耀,郑循华,等.基于静态暗箱法的陆地生态系统一大气净交换估算[J].科学通报,2002,49(2):258-264.
    [41]http://www.esrl.noaa.gov/gmd/ccgg/flask.html
    [42]ftp://gaw.kishou.go.jp/pub/data/
    [43]Pamcla A.Gemery Michael Trolier,James W.C.White.Oxygen isotope exchange between carbon dioxide and water folowing atmospheric sampling using glass flasks[J].J.Geophysics.Res.,1996,101:14415-14420.
    [44]王明星.大气化学[M].北京:气象出版社,1999.
    [45]王长科,王跃思,刘广仁.北京城市大气CO2浓度变化特征及影响因素[J],2003,24(4):13-17.
    [46]P.Sturm,M.Leuenberger,C.Sirignano,et l.Permeation of atmospheric gases through polymer O-rings used in flasks for air sampling[J].J.Geophysics.Res.,2004,109:doi:10.1029/2003JD004073.
    [47]孙艳荣,穆治国,崔海亭.北京地区近70年来白皮松树轮纤维素的碳稳定同位素与气候变化[J].海洋地质与第四纪地质,2002,22(4):85-90.
    [48]卢玉东,孙建中,李佩成.用洛川黄土中碳同位素重建140万年以来古气候[J].干旱区资源与环境,2008,22(1):60-63.
    [49]段利江,唐书恒,朱宝存.关于煤层甲烷稳定碳同位素研究的回顾与展望[J].中国煤层气,2006,3(4):35-38.
    [50]刘学炎,肖化云,刘丛强,等.苔藓新老组织及其根际土壤的碳氮元素含量和同位素组成(δ~(13)C和δ~(15)N)对比[J].植物生态学报,2007,31(6):1168-1173.
    [51]武汉大学化学系.仪器分析[M].北京:高等教育出版社,2001.
    [52]盛龙生,王颖,马仁玲,等。液相色谱/光电二极管阵列检测/质谱联用技术在中药分析中的应用[J].色谱,2003,21(6):549-553.
    [53]Roland A.Werner,Michael Rothe,et al.Extration of CO_2 from air samples for isotopic analysis and limits to ultra high precision δ~(18)O determination in CO_2 gas[J].Rapid Commun.Mass Spectrom,2001,15;2152-2167._
    [54]秦瑜.大气化学基础[M].北京:气象出版社,2003.
    [55]Hibbard K,W.Steffen,S.Benedict,et al.The carbon challenges an IGBP-IHDP-WCRP joint project[R].International Geosphere Biosphere Programme,Stockholm.2001.
    [56]于贵瑞,牛栋,王秋凤.《联合国气候变化框架公约》谈判中的焦点问题.资源科学 [J].2001,23(6):1-16.
    [57]徐华,蔡祖聪.土壤性质和非水稻生长期土壤水分对CH_4产生、氧化和排放的影响.[J].中国科学院研究生院学报,2004,21(3):427-430.
    [58]杜睿,王庚辰,吕达仁等.箱法在草地温室气体通量野外实验观测中的应用研究[J].大气科学,2001,25(1):61-70.
    [59]方双喜,牟玉静.NOx在长江三角洲地区冬小麦农田与大气间的交换[J].环境科学学报,26(12):1955-1963.
    [60]宋长春,阎百兴,王跃思,等.三江平原沼泽湿地和通量及影响因子[J].科学通报,2003,48(23):2473-2477.
    [61]董云社,章申,齐玉春,等.内蒙古典型草地CO_2、CH_4、N_2O通量同时观测及其日变化[J].科学通报,2000,45(3):318-322.
    [62]Norman J M,Garcia R,Verna S B.Soil surface CO_2 fluxes and the carbon budget of grassland[J].J.Geophysics.Res.,1992,97:18845-18853.
    [63]周凌晞.气相色谱法观测本底大气中的甲烷和二氧化碳[J].环境科学学报,1998,18(4):356-361.
    [64]邹建文,焦燕,王跃思,等.稻田CO_2、CH_4和N_2O排放通量测定方法研究[J].南京农业大学学报,2002,25(4):45-48.
    [65]郝志鹏,董洪敏,陶秀萍,等.铝箔复合膜气袋对温室气体吸附性的试验研究[J].农业工程学报,2005,21(11):130-132.
    [66]陈年春.铝箔复合膜气袋对二氧化硫吸附实验[J].农业环境科学学报,2003,22(1):56-59.
    [67]王跃思,胡玉琼,纪宝明,等.放牧对内蒙古草原温室气体排放的影响[J].中国环境科学,2002,22(6):490-494.
    [68]李明峰,董云社,齐玉春,等.农垦对温带草地生态系统CO_2、CH_4、N_2O通量影响[J].中国农业科学,2004,37(12):1960-1965.
    [69]Martin K,Ralf C.Effect of CH_4 concentrations and soil conditions on the induction of CH_4 oxidation activity[J].Soil Bio and Biochem,1995,27:1517-1527.
    [70]刘立新.温带草地土壤呼吸的区域分异机制及关键问题探索[D].北京:中国科学院地理科学与资源研究所,2006.