川中丘陵区农田生态系统主要温室气体排放研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究主要以位于四川省盐亭县内中国科学院盐亭紫色土农业生态实验站为实验平台,2002.11-2005.5连续两年半时间在田间原位对该地区四种常见耕作制度下农田CH_4、N_2O和CO_2的排放同时进行了研究。实验方法为静态暗箱-气相色谱法。研究了该地区不同耕作制度下农田CH_4、N_2O和CO_2的排放特征及其影响因素,作物植株的参与和N肥施用对农田CH_4和N_2O排放的影响,并对不同耕作制度下农田生态系统NEE和CH_4、N_2O和CO_2排放所产生的综合增温潜势(GWP)分别进行了初步估算。
    研究表明,川中丘陵区冬灌田CH_4排放通量较高,水稻生长季平均通量值为21.4±1.8 mg m~(-2)·h~(-1),该值比以前同类地区研究报道值低得多,且全年CH_4排放量主要集中在水稻生长季,冬灌田休闲期虽然时间很长,但在此期间CH_4排放量平均只占全年CH_4总排放量的24.2%。水稻植株对冬灌田CH_4排放具有明显的促进作用,水稻生长季水稻种植区CH_4排放量约是无水稻种植区的3倍。冬灌田CH_4排放通量与5cm深土壤温度呈极显著正相关(P<0.001),而与水层深度的对数值却呈极显著负相关关系(P<0.01)。CH_4累积排放量与水稻地上部分生物量呈极显著正相关(P<0.001)。尿素态N肥的施用量从0提高到150 kgN·hm-2时,对冬灌田CH_4排放的影响不显著。
    采用不同的耕作制度,对川中丘陵区农田CH_4排放具有重要影响。在水稻生长季,相对于常规耕作冬灌田,采用冬灌田强化栽培、稻-麦轮作和稻-油轮作耕作方式稻田CH_4排放量平均分别下降了33.2%、54.5%和57.8%。无论冬灌田还是水-旱轮作稻田,在水稻分蘖盛期、拔节孕穗期和抽穗扬花期都是控制CH_4排放的最有效时期。
    农田在旱作阶段,通气良好的旱地土壤都为大气CH_4的弱汇,但这种吸收量非常有限,全旱季CH_4吸收量都低于5 kg·hm~(-2),远远小于水稻季CH_4的排放量。旱地土壤中尿素N肥施用量的提高会降低土壤对CH_4的吸收量。
    研究表明,川中丘陵区冬灌田也是N_2O的排放源,且主要集中在水稻生长季,
To understand of methane (CH_4) and nitrous oxide (N_2O) emissions from different agro-ecosystems and carbon dioxide (CO2) exchange between the cropland and atmosphere of Central Sichuan hilly areas of Southwest China, a field experiment was conducted in situ for two and a half years using the static opaque chamber method in Yanting Experimental Station of the Agricultural Ecology of Chinese Academy of Sciences (CAS). In this study, we investigated the effects of N, crop plant and other environment factors on CH_4 and N_2O emissions from local prevailing four agro-ecosystems and CO2 exchange between the cropland and atmosphere, and also the global warming potential (GWP) of the emission of CH_4, N_2O and CO_2 under the four agro-ecosystems were assessed in an integrated manner.
    The results showed that the average fluxes of CH_4 from the permanently flooded rice field with a single middle rice crop and flooded with no winter crop (hereafter referred to as PF) were 21.4±1.8 mg m~(-2)·h~(-1) and 3.8±1.0 mg m~(-2)·h~(-2) during the rice-growing and non-rice-growing stages, respectively, where both values were much lower than those of many previous reports from similar regions in Southwest China. The CH_4 missions from PF were intensive in the rice-growing stage, being only 24.2% of the total annual CH_4 emission emitted during the non-rice-growing stage, though the latter occupied two thirds of the year. Rice plant stimulated CH_4 emission from PF remarkably, the total CH_4 emission from rice-involved plot was ca. 3 times than that from rice-uninvolved plot during the rice-growing stage. Correlation analysis demonstrated that CH_4 emissions from PF were significantly positively correlated
    with the soil temperature under 5cm deep soil (P<0.001), and were significantly negatively correlated with the water depth of log-transformed (P<0.01), and the aggregate CH4 emissions from PF were significantly positively correlated with the above-ground dry weight rice biomass (P<0.001). The CH4 emissions from PF had no remarkable effect when the application of urea-based N fertilizer was increased from the rate of 0 to 150 kgN?¤ha-1 (P>0.1). Cultivation systems have important effects on CH4 emission from croplands of the Central Sichuan hilly areas of Southwest China. After implementing SRI model (an innovatory method of rice planting), rice-wheat rotation (RW) and rice-oilseed rape rotation (RR) from the PF, the CH4 emissions were reduced substantially, being only 66.8%, 45.5% and 42.2% of those of the PF treatment, respectively. Whether for the cultivation system of the permanently flooded rice fields or of the paddy rice-upland crop rotation systems, the optimum stages of developing mitigation options of methane are when rice is in later tillering stage, stem elongation stage or heading and flowering stage. When croplands are in upland crop season, dry aerobic soils can absorb CH4 from atmosphere and become a weak CH4 sink. But the amount of CH4 absorption from atmosphere by soil during the upland crop season was less than 5 kg?¤ha-1?¤yr-1, and was much lower than that of CH4 emission from paddy field during the rice growing stage. Increasing the application rate of urea-based N fertilizers decreased CH4 absorption by soil from atmosphere in upland crop season. The results showed that PF was also a N2O emission source, and the N2O emissions from PF were intensive in the rice-growing stage, being only 22.1% of the total annual N2O emission emitted during the non-rice-growing stage. Rice plant also stimulated N2O emission from PF remarkably, the total N2O emission from rice-involved plot was ca. 1.7 times than that from rice-uninvolved plot during the rice-growing stage. Applying urea-based N fertilizers at a rate of 150 kgN?¤ha-1 simulated the seasonal N2O emission in comparison with the no N application treatment.
    Cultivation systems have insignificant effects on N2O emission from croplands during the rice-growing stage. After implementing SRI model, RW and RR systems from the PF, the N2O emissions were enhanced by 0.7%, 11.6% and 17.5% as compared to the PF treatment, respectively. The mean N2O flux was higher in upland crop season than in the rice-growing season. As for the paddy rice-upland crop rotation systems, the largest peak of N2O emission in the whole year occurred after the application of basal fertilizers during the early wheat or oilseed rape growing season. It was calculated that the amounts of N2O emission in RW and RR during the following twenty days after the wheat or oilseed was sowed accounted for 22.1% and 24.8% of the respective annual of N2O emission in RW and RR systems. The crop plant of the upland crops (such as wheat, oilseed) can stimulate the N2O emission from cropland, but the root of maize plant could restrain the N2O emission from soil. There is a wide uncertainty of 0.50%~2.64% for the annual estimates of direct N2O emission factor (Efd) of the Central Sichuan hilly areas of Southwest China, and the Efds are changing with the cultivation systems, the application rate of N fertilizer and different years. There was a big difference in a year-round N2O emission amounts between cultivation systems. After implementing RW, RR and permanent upland crop field (PU) systems from the PF, the N2O emissions were enhanced by 191.0%, 117.2% and 190.6% as compared to the PF treatment, respectively. Soil-crop total ecosystem respiration rate in crop planted plot and the soil heterotrophic respiration rate in no crop planted plot of different cultivation systems all were showed an evident seasonal variations, which were mainly controlled by air temperature and crops?ˉ life processes. Different types of crop had different dynamics of above-ground biomass and root/shoot ratio and NEE (net ecosystem CO2 exchange) with the crop growth. The amount of carbon sequestration from atmosphere to crop ecosystem was followed this relationship: RW>PF>RR>PU, and carbon sequestration mainly occurred in the rice-growing stage. The GWPs of the emission of CH4 and N2O under four cultivation systems were
    assessed in an integrated manner. With 100-year spans, the integrated GWPs of the mean annual CH4 and N2O emission followed the relationship: PF>RR??RR>PU, where the GWP of PF is 1.8, 1.9 and 5.5 times than that of RW, RR and PU, respectively.
引文
1. Abao E B, Bronson K F, Neue H U. 1996. Methane and nitrous oxide emissions in irrigated rice fields. Philippine Journal of Crop Science, 21(supplement No.1): 71
    2. Abao E B, Bronson K F, Wassmann R and Singh U. 2000. Simultaneous Records of Methane and Nitrous Oxide Emissions in Rice-Based Cropping Systems under Rainfed Conditions. Nutrient Cycling in Agroecosystems, 58: 131~139
    3. ?gren G I, Bosatta E and Magill A H. 2001. Combining theory and experiment to understand effects of inorganic nitrogen on litter decomposition. Oeclolgia, 128: 94~98
    4. Akinremi O O, McGinn S M, McLean H D J. 1999. Effects of soil temperature and moisture on soil respiration in barley and fallow plots. Canadian Journal of Soil Science, 79(1): 5~13
    5. Allen A G, Jarvis S C, Headon D M. 1996. Nitrous oxide emissions from soils due to inputs of nitrogen from excreta return by livestock on grazed grassland in the UK. Soil Biology and Biochemistry, 28(4-5): 597~607
    6. Andrew J A, Matamala R, Westover K M, Schlesinger W H. 2000. Temperature effects on the diversity of soil heterotrophs and the |?13C of soil-respired CO_2. Soil Biology and Biochemistry, 32: 699~706
    7. Armstron A S B. 1983. Nitrous oxide emissions from two sites in southern England during winter 1981/ 1982. Journal of the Science of Food and Agricluture, 34: 803~807
    8. Baath E, Arnebant K, 1994. Growth rate and response of bacterial communities to pH in limed and ash reacted forest soils. Soil Biology and Biochemistry, 26: 995~1001
    9. Badia D V, Alcaniz J M. 1993. Basal and specific microbial respiration in semiarid agricultural soils: Organic amendment and irrigation management effects. Geomicrobiology Journal, 11: 261~274
    10. Baldocchi D D and Meyers T P. 1991. Trace gas exchange above the floor of a deciduous forest. I. Evaporation and CO_2 efflux. J. Geophys. Res., 96: 7271~7285
    11. Baldocchi D D, Valentini R, Running S, Oechel W, et al. 1996. Strategies for measuring and modeling carbon dioxide and water vapour fluxes over terrestrial ecosystems. Global Change Biology, 2(3): 159~168
    12. Baldocchi D D, Verma S B, Matt D R and Anderson D E. 1986. Eddy-correlation measurements of carbon dioxide efflux from the floor of a deciduous forest. Journal of Applied Ecology, 23: 967~975
    13. Bedard C R. 1989. Physiology, biochemistry and specific inhibitors of CH4, NH4+, CO oxidation by methanotrophs and nitrifiers. Microbiol. Rev., 53: 68~84
    14. Bekku Y, Koizumi H, Oikawa T and Iwaki T. 1997. Examination of four methods for measuring soil respiration. Applied Soil Ecology, 5: 247~254
    15. Bender M and Conrad R. 1992. Kinetics of CH4 oxidation in oxic soils exposed to ambient air or high CH4 mixing ratios. FEMS microbial. Ecol., 101: 261~270
    16. Bender M and Conrad R. 1993. Kinetics of methane oxidation in oxic soils. Chemosphere, 26: 687~696
    17. Bender M and Conrad R. 1994. Methane oxidation activity in various soils and freshwater sediments: occurrence, characteristics, vertical profiles and distribution on grain size fraction. J. Geophys. Res., 99: 16531~16540
    18. Berger A and Loutre M F. 1997. 1???oò???t???ˉì?oíì???·?é?μ????DD?. í???2?μèò?, ?ì????D£. AMBIO(è?àà?·?3?ó??), 26(1): 32~37
    19. Bossse U and Frenzel P. 1998. Methane emissions from rice microcosms: the balance of production, accumulation and oxidation. Biochemistry, 40: 199~214
    20. Bouwman A F, Fung I, Eiatthews E, et al. 1993. Global analysis of the potential for N2O prodction in natural soils. Global Biogeochemical Cycles, 7(3): 259~261
    21. Bouwman, A W. 1990. Introduction. In: Bouwman, A W. (Ed.). Soils and the Greenhouse Effect. John Wiley & Sons Ltd, Chichester. 25~32
    22. Bowden R D, Boone R D, Melillo J M and Garrison J B. 1993. Contributions of above ground litter, below ground litter, and root respiration to total soil respiration in a temperate mixed hardwood forest. Canadian Journal of Forest Research, 23: 1402~1407
    23. Bronson K F, Neue H U, Singh U, et al. 1997a. Automated chamber measurements of methane and nitrous oxide flux in a flooded rice soil. ¢?. Residue, nitrogen, and water management. Soil Science Society of America Journal, 61(3): 981~987
    24. Bronson K F, Singh U, Neue H U, et al. 1997b. Automated chamber measurements of methane and nitrous oxide flux in a flooded rice soil. ¢ò.Fallow period emissions. Soil Science Society of America Journal, 61(3): 988~993
    25. Buchmann N. 2000. Biotic and abiotic factors controlling soil respiration rates in Picea abies stands. Soil Biology and Biochemistry, 32(11-12): 1625~1635
    26. Bunnell F L, Tait D E N, Flanagan P W. 1977. Microbial respiration and substrate weight loss. II. A model of influences of chemical composition. Soil Biology and Biochemistry, 9: 41~47
    27. Burton D L and Beauchamp E G. 1994. Profile nitrous oxide and carbon dioxide concentrations in a soil subject to freezing. Soil Science Society of America Journal, 58(1): 115~122
    28. Buyanovsky G A, Kucera C L, Wagner G H. 1987. Comparative analyses of carbon dynamics in native and cultivated ecosystems. Ecology, 68: 2023~2031
    29. Cai Z C, Tsuruta H and Gao M, et al. 2003. Options for mitigating methane emission from a permanently flooded rice field. Global Change Biology, 9: 37~45
    30. Cao M K and Woodward F I. 1998a. Dynamics responses of terrestrial ecosystem carbon cycling to global climate change. Nature, 393: 249~252
    31. Cao M K and Woodward F I. 1998b. Net primary and ecosystem production and carbon stocks of terrestrial ecosystems and their responses to climate change. Global Change Biology, 4(2): 185~198
    32. Castro M S, Mellilo J M, et al. 1994. Soil moisture as a predictor of CH4 uptake by temperate forest soils. Canadian Journal of Forest Research, 24: 1485~1810
    33. Chagas C I, Santanatoglia O J, Castiglioni M G, Marelli H J. 1995. Tillage and cropping effects on selected properties of an argiudoll in Argentina. Communications in Soil Science and Plant Analysis, 26: 643~655
    34. Chambers J Q, Higuchi N, Schimel J P, et al. 2000. Decomposition and carbon cycling of dead trees in tropical forests of the central Amazon. Oecologia, 122: 380~388
    35. Chapin F S III and Ruess R W. 2001. The roots of the matter. Nature, 411(14): 749~752
    36. Chen G X, Huang G H, Huang B, Yu K W, et al. 1997. Nitrous oxide and methane emissions from soil-plant systems. Nutrient Cycling in Agroecosystems, 49: 41~45
    37. Chen Z L and Li D B. 1993. Features of CH4 emission from rice fields in Beijing and Nanjing. Chemophere, 26: 239~245
    38. Chidthaisong A and Conrad R. 2000. Turnover of glucose and acetate coupled to reduction of nitrate, ferric iron and sulfate and to methanogenesis in anoxic rice field soil. FEMS Microbiology Ecology, 31(1): 73~86
    39. Cicerione R J and Shetter J D. 1981. Sources of atmospheric methane: measurements in rice paddies and a discussion. J. Geophys. Res., 86: 7203~7209
    40. Cicerone R J and Oremland R S. 1988. Biogeochemical aspects of atmospheric methane. Global Biogeochem. Cycles, 2: 299~327
    41. Cicerone R J, Sheetter J D and Dilwiche C C. 1983. Seasonal variation of methane flux from a Californian rice paddy. J. Geophys. Res., 88: 11022~11024
    42. Colby J, Dalton H and Whittenburry R. 1979. Bioligical and biochemical aspects if mictobial groth on C-combounds. Annu. Rev. Microbiol., 33: 481~517
    43. Conrad R and Rothfuss F. 1991. Methane oxidation in the soil surface layer of a flooded rice field and the effect of ammonium. Biology and Fertility of Soils, 12: 28~32
    44. Cowling J E and MacLean Jr S F. 1982. Forest floor respiration in a black spruce taiga forests ecosystem in Alaska. Holarct Ecol, 4: 229~237
    45. Crill P M, Bartlett K B and Harriss R C, et al. 1988. Methane flux from Minnesota peatlands. Global Biogechem. Cycles, 2: 371~384
    46. Crill P M. 1991. Seasonal patterns of CH4 uptake and CO_2 release by a temperate woodland soil. Global Biogeochem. Cycles, 2: 319~334
    47. Crush J R, Waghorn G C, Rolston M P. 1992. Greenhouse gas emissions from pasture and arable crops grown on a Kairanga soil in the Manawata, North Island. New Zealand. New Zealand J. Agri. Res., 35: 253~257
    48. Curtin D, Wang H, Selles F, et al. 2000. Tillage effects on carbon fluxes in continuous wheat and fallow-wheat rotations. Soil Sci. Soc. Am. J., 64: 2080~2086
    49. Dao. T H. 1998. Tillage and crop residue effects on carbon dioxide evolution and carbon storage in a paleustoll. Soil Sci. Soc. Am. J., 62: 250~256
    50. Darashar D C, Gupta P K, Rai J, et al. 1993. Effect of soil temperature on methane emission from paddy fields. Chemosphere, 26: 247-250
    51. Daum D and Schenk M K. 1998. Influence of nutrient solution pH on N_2O and N_2 emissions from a soilless culture system. Plant and Soil, 203: 279~287
    52. Davidson E A, Ackermann I L. 1993. Changes in soil carbon inventories following cultivation of previously untilled soils. Biogeochemistry, 20: 161~193
    53. Delgado J A and Mosier A R. 1999. Mitigation alternatives to decrease nitrous oxides emissions and urea-nitrogen loss and their effect on methane. J. Environ. Qual., 25(6): 1105~1111
    54. Denier Van der Gon H.A.C and Neue H U. 1995. Influence of organic matter incorporation on the methane emission from a wetland rice field. Global Biogeochemical Cycles, 9(1): 11~22
    55. Denmead O T. 1979. Chamber systems for measuring nitrous oxide emission from soils in the field. Soil Sci. Soc. Am. J., 43: 89~95
    56. Detwiler R P, Hall C A S. 1988. Tropical forest and the global carbon cycle. Science, 239: 42~47
    57. Devol A H, Richey J E, et al. 1988. Methane emission to the troposphere from the Amazon Floodplain. Journal of Geophysical Research, 93: 1583~1592
    58. Dobbie K E, Mctaggart I P and Smith K A. 1999. Nitrous oxide emission from intersive agricultural systems: variations between crops and seasons, key driving variables, and mean emission factors. Journal of Geophysical Research, 104(D21): 26891~26899
    59. Door H, Katruff L and Levin I. 1993. Soil texture parameterisation of the CH4 uptake in aerated soils. Chemosphere, 26: 697~713
    60. Dorland S and Beauchamp E. 1991. Denirtrification and ammonification at low soil temperatures. Soil Sci., 71: 293~303
    61. Duxbury J M and Bouldin D R. 1982. Emissions of nitrous oxide from soils. Nature, 298: 462~464
    62. Duxbury J M and McConnaughey P K. 1986. Effect of fertileizer source on denitrifyicaton and nitrous oxide emissions in a maize field. Soil Sci. Soc. Am. J., 50: 643~648
    63. Edwards N T, Ross-todd B M, 1983. Soil carbon dynamics in a mixed deciduous forest following clear-cutting with and without residua removal. Soil Sci. Soc. Am. J., 47: 1014~1021
    64. Ekblad A and Hoegberg P. 2001. Natural abundance of 13C in CO_2 respired from forest soils reveals speed of link between tree photosynthesis and root respiration. Oecologia, 127(3): 305~308
    65. Erich M S, Bekerie A and Duxgury J M. 1984. Activities of denitrifying enzymes in freshly sampled soils. Soil Sci., 138: 25~32
    66. Ewel K C, Cropper W P, Gholz H L. 1987. Soil CO_2 evolution in Florida slash pine plantations. I. Changes through time. Canadian Journal of Forest Research, 17: 325~329
    67. Fang C and Moncrieff J B. 1996. An improved dynamic chamber technique for measuring CO_2 efflux from the surface of soil. Functional Ecology, 10: 297~305
    68. Fang C, Moncrieff J B. 2001. The dependence of soil CO_2 efflux on temperature. Soil Biology and Biochemistry, 33: 155~165
    69. Fang J Y, Chen A P, Peng C H, Zhao S Q and Ci L J. 2001. Changes in Forest Biomass Carbon Storage in China Between 1949 and 1998. Science, 292: 2320~2322
    70. Femandez, I J, Kraske S C R, Rustad L E, David M B. 1993. Soil carbon dioxide characteristics under different forest types and after harvest. Soil Sci. Soc. Am. J., 57: 1115~1121
    71. Flessa H and Beese F. 1995. Effect of sugar beet residues on soil redox potential and nitrous oxide emission. Soil Sci. Soc. Am. J., 59: 1044~1051
    72. Franzluebbers A J, Haney R L, Honeycutt C W, et al. 2000. Flush of Carbon dioxide following rewetting of dried soil relates to active organic pools. Soil Sci. Soc. Am. J., 64: 613~623
    73. Frenzel P, Rothfuss F and Conard R. 1992. Oxygen profiles and methane turnover in a flooded rice microcosm. Biol. Fertil. Soils, 14: 84~99
    74. Fung I Y, Tucker C Y and Prentice K C. 1987. Application of advanced very high resolution radimeter vegetation index to study of atmosphere-biosphere exchange of CO_2. J. Geophys. Res., 92: 2999~3015
    75. Gerard G and Chanton J. 1993. Quantification of methane oxidation in the rhizosphere of emergent aquatic macrophytes: defining upper limits. Biogeochemistry, 23: 79~97
    76. Gilbert B and Frenzel P. 1995. Methanotophic bacteria in the rhizosphere of rice microcosms and their effect on porewater methane concentration and methane emission. Fertil. Soils, 20: 93~100
    77. Goodroad L L, Keeney D R and Peterson L A. 1984. Nitrous oxide emissions from agricultural soils in Wisconsin. J. Environ. Qual., 13: 557~561
    78. Goodwin S and Zeikus J G. 1987. Ecophyiological adaptions of anaerobic bacteria to low pH: analysis of anaerobic direction in acidic bog sediments. Appl. Environ. Microbiol., 53: 57~64
    79. Gordon A M, Schlenter R E, Van Ceve K. 1987. Seasonal patterns of soil respiration and CO_2 evolution following harvesting in the white spruce forests of interior Alaska. Canadian Journal of Forest Research, 17: 304~310
    80. Grace J and Rayment M. 2000. Respiration in the balance. Nature, 404: 819~820
    81. Grant R F, Rochette P. 1994. Soil microbial respiration at different water potentials and temperatures: Theory and mathematical modeling. Soil Sci. Soc. Am. J., 58: 1681~1690
    82. Groffman P M, Eagan P, sullivan W M, et al. 1996. Grass species and soil type effects on microbial biomass and activity. Plant Soil, 183(1): 61~67
    83. Hanso R S and Hanson T E. 1996. Methanotrophic bacteria. Microbiol. Rev., 60: 439~471
    84. Hanson P J, Edwards N T, Garten C T, Adrews J A. 2000. Separating root and soil microbial contributions to soil respiration: A review of methods and observations. Biogeochemistory, 48(1): 115~146
    85. Harvey L D D. 1989. Effect of model structure on the response terrestrial biosphere models to CO_2 and temperature increases. Global Biogeochemical Cycles, 3: 137~153
    86. Haynes B E and Gower S T. 1995. Belowground carbon allocation in unfertilization and fertilized red pine plantations in northern Wisconsin. Tree Physiol, 15: 317~325
    87. Hiroshi K, Markku K, Shigeru M, et al. 1999. Soil respiration in three soil types in agriculture ecosystem in Finland. Acta Agriculture Scandinavica Section B-Soil & Plant Science. 49(2): 65~74
    88. Hogberg P, Nordgren A, Buchman N, et al. 2001. Large-scale forest gridling shows that current photosynthesis drives soil respiration. Nature, 411: 749~752
    89. Holzapfel P A and Seiler W. 1986a. Methane emission during a vegetation period from an Italian rice paddy. J. Geophys. Res., 91: 11803~11814
    90. Holzapfel P A, Conrad R and Seiler W. 1986b. Effect of vegetation on the emission of methane from submerged paddy soil. Plant and Soil, 92: 223~233
    91. Houghton R A. 1995. Changes in storage of terrestrial carbon since 1859. In: Lal R, et al. (eds). Soils and Global Change. Boca Raton: CRC Press. 45~65 (Http://www.igbp.kva.se/cgi_bin/php/frameset.php)
    92. Huang Y, Jiao Y, Zong L G, Sass R L and Fisher F M. 2001. Comparison of field measurements of CH4 emission from rice cultivation in Nanjing, China and in Texas, USA. Advances in Atmospheric Sciences, 18(7): 1121~1130
    93. Huang Y, Jiao Y, Zong L G, Wang Y S and Sass R L. 2002. Nitrous oxide emissions from wheat growing season with eighteen Chinese paddy soil: An outdoor pot experiment. Biolgy and Fertility of Soils, 36: 411~417
    94. Hutsch B W, Webster C P and Powlson D S. 1994. CH4 oxidation in soil as affected by land use, soil pH and N fertilization. Soil Biology and Biochemistry, 26: 1613~1622
    95. Inubushi K, Umebayshi M. Wada H. 1990. Methane emission from paddy fields. In: Paper present at 14th international Congress of Soil Science. Kyoto.
    96. IPCC. 1995. Climate Change: The science of climate change. Contribution of working group¢?to second assessment report of the Intergovernmental Panel on Climate Change. 15
    97. IPCC. 2001. Climate Change 2001. Cambridge(UK): Cambridge University Press. 12~14
    98. IPCC?aIntergovernmental panel on climate change. 1996. Climate change 1995. In: The Science of Climate Change. Cambridge(UK): Cambridge University Press. 572
    99. Izaurralde, R C, McGuire A D and Kicklighter D W, et al. 2000. Carbon cost of applying nitrogen fertilizer. Science, 288: 809
    100. Jakobsen P, Patrick W H and Williams B G. 1981. Sulfide and methane formation in soil and sediments. Soil Sci., 132: 279~287
    101. Janssens I A, Kowalski A S, Longdoz B, Ceulemans R. 2000. Assessing forest soil CO_2 efflux: an in situ comparison of four techniques. Tree Physiol, 20: 23~32
    102. Jenkins D. 1963. Sewage treatment. In: Rainbow C and Rose A H(eds.), Biochemistry of industrial microorganisms. Academic Press, New York. 508~536
    103. Jenkinson D S and Rayner J H. 1977. The turnover of soil organic matter in some o the Rothamsted classical experiments. Soil Science, 123: 298~305
    104. Jensen L S, Mueller T, Tate K R, Ross DJ, et al. 1996. Soil surface CO_2 flux as an index of soil respiration in situ: a comparison of two chamber methods. Soil Biol. Biochem. 28: 1297~1306
    105. Jones J B and Mulholland P J. 1998. Carbon dioxide variation in a hardwood forest stream: An integrative measure of whole catchment soil respiration. Ecosystems, 1(2): 183~196
    106. Jones S K, Ree R M, Skiba U, Ball B C. 2004. Grassland management and soil emissions of CO_2, N_2O and CH4. Global and Planetary Change. (in press)
    107. Joukosllvola. 1996. CO_2 fluxes from peat in boreal mires under varying temperature and moisture conditions. Journal of Ecology, 84: 219~229
    108. Kaiser E A, Kohrs K, Kuche M, Schnug E, et al. 1998. Nitrous oxide release from arable soil-importance of N-fertilization, crops and temporal variation. Soil Biology and Biochemistry, 12(30): 1553~1563
    109. Kaplan W A and Wofsey S C. 1985. The biogeochemistry of nitrous oxide: A review. Adv. Agric. Micobiol., 3: 181~206
    110. Kasimir-Klemedtsson A, Klemedtsson L, Berglund K, Martikainen P, Silvola J, Oenema O. 1997. Greenhouse gas emissions from farmed organic soils: a review. Soil Use and Management, 13(4): 245~250
    111. Keeling C D and Whorf T P. 2005. Atmospheric CO_2 records from sites in the SIO air sampling network. In Trends: A Compendium of Data on Global Change. Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tenn., USA.
    112. Keeling R F, Piper S C and Heimann M. 1996. Global and hemispheric CO_2 sinks deduced from changes in atmospheric O_2 concentration. Nature, 381: 218~221
    113. Khalil M A K, Rasmussen R A and Shearer M J, et al. 1998a. Factors affecting methane emissions from rice fields. Journal of Geophysical Research, 103(D19): 25219~25231
    114. Khalil M A K, Rasmussen R A and Shearer M J, et al. 1998b. Measurements of methane emissions from rice fields in China. Journal of Geophysical Research, 103(D19): 25181~25210
    115. Killham K, Yeomans C. 2001. Rhizosphere carbon flow measurement and implications: from isotope to reporter genes. Plant and Soil, 232: 91~96
    116. King G M. 1990. Regulation by light of methane emissions from a wetland. Nature, 345: 513~515
    117. Kirita H. 1971. Re-examination of the absorption method of measuring soil respiration under field conditions. IV. An improved absorption method using a disc of plastic sponge as absorbent holder. Jpn. J. Ecol. 21: 119~127 (in Japanese with English abstract)
    118. Kludze H K, Neue H U, Llenarsas D and Lantin R. 1995. Rice root exudation and its impact on methane production. Paper presented at the Planning Meeting of Methane Emission from Rice Fields, Chonburi, Thailand.
    119. Koizumi H, Nakadai T, Usami Y, Satoh M, Shiyomi M, Oikawa T. 1991. Effect of carbon dioxide concentration on microbial respiration in soil. Ecol. Res., 6: 227~232
    120. Kristjansson J K, Schonheit P and Thauser R K. 1982. Different Km values for hydrogen and mehtanogenic and sulphate-reducing bacteria: An explanation for the apparent inhibition of mentanogenesis by sulphate. Arch. Microbiol., 131: 278~282
    121. Kucera C and Kirkham D. 1971. Soil respiration studies in tall grass prairie in Missouri. Ecology, 52: 912~915
    122. Kuzyakov Y, Friedel J K, Stahr K. 2000. Review of mechanisms and quantification of priming effects. Soil Biol. Biochem. 32: 1485~1498
    123. Kwabiah A B, Voronery R P, Palm C A and Stoskopf N C. 1999. Inorganic fertilizer enrichment of soil: effect on decomposition of plant litter under subhumid tropical conditions. Biology and Fertility of Soils, 30: 224~231
    124. Lal R, Fausey N R, Eckert D J. 1995. Land use and soil management effects on emission of radiatively active gases from two Ohio soils. In: Lal R, et al. (eds). Soil and Global Change: Advance in Soil Science. Boca Raton: CRC Press. 41~59
    125. Lauren J G and Duxbury J M. 1993. Agriculture ecosystem effects on trace gases and global climate change. ASA Special Publication, 55: 183~192
    126. Le Dantec V, Epron D, Dufr¨one, E. 1999. Soil CO_2 efflux in a beech forest: comparison of two closed dynamic systems. Plant Soil, 214: 125~132
    127. Le Mer J and Roger P. 2001. Production, oxidation, emission and consumption of methane by soils: A review. Eur. J. Soil Biol., 37: 25~50
    128. Lelieved J, Crutaen P J, Bruhl C. 1993. Climate effects of atmospheric methane. Chemosphere, 26: 739~768
    129. Letey J N, et al. 1980. Effect of air-filled porosity, nitrate concentration and time on the ratio of N2O/N2 evolution during denitrification. J. Environ. Qual., 9: 227~231
    130. Letey J N, et al. 1981. Nitrous oxide production and reduction during denitrification as affected by redox potential. Soil Sci. Soc. Am. J. 45: 727~730
    131. Li C S, Frolking S and Frolking T A. 1992a. A model of nitrous oxide evolution from soil driven by rainfall events: 1. model structure and sensitivity. Journal of Geophysical Research, 97(D9): 9759~9776
    132. Li C S, Frolking S and Frolking T A. 1992b. A model of nitrous oxide evolution from soil driven by rainfall events: 2. model applications. Journal of Geophysical Research, 97(D9): 9777~9783
    133. Li L H, Han X G, Wang Q B, et al. 2002. Correlations between plant biomass and soil respiration in a Leymus chinensis Community in the Xilin River Basin of Inner Mongolia. Acta Botanica Sinica, 44(5): 593~597
    134. Lindau C W and Bollich P K. 1993. Methane emissions from Louisiana first and Ratoon crop rice. Soil Sci., 156: 42~48
    135. Linn D M, Doran J W. 1984. Effect of water-filled pore space on carbon dioxide and nitrous oxide production in tilled and non-tilled soils. Soil Sci. Soc. Am. J. 48: 1267~1272
    136. Lloyd J and Taylor J A. 1994. On the temperature dependence of soil respiration. Functional Ecology, 8: 315~323
    137. Lu W F, Chen W, Duan B W, Guo W M, et al. 2000. Methane emissions and mitigation options in irrigated rice fields in southeast China. Nutrient Cycling in Agroecosystems, 58: 65~73
    138. Lusk G H and Reich P B. 2000. Relationships of leaf dark respiration with light environment and tissue nitrogen content in Juveniles of 11 cold-temperate tree species. Oecologia, 123: 318~329
    139. MacDonald J A, Skiba U M, Sheppard L J, et al. 1996. Soil environmental variables affecting CH4 flux from a range of forest, moorland and agricultural soils. Biochemistry, 34: 113~132
    140. MacDonald J A, Skiba U M, Sheppard L J, et al. 1997. The effect of N deposition and seasonal variability on CH4 oxidation and N2O emission rates from an upland spruce plantation and moorland. Atmospheric Environment, 31: 3693~3706
    141. Maier C A, Kress L W. 2000. Soil CO_2 evolution and root respiration in 11 year old loblolly pine(Pinus taeda) plantations as affected by moisture and nutrient availability. Can. J. For. Res., 30: 347~359
    142. Majumdar D. 2003. Methane and nitrous oxide emission from irrigated rice fields-Proposed mitigation strategies. Current Science, 84(10): 1317~1326
    143. Mathcs K and Schriefer T. 1985. Soil respiration during secondary succession: influence of temperature and moisture. Soil Biology and Biochemistry, 17(2): 205~211
    144. Mattson M D and Likens G E. 1990. Air pressure and methane fluxes. Nature, 347: 718~719
    145. McClaugherty C A and Linkins A E. 1990. Temperature responses of enzymes in two forest soils. Soil Biology and Biochemistry, 22: 29~33
    146. Melillo J M, Steudler P A, Aber J D, et al. 2002. Soil warming and carbon-cycle feedbacks to the climate system. Science, 298: 2173~2176
    147. Mielnick P C, Dugas W A. 2000. Soil CO_2 flux in a tallgrass prairie. Soil Biol. Biochem., 32: 221~228
    148. Minami K. 1990. Effect of agricultural management on methane emission from rice paddies. In: Contribution to IGRP workshop: Trace Gas Exchange in a Global Perspective (Trace Gas Exchange in Rice Cultivation especially CH4 and N2O), Stockholm, Sweden, February. 19~23
    149. Minami K. 1997. Atmospheric methane and nitrous oxide: sources, sinks and strategies for reducing and agricultural emissions. Nutrient Cycling in Agroecosystems, 49: 203~211
    150. Minoda T, Kimura M and Wada E. 1996. Photosynthates as dominant source of CH4 and CO_2 in soil water and CH_4 emitted to the atmosphere from paddy fields. Journal of Geophysical Research, 101: 21091~21097
    151. Moiser A R and Hutchinson G L. 1981. Nitrous oxide emissions form cropped field. J. Environ. Qual., 10: 169~173
    152. Moiser A R, Duxbury J M, Freney J K, et al. 1996. Nitrous oxide emissions from agricultural fields: assessment, measurement and mitigation. Plant and Soil, 181: 95~108
    153. Moiser A R, et al. 1982. J. Environ. Qual. 11: 78
    154. Monteith J L. 1964. Crop photosynthesis and the flux of carbon dioxide below the canopy. J. Appl. Ecology, 1: 321~337
    155. Morgan J A, LeCain D R, Mosier A R and Milchunas D G. 2001. Elevated CO_2 enhances water relations and procucdtivity and affects gas exchange in C3 and C4 grasses of the Colorado short grass steppe. Global Change Biology, 7: 451~466
    156. Mosier A and Kroeze C. 1998. A new approach to estimate emissions of nitrous oxide from agriculture and its implications for the global N2O budget. IGBP Newsletter, 34: 8~13
    157. Mosier A R, Mohanty S K, Bhadrachalam A, et al. 1990. Evolution of dinitrogen and nitrous oxide from the soil to the atmosphere through rice plants. Biol. Fertil. Soils, 9: 61~67
    158. Mosier A, Schimel D, Valentine D, Bronson K, Parton W. 1991. Methane and nitrous oxide fluxes in native, fertilized and cultivated grasslands. Nature, 350: 330~332
    159. Nakane K, et al. 1986. Cycling of soil carbon in a Japanese red pine forest. II: Changes occurring in the first year after a clear-felling. Ecol. Res., 1: 47~48
    160. Nakane K, Kohno T, Horikoshi T. 1996. Root respiration rate before and just after clear felling in a mature, deciduous, broad-leaved forest. Ecol. Res., 11(2): 111~119
    161. Nakayama F S. 1990. Soil respiration. Remote Sens. Rev., 5: 311~321
    162. Nay S M, Mattson K G, Bormann B T. 1994. Biases of chamber methods for measuring soil CO_2 efflux demonstrated with a laboratory apparatus. Ecology, 75: 2460~2463
    163. Neue H U and Latin R S. 1992. Methane emission from rice soils of the Philiphines. In: Minami K, Mosier A and Sass R et al. CH4 and N2O: Global emission and controls from rice fields and other agriculture and industrial sources. Niams Series, 2: 55~64
    164. Neue H U, Lantin R L, Wassmann R, Aduna J B, et al. 1994. Methane emission from rice soils of the Philippines. In: Minami K, Mosier A R, Sass R L (eds.). CH4 and N2O: Global emission and controls from rice fields and other agricultural and Industrial sources. NIAES Series 2, Tokyo. 55~77
    165. Neue H U, Wassmann R, Kludze H K, Wang Bujun et al. 1997. Factors and processes controlling methane emissions from rice fields. Nutrient Cycling in Agroecosystems, 49: 111~117
    166. Norman J M, Garcia R, Verma S B. 1992. Soil surface CO_2 fluxes and the carbon budget of a grassland. J. Geophys. Res, 97: 18845~18853
    167. Norman J M, Kucharik C J, Gower S T, Baldocchi D D et al. 1997. A comparison of six methods for measuring soil-surface carbon dioxide fluxes. J. Geophys. Res. 102: 28771~28777
    168. Nouchi I. 1992. Mechanisms of CH4 transport through rice plants, In: CH4 and N2O workshop, Program and Abstracts, Tsukuba, Japan. 5~6
    169. Nouchi I. 1994. Mechanisms of methane transport through rice plants. In: CH4 and N2O: Global emissions and controls from rice fields and other agricultural and industrial sources (Minami K, Mosier A and Sass R eds) Tokyo: YOKENDO Publishers. 87~104
    170. Nugroho S G et al. 1994a. Methane emissin from an Indonesian paddy field subjected to several fertilizer treatments. Soil Science and Plant Nutrition, 40(2): 275~278
    171. Nugroho S G, Lumbanraja J, et al. 1994b. Effect of intermittent irrigation on methane emission from an Indonesian paddy field. Soil Science and Plant Nutrition, 40: 609~615
    172. Ohashi M, Gyokusen K and Saito A. 2000. Contribution of root respiraton to total soil respirtion in a Japanese cedar (Cryptomeria japonia D. Don) artifiecial forest. Ecological Reaearch, 15(3): 323~333
    173. Orchard V A. 1983. Relationship between soil respiration and soil moisture. Soil Biology and Biochemistry, 15: 447~453
    174. Oremland R S, Marsh L and DesMarsis D J. 1982. Methanogenesis in Big Soda Lake, Nevada: an alkaline, modweately hypersaline desert lake. Appl. Environ. Microbiol., 43: 462~468
    175. Oremland R S. 1988. Biochemistry of methanogenic bacteria. In: Zehnder J B(ed.), Biology of anaerobic microorganisms. John Wiley and Sonc, New York. 641~705
    176. Parashar D C, Gupta P K and Rai J, et al. 1993. Effect of soils tealmperature on methane emission from paddy fields. Chemosphere, 26: 247~250
    177. Parshotam A, Saggar S, Searle P L, et al. 2000. Carbon residence times obstained from labeled ryegrass decomposition in soils under contrasting environmental conditions. Soil Biology and Biochemistry, 32: 75~83
    178. Parton W J, Mosier A R, Ojima D S, et al. 1996. Generalized model for N2 and N2O production from nitrification and denitrification. Global Biogeochemical Cycles, 10(3): 401~402
    179. Patrick H M, Ronald D D and William H P. 1993. Methane and nitrous oxide emission from laboratory measurements of rice soil suspension: effect of soil oxidation-reduction status. Chemosphere, 26: 251~260
    180. Qi J, Marashell J D, Mattson K G. 1994. High soil carbon dioxide concentration inhibit root respiration of Douglas fir. New Phytol., 128: 435~442
    181. Qi Y, Xu M and Wu J G. 2002. Temperature sensitivity of soil respiration and its effects on ecosystem carbon budget, nonlinearity begets surprises. Ecological Modelling, 153: 131~142
    182. Raich J W and Potter C S. 1995. Global pattern of carbon dioxide emission from soils. Global Biogeochemical Cycles, 9: 23~36
    183. Raich J W and Schlesinger W H. 1992. The global carbon dioxide flux in soil respiration and its relationship to vegetation and climate. Tellus, 44(B): 81~99
    184. Raich J W, Tufekcioglu A. 2000. Vegetation and soil respiration correlations and controls. Biogeochemistry, 48(1): 71~90
    185. Rechstein M and Bednorz F. 2000. Temperature dependence of carbon mineralization: conclusions from a long-term incubation of subalpine soil sample. Soil Biology and Biochemistry, 32: 947~958
    186. Reich P B, Walters M B, Ellsworth D S, Vose J M, Volin J C, Gresham C, Bowman W D. 1998. Relationships of leaf dark respiration to leaf nitrogen, specific leaf area and leaf life-span: a test across biomes and functional groups. Oecologia, 114: 471~482
    187. Robertson L A, Kuenen J G. 1991. Physiology of nitrifying and denitrifying bacteria. In: Rogers J E and Whitaman W B (eds.). Microbial production and consumption of greenhouse gases: Methane, nitrogen oxides and halomethanes. American Society for Microbiology. Washington D C. 189~199
    188. Rochette P, Angers D A. 1999a. Soil surface carbon dioxide fluxes induced by spring, summer, and fall moldboard plowing in a sandy loam. Soil Sci. Soc. Am. J., 63: 621~628
    189. Rochette P, Flanagan L B, Gregorich E G. 1999b. Separating soil respiration into plant and soil components using analyses of the nature abundance of carbon-13. Soil Sci. Soc. Am. J., 63: 1207~1213
    190. Rochette P, Gregorich E G and Desjardins R L. 1992. Comparison of static and dynamic closed chambers for measurement of soil respiration under field conditions. Can. J. Soil Sci., 72: 605~609
    191. Rodhe H. 1990. A comparison of the contribution of various gases to the greenhouse effect. Science, 248: 1217~1219
    192. Rozanov B G. 1990. Human impacts on evolution of soils during various ecological conditions of the world. Trans. Of 14th Intern. Congr of Soil Sci, Plenary papers, Contents and Author Index. 53~62
    193. Rustad L E, Femandez I J. 1998. Experimental soil warming effects on CO_2 and CH4 flux a low elevation spruce-fir forest soil in Maine, USA. Global Change Biology, 4: 597~605
    194. Sass R L and Fisher F M. 1994. CH4 emission from paddy fields in the United States Gulf Coast area. In: Minami K, Moiser A and Sass R, et al. CH4 and N2O: Global emission and controls from rice fields and other agricultural and industrial sources. Edited by Minami K et al. NIAES, Tsukuba, Japan, National institute of Agro-Environment Sciences, 5: 65~77
    195. Sass R L, Ficher F M, Harcombe P A and Turner F T. 1990. Methane production and emission in a Texas rice field. Global Biochemistry Cycles, 4: 47~68
    196. Sass R L, Fisher F M, Turner F T, Yund M F. 1991. Methane Emission from rice fields as influenced by solar radiation, temperture, and straw incorporation. Global Biogeochem. Cycle, 5(4): 335~350
    197. Scala N L Jr, Marques J Jr, Pereira G T, et al. 2000. Carbon dioxide emission related to chemical properties of a tropical bare soil. Soil Biology & Biochemistry. 320: 1469~1473
    198. Schimel J P and Gulledge J. 1998. Microbial community structure and global trace gases. Global Change Biology, 4: 745~758
    199. Schlentner R E and Van Cleve K. 1985. Relationships between CO_2 evolution from soil, substrate temperature, and substrate moisture in four forest types in interior Alaska. Canadian Journal of Forest Research, 15: 97~106
    200. Schutz H, Holzapfel-Pschorn A, Conrad R, et al. 1989a. A 3-year continuous record on the influence of daytime, season and fertilizer treatment on methane emission rate from an Italian rice paddy. J. Geophys Res., 94: 16406~16416
    201. Schutz H, Seiler W, Conard R. 1989b. Processes involved in formation and emission of methane in rice paddies. Biogeochemistry, 7: 33~53
    202. Schutz H. 1990. The effect of temperature on methane emission from paddy soil. Biogeochemistry, 11: 77~95
    203. Sebacher D I, Harriss R C and Bartlett K S, et al. 1986. Atmosphere methane sources: Alaskan tundra bogs, and a subarctic bored marsh. Tellus, 38: 1010~1016
    204. Singh J S and Gupta S R. 1977. Plant decomposition and soil respiration in terrestrial ecosystems. The Botantical Review, 43: 449~528
    205. Skopp J, Jawson M D, Doran J W. 1990. Steady-state aeroboc microbial activity as a function of soil water content. Soil Sci. Soc. Am. J. 54: 1619~1625
    206. Smith C J and Patrick W N Jr. 1983. Nitrous oxide emission as affected by alternate anaerobic and aerobic conditions from soil suspensions enriched with ammonium sulfate. Soil Bio. Biochem., 15: 683~693
    207. Smith K A, Thomson P E and Clayton H, et al. 1998. Effects of temperature, water content and nitrogen fertilization on emissions of nitrous oxide by soils. Terrestrial initiative in global environmental research the TIGER trace gas program. Atmospheric Environment, 19: 3301~3309
    208. Sowerby A, Blum H, Gray T R G and Ball A S. 2000. The decomposition of Lolium perenne in soils exposed to elevated CO_2: comparisons of mass loss of litter with soil respiration and soil microbial biomass. Soil Biology and Biochemistry, 32: 1359~1366
    209. Steudler P A, Bowden R D, et al. 1989. Influence of N fertilization on CH4 uptake in temperate forest soils. Nature, 341: 314~315
    210. Stewart J M and Wheatley R E. 1990. Estimates of CO_2 production from eroding peat surface. Soil Biology and Biochemistry, 22: 65~68
    211. Svenson B H. 1980. Carbon dioxide and methane fluxes from the ombrotophic parts or a subarctic mire. Bulletin of the Ecological, 30: 235~250
    212. Svensson B H and Rosswall. 1984a. In situ methane production from acid peat in plant communities with different moisture regimes in a subarctic mire. Oikos, 43: 341~350
    213. Svensson B H. 1984b. Different temperature optima in methane formation when enrichments from acid peat are supplemented with acetate or hydrogen. Appl. Environ. Microbiol., 48: 394~398
    214. Svensson B H. 1984c. Methane as a part of the carbon mineralization in an acid tundra mire. In: Megusar F and Gantar M(ed.). Perspectives in Microbial Ecology, Proceedings of the 11th International Symposium on Microbial Ecology. Sloven Society for Microbiology, Ljubljana. 611~616
    215. Swinnen J. 1994. Evaluation of the use of a model rhizodeposition technique to separate root and microbial respiration in soil. Plant and Soil, 165(1): 89~104
    216. Takai Y. 1970. The mechanism of methane fermentation infliided paddy soil. Soil Sci. and Plant Nutr., 16: 238~244
    217. Tans P P, Fung I Y and Takahashi T. 1990. Observational constraints on the global atmospheric CO_2 budget. Science, 247: 1431~1438
    218. Tjeerd J and David R. 2000. On the assessment of root and soil respiration for soils of different textures: interactions with soil moisture contents and soil CO_2 concentrations. Plant and Soil, 277: 215~221
    219. Top E, Hanson R S. 1991. Metabolism of relatively important trace gases by methane-oxidizing bacterial. In: Rogers J E, Whitman W B eds. Microbial Production and Consumption of Greenhouse Gases: Methane, Nitrogen oxides and Halomethanes. American Society for Microbiology, Washington DC. 71~90
    220. Townsed A R, Vitousek P M and Holland E A. 1992. Tropical soils could dominate the short-term carbon cycle feedbacks to increased global temperatures. Climatic Change, 22: 293~303
    221. Valentini R, Matteuccl G, Doman A J, ScHulze E D, et al. 2000. Respiration as main determinant of carbon balance in European forests. Nature, 404: 861~865
    222. Van Breemen N and Feijtel T C. 1990. Soil processes and properties involved in the production of greenhouse gases which special relevance to soil taxonomic system. In: Bouwman A F(ed.), Soil and the greenhouse effect. John Wiley and Sonc, New York. 195~223
    223. Verma S B, Kim J and Clement R J. 1989. Carbon dioxide, water vapour and sensible heat fluxes over a tall grass prairie. Boundary Layer Meteorology, 46: 53~67
    224. Wang M X and Shangguan X J. 1996. CH4 emission from various rice fields in P. R. China. Teoretical and Applied Climatology, 55: 129~138
    225. Wang M X, Dai A G and Shen R X. 1990. CH4 emission from a Chinese rice paddy field. Acta Meteorologica Sinica, 4(3): 265~274
    226. Wang M X, Shangguan X J and ShenR X, et al. 1993. Methane production, emission and possible control measures in the rice agriculture. Advances in Atmospheric Sciences, 10(30): 307~314
    227. Wang Y S, Hu Y Q, Ji B M, Liu G R, et al. 2003. An investigation on the relationship between emission/uptake of greenhouse gases and environmental factors in semiarid grassland. Advances in Atmospheric Sciences, 20(1): 119~127
    228. Wang Z P, Delaune R D, Masscheleyn P H, et al. 1993. Soil redox and pH effects on methane reduction in a flooded rice soil. Soil Sci. Soc. Am. J., 57: 382~385
    229. Wassmann R and Schuetz H. 1992. Quantification of methane emissions from Chinese rice fields (Zhejiang Province ) as influenced by fertilizer treatment. Biogeochemistry, 20: 83~101
    230. Wassmann R, Neue H U, Bueno C, et al. 1998. Methane production capacities of different rice soils derived from inherent and exogenous substrates. Plant and soil, 203: 227~237
    231. Wassmann R, Neue H U, Lantin R S, Aduna J B, et al. 1994. Temporal patterns of methane emissions form rice fields treated by different modes of N application. Journal of Geophysical Research, 99: 16457~16462
    232. Weerakoon W M, Olszyk D M and Moss D N. 1999. Effects of nitrogen nutrition on responses of rice seedlings to carbon dioxide. Agriculture, Ecosystems and Environment, 72: 1~8
    233. Whalen S C and Reeburgh W S. 1990. Consumption of atmospheric methane by tundra soils. Nature, 346: 160~162
    234. Whalen S C, Reeburgh W S and Sandbeck K A. 1990. Rapid methane oxidation in a landfill cover soil. Appl. Environ. Microbiol., 56: 3405~3411
    235. Widen B, Majdi B. 2001. Soil CO_2 efflux and root respiration at three sites in a mixed pine and spruce forest:seasonal and diurnal variation. Can. J. For. Res, 31: 786~796
    236. Wildung R E, Garland T R, Buschbom R L. 1975. The interdependent effects of soil temperature and water content on soil respiration rate and plant root decomposition in arid grassland soils. Soil Biological Biochemistry, 7: 373~378
    237. Wilson J O, Crill P M, et al. 1989. Seasonal variation of methane emission from a temperate swamp. Biogeochemistry, 8: 55~71
    238. Woodwell G D, Mackenzie F T, Houghton R A, et al. 1998. Biotic feedbacks in the warming of the earth. Climate Change, 40: 495~518
    239. Woodwell G M, Hobbie J E, et al. 1983. Global deforestation: Contribution to atmospheric carbon dioxide. Science, 222: 1081~1086
    240. Xing G X and Zhou Z L. 1997. Preliminary studies on N2O emissions fluxes from upland soils paddy soils in China. Nutrient Clycling in Agroecosystems, 49: 17~22
    241. Xing G X. 1998. N_2O emission from cropland in China. Nutrient cycling in Agroecosystem, 52: 249~254
    242. Xu Z J, Zheng X H, Wang Y S, et al. 2004. Effects of elevated CO_2 and N fertilization on CH4 emissions from paddy rice fields. Global Biogeochemical cycles, 18, GB3009, doi: 10.1029/2004GB002233
    243. Yagi K, Minami K and Ogawa Y. 1990a. Effects of water percolation on methane emission form paddy fields. Research Report of Environment Planning, 6: 105~112
    244. Yagi K, Minami K. 1990b. Effects of organic matter application on methane emission from some Japanese paddy field. Soil Science and Plant Nutrition, 36(4): 599~610
    245. Yagi K, Tsuruta H and Minamik K. 1996. The Effect of water management on methane emission from a Japanese rice paddy field: Automate methane monitoring. Global Biogeochemical Cycle, 10(2): 255~267
    246. Yagi K, Minami K and Ogawa Y. 1998. Effects of water percolation on methane emission form paddies: A lysimeter experiment. Plant and Soil, 198(2): 193~200
    247. Yamulki S, Goulding K W T, Webster C P, Hrrison R M. 1995. Studies on NO and N_2O fluxes form a wheat field. Atmospheric Environment, 29: 1627~1635
    248. Yao H and Chen Z L. 1994. Effect of chemical fertilizer on methane emission from rice paddies. Journal of Geophysical Research, 99(D8): 16463~16470
    249. Yavitt J B, Downey D M and Land G E, et al. 1990. Methane consumption in two temperate forest soil. Biogechemistry, 9: 39~52
    250. Yim M H, Joo S J, Nakane K. 2002. Comparison of field methods for measuring soil respiration: a static alkali absorption method and two dynamic closed chamber methods. Forest Ecology and Management, 170: 189~197
    251. Yin C and Huang D. 1996. A model of litter descompositon and accumulation in grassland ecosystems. Ecol. Mod., 84: 75~80
    252. Zak, D R, Holmoes W E, MacDonald N W, et al. 1999. Soil temperature, matric potential, and the kinetics of microbial respiration and nitrogen mineralization. Soil Sci. Soc. Am. J., 63: 575~584
    253. Zheng X H, Wang M X, Wang Y S, et al. 1999. Characters of greenhouse gas (CH_4, N_2O and NO) emissions from croplands southeast China. World Resource Review, 11(2): 229~246
    254. Zogg G P, Zak D R, Ringelberg D B, et al. 1997. Compositional and functional shifts in microbial communities due to soil warming. Soil Sci Soc Am J, 61: 475~481
    255. 蔡祖聪, 沈光裕, 颜晓元, 等. 1998. 土壤质地、温度和 Eh 对甲烷排放的影响. 土壤学报, 35(2): 145~153
    256. 蔡祖聪, 颜晓元, 鹤田治雄, 等. 1995. 丘陵区稻田 CH_4 排放的空间分布. 土壤学报, 32: 151~159
    257. 蔡祖聪. 1999. 中国稻田甲烷排放研究进展. 土壤, 3: 266~269
    258. 曹广明, 李英年, 张金霞, 赵新全. 2001. 高寒草甸不同土地利用格局土壤 CO_2 的释放量. 环境科学, 22(6): 14~19
    259. 陈德章, 王明星, 上官行健等. 1993a. 我国西南地区的稻田 CH_4 排放. 地球科学进展, 8(5): 47~62
    260. 陈德章, 王明星. 1993b. 稻田甲烷排放和土壤、大气条件的关系. 地球科学进展, 8(5): 37~46
    261. 陈冠雄, 黄国宏, 黄斌, 等. 1995. 稻田 CH_4 和 N_2O 的排放及养萍和施肥的影响. 应用生态学报, 6(4): 378~382
    262. 陈四清, 崔骁勇, 周广胜, 李凌浩. 1999. 内蒙古锡林河流域大针茅草原土壤呼吸和凋落物分解的 CO_2排放速率研究. 植物学报, 41(6): 646~650
    263. 陈素英, 胡春胜. 1997. 太行山前平原农田生态系统土壤呼吸速率的研究. 生态农业研究, 5(2): 42~46
    264. 陈苇, 卢婉芳, 段彬伍. 2002. 稻草还田对晚稻稻田甲烷排放的影响. 土壤学报, 39(2): 170~176
    265. 陈文新. 1989. 土壤环境微生物学. 北京: 北京出版社. 133~151
    266. 陈云中, 闵航, 陈美慈, 等. 2001. 不同水稻土甲烷氧化菌和产甲烷菌数量与甲烷排放量之间相关性的研究. 生态学报, 21(9): 1498~1505
    267. 陈宗良, 邵可声, 李德波, 等. 1994. 控制稻田甲烷排放的农业管理措施研究. 环境科学研究, 7(1): 1~10
    268. 陈佐忠, 黄德华. 1988. 内蒙古草原土壤微生物生态学研究. 见: 草原生态系统研究(第 2 集). 北京: 科学出版社. 151~157
    269. 崔玉亭, 卢进登, 韩春儒. 1997. 集约高产农田生态系统有机物分解及土壤呼吸动态研究. 应用生态学报, 8: 59~64
    270. 单正军, 蔡道基, 任阵海. 1996. 土壤有机质硫化与温室气体释放初探. 环境科学学报, 16(2): 150~154
    271. 刁一伟, 郑循华, 王跃思, 等. 2002. 开放式空气 CO_2增高条件下旱地土壤气体 CO_2浓度廓线测定. 应用生态学报, 13(10): 1249~1252
    272. 丁洪, 蔡贵信, 王跃思, 等. 2001. 华北平原不同作物-潮土系统中 N_2O 排放量的测定. 农业环境保护, 20(1): 7~9,30
    273. 杜睿, 王庚辰, 吕达仁, 等. 2001. 箱法在草地温室气体通量野外实验观测中的应用研究. 大气科学, 25(1): 61~70
    274. 段彬伍, 卢婉芳, 陈苇, 等. 1999. 种植杂交稻对甲烷排放的影响及评价. 中国环境科学, 19(5): 397~401
    275. 耿远波, 章申, 董云社. 2001. 草原土壤的碳氮含量及其与温室气体通量的相关性. 地理学报, 56(1):44~53
    276. 侯爱新, 陈冠雄. 1998. 不同种类氮肥对土壤释放 N_2O 的影响. 应用生态学, 9(2): 176~180
    277. 黄承才, 葛滢, 常杰, 等. 1999. 中亚热带东部三种主要木本群落土壤呼吸的研究. 生态学报, 19(3): 324~328
    278. 黄东迈, 朱培立, 王志明. 1998. 旱地和淹水条件下土壤有机碳分解的研究和探讨. 土壤学报, 35(4): 532~536
    279. 黄国宏, 陈冠雄, 黄斌, 等. 1996. 东北旱田生态系统 N_2O 排故通量测定及总量估算. 见: 王庚辰, 温玉璞. 温室气体浓度和排放监测及相关过程. 北京: 中国环境科学出版社. 351~357
    280. 黄耀, 刘世梁, 沈其荣, 宗良纲. 2002. 环境因子对农业土壤有机碳分解的影响. 应用生态学报, 13(6): 709~714
    281. 黄耀著. 2003. 地气系统碳氮交换――从实验到模型. 北京: 气象出版社. 5~162
    282. 黄益宗, 张福珠, 刘淑琴, 等. 1999. 化感物质对土壤感物质对土壤 N_2O 释放影响的研究. 环境科学学报, 19(5): 478~482
    283. 江长胜, 王跃思, 郑循华, 李晶, 黄耀, 韩广轩, 张中杰, 朱波. 2005. 川中丘陵地区冬灌田 CH4 和 N_2O的排放及其影响因素研究. 应用生态学报, 16(3): 539~544
    284. 江长胜, 王跃思, 郑循华, 王明星. 2004. 稻田甲烷排放影响因素及其研究进展. 土壤通报, 35(5): 663~669
    285. 李晶, 王明星, 陈德章. 1998. 水稻田甲烷的减排方法研究及评价. 大气科学, 22(3): 354~362
    286. 李良谟, 伍期途. 1991. 原位条件下不同 N_2O 的通量. 土壤, 23(1) :24~27
    287. 李楠, 陈冠雄. 1993. 植物释放 N_2O 速率及施把的影响. 应用生态学报, 4(3): 295~298
    288. 李庆逵主编. 1992. 中国水稻土. 北京: 科学出版社. 1~50
    289. 李玉娥, 林而达. 1995. 减缓稻田甲烷的减排的技术研究. 农村环境与发展, 2: 38~40
    290. 李玉宁, 王关玉, 李伟. 2002. 土壤呼吸作用和全球碳循环. 地学前缘, 9(2): 351~357
    291. 李仲明主编. 1991. 中国紫色土(上). 北京: 科学出版社. 1~25
    292. 林匡飞, 项雅玲, 姜达炳, 等. 2000. 湖北地区稻田甲烷排放量及控制措施的研究. 农业环境保护, 19(5): 267~270
    293. 刘绍辉, 方精云, 清田信. 1998. 北京山地温带森林的土壤呼吸. 植物生态学报, 22(2): 119~126
    294. 刘绍辉, 方精云. 1997. 土壤呼吸的影响因素及全球尺度下温度的影响. 生态学报, 17: 469~476
    295. 刘允芬. 1998. 西藏高原农田土壤 CO_2 排放研究初报. 自然资源学报, 13(2): 181~185
    296. 卢维盛, 廖宗文, 张建国, 等. 1999. 不同水-旱轮作方式对稻田甲烷排放影响的研究. 农业环境保护, 18(5): 200~202
    297. 罗辑, 杨忠杨, 清伟. 2000. 贡嘎山东坡峨眉冷杉林区土壤 CO_2 排放. 土壤学报, 37(3): 402~409
    298. 上官行健, 王明星, Wassmann R, Rennenberg H, Seiler W. 1993a. 稻田土壤中甲烷产生率的试验研究. 大气科学, 17: 604~610
    299. 上官行健, 王明星, 陈德章, 沈壬兴. 1993b. 稻田甲烷的传输. 地球科学进展, 8: 13~22
    300. 上官行健, 王明星. 1993c. 稻田土壤中甲烷的产生. 地球科学进展, 8(5): 1~12
    301. 孙向阳, 郭青俊. 1995. 妙峰山林地 CO_2 释放量的初步研究. 北京林业大学学报, 17(4): 22~28
    302. 王步军, 过益先. 1996. 稻田 CH_4 排放研究进展与成果. 作物杂志, (6): 3~6
    303. 王明星著. 1999. 大气化学(第二版). 北京: 气象出版社. 106~120
    304. 王明星著. 中国稻田甲烷排放. 2001. 北京: 科学出版社. 83~172
    305. 王少彬, 宋文质, 苏维瀚. 1994. 冬小麦田氧化亚氮的排放. 农业环境保护, 13(5): 210~212
    306. 王胜春, 刘可星, 游植麟, 等. 1998. 不同母质发育的水稻土中 Fe、Mn 对 CH_4 排放的影响. 农村生态环境, 14(1): 52~54
    307. 王卫东, 谢小立, 上官行健, 等. 1995. 我国南方红壤丘岗区稻田 CH4 产生规律. 农村生态环境, 11(3): 11~14
    308. 王跃思. 2004. 碳交换的箱法测定. 见: 陈泮勤主编. 地球系统碳循环. 北京: 科学出版社. 130~145
    309. 王增远, 徐雨昌, 李震, 等. 1998. 稻田甲烷排放及其控制. 作物杂志, (3): 10~11
    310. 王智平. 中国农田 N_2O 排故量的估算. 1997. 农村生态环境, 13(2): 51~55
    311. 魏朝富, 高明, 黄勤, 车福才, 等. 2000. 耕种制度对西南地区冬水田甲烷排放的影响. 土壤学报, 37(2): 157~165
    312. 吴仲民, 曾庆波, 李意得, 等. 1997. 尖峰岭热带森林土壤 C 储量和 CO_2排放量的初步研究. 植物生态学报, 21(5): 416~423
    313. 谢军飞, 李玉娥. 2002. 农田土壤温室气体排放机理与影响因素研究进展. 中国农业气象, 23(4): 47~52
    314. 熊效振, 沈壬兴, 王明星, 等. 1999. 太湖流域单季稻的甲烷排放研究. 大气科学, 23(1): 9~18
    315. 熊正琴, 邢光熹, 施书莲, 杜丽娟. 2003. 轮作制度对水稻生长季节稻田氧化亚氮排放的影响. 应用生态学报, 14(10): 1761~1764
    316. 徐华, 蔡祖聪, 李小平. 1999a. 土壤 Eh 和温度对稻田甲烷排放季节变化的影响. 农业环境保护, 18(4): 145~149
    317. 徐华, 蔡祖聪. 1999b. 种稻盆钵土壤甲烷排放通量变化的研究. 农村生态环境, 15(1): 10~13,16
    318. 徐华, 邢光熹, 蔡祖聪, 鹤田治雄. 2000a. 土壤质地对小麦和棉花田 N_2O 排放的影响. 农业环境保护, 19(1): 1~3
    319. 徐华, 邢光熹, 蔡祖聪, 鹤田治雄. 2000b. 土壤水分状况和质地对稻田 N_2O 排放的影响. 土壤学报, 37(4): 499~505
    320. 徐文彬, 洪业汤, 陈旭辉, 等. 2000. 贵州省旱田土壤 N_2O 释放及其环境影响因素. 环境科学, 21(1): 7~11
    321. 杨昕, 王明星. 2001. 陆面碳循环研究中若干问题的评述. 地球科学进展, 16(3): 427~435
    322. 于克伟, 陈冠雄, 杨思河, 等. 1995. 几种旱地农作物在农田 N_2O 释放中的作用及环境因素的影响. 应用生态学报, 6(4): 387~391
    323. 曾江海, 王智平, 张玉铭, 宋文质, 等. 1995. 小麦-玉米轮作期土壤排放 N_2O 通量及总量估算. 环境科学, 16(1): 32~35, 67
    324. 张金霞, 曹广民, 周党卫, 等. 2001. 退化草地暗沃寒冻雏形土 CO_2释放的日变化和季节动态. 土壤学报, 38(1): 32~39
    325. 赵景波, 杜娟, 袁道先, 等. 2002. 西安地区土壤 CO_2 释放量和释放规律. 环境科学, 23(1): 22~25
    326. 郑循华, 王明星, 王跃思, 等. 1996. 稻-麦轮作生态系统中土壤湿度对 N_2O 产生与排放的影响. 应用生态学报, 7(3): 273~279
    327. 郑循华, 王明星, 王跃思, 等. 1997a. 温度对农田 N_2O 产生与排放的影响. 环境科学, 18(5): 1~5
    328. 郑循华, 王明星, 王跃思, 等. 1997b. 华东稻田 CH4 和 N_2O 排放. 大气科学, 21(2): 231~237
    329. 郑循华, 徐仲均, 王跃思, 等. 2002. 开放式空气 CO_2 增高影响稻田-大气 CO_2 净交换的静态暗箱法观测研究. 应用生态学报, 13(10): 1240~1244
    330. 周毅, 陶战. 1994. 控制稻田甲烷排放的农业技术选择. 农村生态环境, 10(3): 6~8
    331. 朱鹤健著. 1985. 水稻土. 北京: 农业出版社. 35
    332. 朱玫, 田洪海, 李金龙, 等. 1996. 大气甲烷的源和汇. 环境保护科学报, 22(2): 5~9
    333. 朱兆良, 文启孝主编. 中国土壤氮素. 南京: 江苏科学技术出版社.
    334. 邹建文, 黄耀, 郑循华, 王跃思, 陈玉泉. 基于静态暗箱法的陆地生态系统-大气 CO_2 净交换估算. 科学通报, 49(3): 258~264