泥河水库水—气界面CO_2通量研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以哈尔滨泥河水库为研究对象,利用静态箱-气相色谱法首次对我国水库生态系统水-气界面CO_2通量进行观测。本文选择泥河水库春、夏、秋三季无冰期对CO_2通量进行观测以研究其日变化及季节变化特征,同时对泥河水库碳的源/汇情况做出初步的判断。通过大量的数据分析,我们发现:
     1.从季节上看,泥河水库春、夏、秋季均表现为大气CO_2的源。平均CO_2通量为690.42±15.18(mg m~(-2) d~(-1))。CO_2通量季节变化明显,其基本变化趋势为:夏季756.42±54.58(mg m~(-2) d~(-1))>春季714.16±83.45(mg m~(-2) d~(-1))>秋季600.67±77.14(mg m~(-2)d~(-1))。
     2.从日变化上看,泥河水库全天表现为CO_2的源。春、夏、秋三季日平均碳通量分别为26.43±2.52(mg m~(-2) h~(-1)),35.44±4.09(mg m~(-2) h~(-1)),24.52(mg m~(-2) h~(-1))。CO_2通量日变化规律为:日间随着太阳辐射的增强,CO_2排放量减少,一般在13:00前后CO_2通量达到全天极小值。随后CO_2通量开始逐渐增加,在22:00~1:00之间达到全天源的极大值。除秋季日变化规律以双峰型变化趋势为主,春、夏两季均表现为单峰型递增趋势。
     3.影响水—气界面CO_2通量变化的要素在日变化和季节变化上有所不同。影响CO_2通量日变化的主要因子有:温度、风速、碱度和叶绿素,碳通量与温度、叶绿素呈负相关,与风速和碱度呈正相关。影响CO_2季节变化的主要因素有:温度、水生植物、水位以及天气情况。
     4.泥河水库全年碳排放为1.01 Gt C a~(-1)(G=1×10~9g)。通过与已有研究结果对比发现,泥河水库CO_2总体排放量比热带及亚热带水体低,比高寒地区以及贫营养型水体要高,总体上属于中等偏下水平。其通量值与自然湖泊CO_2排放量相近,与已有研究结果基本一致。
The static chamber/gas chromatograph techniques was used the first time in China to measure CO_2 fluxes across water-air interface in Nihe reservoir in Harbin.In this paper, observations were conducted to study the character of diurnal variation and seasonal variation of CO_2 fluxes in ice-free seasons including spring,summer and autumn.And meanwhile,the preliminary assessment was given on the situation of carbon source/sink in Nihe reservoir. Through the amount of data analysis,we found that:
     1.From the seasonal variation view,Nihe reservoir was the source of atmospheric CO_2 in three seasons with the average CO_2 fluxes of 690.42±15.18(mg m-2 d-1).The character of seasonal variation was obvious and their basic trends were:summer>spring>autumn with the average fluxes of 756.42±54.58(mg m-2 d-1),714.16±83.45(mg m-2 d-1) and 600.67±77.14(mg m-2 d-1),respectively.
     2.From the point view of diurnal variation,all-day performance was source for CO2 in Nihe reservoir.The average carbon flux in three seasons were 26.43±2.52(mg m-2 h-1), 35.44±4.09(mg m-2 h-1),24.52(mg m-2 h-1),respectively.The rules of diurnal variation of CO_2 fluxes were:Day With the solar radiation enhanced in daytime,CO_2 emission reductions, CO_2 flux to reach the minimum at about13:00,and thereafter CO_2 flux increased gradually affected by aquatic organisms' respiration and reached source maximum between 22:00~1:00. Besides the autumn with the diurnal variation trend of bimodal,the spring and summer are reflected in increasing trend of single-peak type.
     3.The factors that effected variation of c across water-air interface were a little differed between variation of diurnal and seasonal.The main factors impacted on diurnal variation of CO_2 fluxes are:temperature,wind speed,alkalinity and chlorophyll.There was negative relationship between carbon flux and temperature,chlorophyll,and positively correlated with wind speed and alkalinity.While the main factors affected seasonal variation are:temperature, aquatic plants,and water level and weather conditions,respectively.
     4.The carbon emissions of all-year in Nihe reservoir is 1.01Gt a-1(G=1×10~9g). Compared with previous studies we found that total emissions of CO_2 in Nihe reservoir located at lower-middle level on the whole which is much less than the water bodies in tropical and subtropical but higher than the ones in cold areas as well as oligotrophic water body.In addition,CO_2 emissions of reservoir are similar to nature lakes.This result is basically corresponded to previous study.
引文
[1]宋涛,三江平原生态系统CO_2通量的长期观测研究,南京信息工程大学博士论文.2007,1-2
    [2]Callendar G S.The artificial production of carbon dioxide and influence on temperature.Quarterly Journal of the Royal Meteorological Society,1938,64:233-240
    [3]Keeling C D and Whorl T P,Wahlen M,van der Plicht J.Interannual extremes in the rate of rise of atmospheric carbon dioxide since 1980.Nature,1995,375:666-670
    [4]Prentice I C,Farquhar G D et al.The Intergovemmental Panel on Climate Change (IPCC).Third Assessment Report.Houghton J T,Yihui D,(Eds) Cambridge University Press,Cambridge.2001,113-321
    [5]Braswell B H,Schimel D S,et al.The response of global terrestrial ecosystems to interannual temperature variability.Science,278:870-872
    [6]于贵瑞主编.全球变化与陆地生态系统碳循环和碳蓄积.北京:气象出版社,2003:44-47;255-288
    [7]陈泮勤.地球系统碳循环.北京:科学出版社,2004:26-37;131-141;293-304
    [8]Lal R.Soil carbon dynamics in cropland and rangeland.Environmental Pollution.2002,130-153
    [9]严国安,刘永定.水生生态系统的碳循环及对大气C0_2的汇.生态学报,2001,21(5):827-833.
    [10]Downing J P,Meybeck M et al.Land and water interface zones.Water Air and Soil Pollution,1993,70:123-137
    [11]Dean W E.The carbon cycle and biogeochemical dynamics in lake sediments.Journal of Paleolimnology.1998,21:375-394
    [12]Cole,J.J.,Caraco,N.F.,Kling,G.W.,et al.Carbon-dioxide supersaturation in the surface waters of lakes.Science,1994,265:1568-1570
    [13]Marberly S C.Diel,episodic and seasonal changes in pH concentrantions of inorganic carbon in a productive lake.Freshwater Biology.1996,35(3):579-598
    [14]Walsh J J,Importance of continental margins in the marine biogeochemical cycling of carbon and nitrogen.Nature.1991,350:53-55
    [15]Rudd J W M,Harris R,et al,Are hydroelectric reservoirs significant sources of greenhouse gases? Ambio,1993,22:246-248
    [16]Duchemin E,Lucotte M,CAnuel R.Comprison of static chamber and thinboundary layer equation methods for measuring greenhouse gas emissions from large water bodies.Environmental Science and Technology,1999,33:350-357
    [17]Duchenmin E.Hydroelectricity and greenhouse gases:Emission evaluation and identification of the biogeochemical processes responsible for their production.PhD dissertation.University of Quebec at Montreal,Canada.2000
    [18]Keller C A,et al.Increases in fluxes of greenhouse gases and methyl mercury following flooding of an experimental reservoir.Enviommental Science and Technology,1997,31:1334-1344
    [19]Kelly M and Stallard R F.Methane emissions by bubbling from Gatun Lake,Panama.Journal of Geophysical Rearch.1994,99:8307-8319
    [20]Schellhase H U,Macisaac E Aet al.Carbon budget estimates for reservoirs on the Columbia River in British Columbia.The Environmental Professional.1997,19:48-57
    [21]Hellsten S K,Martikainen Pet al.Measuremed Greenhouse Gas Emisssions from Two Hydropower Reservoirs in Northern Finland.Montreal(Quebec):Hydro-Quebec Headquarters.1996.
    [22]Smith L K,Lewes W M.Seasonality ofmethane emissions from five lakes and associated wetlands of the Colorado Rockies.Global Biogeochemical Cycles.1992,6:323-338
    [23]Matavienko B,Sikar E,et al.Gas release from a reservoir in the filling stage.Veranlundgen of International Vereinigung teoretische and Angewandte limnologie.2000.
    [24]Tavares de Lima I B,et al.Methane production,transport and emissions in Amazon hydroelectric plants.Veranlundgen of International Vereinigung teoretische and Angewandte limnologie.2000.
    [25]Galy-Lacaux C,Delmas R,et al.Gaseous emissions and oxygen consumption in hydroelectric dams:A case study in French Guyana.Global Biogeochemical Cycles.1997,11:471-483
    [26]Fry B,Peltzer E T,et al.analysis of marine DOC using a dry combustion method.Mar Chem,1996,54:191-201
    [27]Meybeck M.Rvierine transport of atmospheric carbon:sources,global typology and budget.Water,Air and Soil Pollut.1993,70:443-462
    [28]Downing J P,Meybeek Met al.Land and water interface zones.Water Air and Soil Pollution,1993,70:123-137
    [29]刘建康.高级水生生物学.北京:科学出版社,1999:131-139;156-164;189-192
    [30]倪乐意.大型水生植物.见:刘建康主编.高级水生生物学.北京:科学出版社,1999:224-240
    [31]林婉莲.有机碎屑及其在东湖生态系统中的作用.见:刘建康主编.东湖生态学研究(一).北京:科学出版社,1999:242-291
    [32]王骥.水体初级生产力.见:刘建康主编.高级水生生物学.北京:科学出版社,1999:128-150
    [33]Wetzel R G.Limnology,second edition.Cambridge University Press,London,1983.
    [34]Mattsson T,Kortelainen P,David M B.1998.Dissoved organic carbon fractons in Finnish and Marine(USA) lakes.Environment International,24:521-525
    [35]Richey J.E.,Wissmar R.C.,et al.1978 Carbon flow in Four lake ecosystems.Asurtetural apporach,202:1183-1286.
    [36]谢平,陈宜瑜.加强淡水生态系统中生物多样性的研究与保护.中国科学院院刊,1996.(4):276-281
    [37]Eugeni B,BoazL.Dynamics of the carbon dioxide system in the Dead Sea.Geochemica et Comsochimica Acta,2001,65(3):355-368
    [38]Rossano B,Enrica P,et al.Diurnal exchanges of CO_2 and CH_4 across the water-atmosphere interface in a water chestnut meadow.Aquatic Botany,2007,87:43-48
    [39]A.特伦布莱等.水库水质与温室气体排放的关系.水利水电快报,2006,27(15):19-21
    [40]Tremblay A,Lambert M,Gagnon L.Do Hydroelectric Reservoirs Emit Greenhouse Gases?Environmental Management,2003,33(S1):S509-S517.
    [41]Duchemin E,Lucotte M,CAnuel R.First assessment of methane and carbon dioxide emissions from shallow and deep zones of boreal reservoirs upon ice break-up.Lakes &reservoirs,2006,11(1):9-19
    [42]Huttunen J T,Seppo K et al.Mathane fluxes at sediment-water interface in some boreal lakes and reservoirs.Boreal Environment Research,2006,11:27-34
    [43]Gagnon,L,Joop F,Van de V.Greenhouse gas emissions from hydropower:The state of research in 1996.Energy Policy,1997,25:7-13
    [44]Aurelio M,Santos D,et al.Gross greenhouse gas fluxes from hydro-power reservoir compared to thermo-power plants.Energy policy,2006,34:481-488
    [45]Yim M H,Joo S J,Nakane K.Comparison of field methods for measuring soil respiration:astatic alkali absorption method and two dynamic closed chamber methods.Forest ecology and Management,2002,170:189-197
    [46]Ewel K C,Cropper W P,Gholz H L.Soil CO_2 evolution in Florida slash pine plantations.I.Changes through time.Can J For Res,1987,17:325-329
    [47]杜睿,吕达仁,王庚庆,万晓伟,孔琴心.静态箱法原位观测草原CO_2通量的探讨.生态学报,2002,6(4):383-386
    [48]Wang Yuesi,Wang yinghong.Quick measurement of CH_4,CO_2and N_2O emissions form a short-plant ecosystem.Advances in Atmospheric Sciences,2003,20(5):842-844
    [49]郑循华,徐仲均,王跃思等.大气CO_2浓度升高影响稻田-大气CO_2净交换的静态暗箱法观测研究。应用生态学报,2002.,13(10):1240-1244
    [50]Denmead O T.Chamber systems for measuring nitrous oxide emission from soils in the field.Soil Sci Soc Am J,1979,43:86-95
    [51]中华人民共和国国家统计局编.中国统计年鉴.北京:中国统计出版社,2005
    [52]于洪贤.泥河水库底栖动物群落的研究.水利渔业,2001,21(5):36-38
    [53]于洪贤.泥河水库浮游植物数量变动及种群分布.东北林业大学学报,2001,29(4):25-28
    [54]陈金平,董崇智.泥河水库饵料生物和鱼产潜力的估算.黑龙江水产,1999,4:9-11
    [55]殷永力,王堪舜,泥河水库浮游生物资源调查报告.黑龙江水产,2006,5:39-41
    [56]Huttunen,J.T.,Vaisanen,T.S.,Heikkinen,M.,et al.Exchange of CO_2,CH_4 and N_2O between the atmosphere and two northern boreal ponds with catchments dominated by peatlands or forests.Plant Soil,2002,242:137-146.
    [57]Huttunen,J.T.,Vaisanen,T.S.,Hellsten,S.K.,et al.Fluxes of CH_4,CO_2,and N_2O in hydroelectric reservoirs Lokka and Porttipahta in the northern boreal zone in Finland.Global Biogeochem Cycles,2002,16(1):3-17.
    [58]Mafino.R.and R.W.Howarh.Atmospheric oxygen exchange in the Hudson River:Dome measurements and comparison with other natural waters.Estuaries,1993,16:433-445.
    [59]Wanninkhof R.Relationship between wind speed and gas exchange over the ocean.Geophy.Res.1992,97:7373-7382.
    [60]张发兵,胡维平,杨龙元.太湖春季水-气界面碳通量日变化观测研究.生态环境,2004,13(2):186-190.
    [61]李香华,胡维平,杨龙元等.太湖梅梁湾冬季水-气界面二氧化碳通量日变化观测研究.生态学杂志,2005,24(12):1425-1429
    [62]Huttunen J T,Hammar T,et al.Potential springtime greenhouse gas emissions from a small southern boreal lake.Boral Environment Research,2004,9:421-427
    [63]邢阳平.浅谈湖泊水-气界面碳循环的研究华南热带农业大学硕士论文,2004:24-28:44-46
    [64]王晓蓉.环境化学.南京:南京大学出版社,1993:18-23
    [65]金心,石广玉.生物泵在海洋碳循环中的作用.大气科学,2001,125(5):683-688.
    [66]陈永根,李香华.中国八大湖泊冬季水.气界面C0_2通量.生态环境 2006,15(4):665-669
    [67]Hirota M,Senga Y,et al.Fluxes of carbon dioxide,methane and nitrous oxide in two contrastive fringing zones of coastal lagoon,Lake Nakaumi,Japan.Chemosphere,2007,68:597-603
    [68]Cole J.J.Aquatic microbiology for ecosystem scientists:new and recycled paradigms in ecological microbiology.Ecosystems,1999,2:215-225.
    [69]Cole,J.J.,Pace,M.L.,Carpenter,S.R.,et al.Persistence of net heterotrophy in lakes during nutrient addition and food web manipulations.Limnol.Oceanogr,2000,45:1718-1730.
    [70]Larmola T,Alm J,Juutinen S,et al.Ecosystem CO2 exchange and plant biomass in the littoral zone of a boreal eutrophic lake.Freshwater Biology 2003,48:1295-1310
    [71]马国红,杜兴华,段登选,孙栋等.盐碱地鱼池浮游植物与pH、总碱度、总硬度、含盐量的关系.齐鲁渔业,2001,18(5):36-39
    [72]Bolpagni,R.,Bartoli,M.,Viaroli,P.Nitrogen and phosphorous cycling in a oxbow lake dominated by Trapa nantans L.Verh.Int.Verein.Limnol.2006,29,1711-1714.
    [73]Hope,D.,Kratz,T.K.,Riera,J.L.,Relationship between pCO_2 and dissolved organic carbon in northern Wisconsin lakes.Journal of Environmental Quality1996,25,1442-1445.
    [74]Riera,J.L.,Schindler,J.E.,Kratz,T.K.,Seasonal dynamics of carbon dioxide and methane in two Clearwater lakes and two bog lakes in northern Wisconsin,USA.Canadian Journalof Fisheries and Aquatic Sciences 1999,56,265-274.
    [75]Del Giorgio,P.A.,Cole,J.J.,Caraco,N.,Peter,R.H.,Linking planktonic biomass and metabolism to net gas fluxes in northern temperate lakes.Ecology 1999,80,1422-1431.
    [76]Xing Yangping,Xie ping,et al.Methane and carbon dioxide fluxes from a shallow hypereutrophic subtropical Lake in China.Atmospheric Environment,2005,39:5532-5540
    [77]李钟玮,魏云慧,柳淼,陈言顺..干旱季节水库水质pH值增高原因探析.环境科学与管理,2007,32(2):80-82
    [78]李香华.太湖水一气界面温室气体通量及时空变化特征研究.海河大学硕士论文,2005:4-6;41-47;49-52:54-56
    [79]MukhoPadhyaya S.K.H.Biswas T.K.De.B.K.Sen.S.Sen.T.K.Janalmpact of Sundarban mangrove biosphere on the carbon dioxide and methane mixing ratios at the NE Coast of Bay of Bengal,India Atmospheric Environment.2002,36:629-638.
    [80]Merlivat.L.and Memery.Gas exchange across an air-water interface:experimental results and modeling of bubble contribution to transfer.J.Geophys.es.1983,88:707-724
    [81]Smith.S.D& E.P.Jones.Evidence forwind-Pumping of air-sea gas exchange based on direct measurements of CO2 fluxes.J.Geo Phys.Res.1985,90:869-875.
    [82]James L P.The Role of Nutrient Loading and Eutrophication in Estuarine Ecology.Environmental Health Perspectives.2001,109:699-706
    [83]王新明,盛国英.广州感潮河段底泥有机质特征.沉积学报.1997,15(2):232-235
    [84]范成新.太湖底泥蓄积量估算及分布特征探讨.上海环境科学.2000,19(2):72-75
    [85]Jonsson,A.,Karlsson,J.,Jansson,M.,Sources of carbon dioxide supersaturation in clearwater and humic lakes in Northern Sweden.Ecosystems,2003,6,224-235.
    [86]Tremblay,A.,Lambert,M.,Gagnon,L.,Hydroelectric Reservoirs Emit Greenhouse Gases Environmental Management,2004,33(Suppl 1),509-517.
    [87]Magenheimer,J.F.,Moore,T.R.,Chmura,G.L.,Daoust,R.J.,Methane and carbon dioxide flux from a macrotidal salt marsh,Bay of Fundy,New Brunswick.Estuaries,1996,19,139-145.
    [88]Middelburg, J.J., Klaver, G., Nieuwenhuize, J., Wielemaker, A., Hass, W., Vlug, T., van der Nat, J.F.W.A., Organic matter mineralization in intertidal sediments along an estuarine gradient. Mar. Ecol-Prog. Ser. 1996, 132,157-168.
    [89]Arneth A, Kurbatova J, et al.Comparative ecosystem-atmosphere exchange of energyand mass in a European Russian and a centralSiberian bog II. Interseasonal and interannualvariability of CO_2 fluxes.Tellus,2002,54B:514-530
    [90]Nouchi, I., Mariko, S., Aoki, K., Mechanism of methane transport from rhizosphere to the atmosphere through rice plants. Plant Physiol. 1990, 94, 59-66.
    [91]Dannenberg, S., Conrad, R., Effect of rice plants on methane production and rhizospheric metabolism in paddy soil. Biogeochemistry, 1999,45, 53-71.
    [92]Moore, T.R., Dalva, M., The influence of temperature and water table position on carbon dioxide and methane emissions from laboratory columns of peatland soils. J. Soil Sci. 1993, 44, 651-664.
    [93]St. Louis V.L., Kelly C.A., Duchemin E., et al. Reservoir surfaces as sources of greenhouse gases to the atmosphere: a global estimate. Bioscience, 2000, 50:766-775.
    [94]Striegl R G, Michmerhuizen C M. Hydrologic influence on methane and carbon dioxide dynamics at two north-central Minnesota lakes. Limnol.Oceanogr,1998,43:1519-1529
    [95]Cole, J.J., Caraco, N.F. Atmospheric exchange of carbon dioxide in a low-wind oligotrophic lake measured by the addition of SF_6. Limnol. Oceanogr, 1998,43:647-656.
    [96]Cole, J.J., Pace, M.L., Carpenter, S.R., et al. Persistence of net heterotrophy in lakes during nutrient addition and food web manipulations. Limnol. Oceanogr, 2000, 45:1718-1730.
    [97]Casper p,Maberly S C,Hall G H,et al.Fluxes of methane and carbon dioxide from a small productive lake to the atmosphere. Biogeochemistry,2000,49:1-19
    [98]Frederic Guerin, Gwenael Abril, Dominique Serca, et al. Gas transfer velocities of CO_2 and CH4 in a tropical reservoir and its river downstream. Journal of Marine Systems, 2007, 66: 161-172.