太湖地区稻—油轮作及江西红壤双季稻农田生态系统净碳汇效应及收益评估
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
农田生态系统碳循环是陆地生态系统碳循环的重要组成部分,也是受人类活动影响最为强烈的生态系统,对维持全球的碳平衡具有重要的贡献。稻田是农业土地利用类型的主要方式之一,在世界农业生产中起着举足轻重的作用,并且对陆地生态系统碳循环、大气温室气体的吸收/排放以及全球气候变化起着不容忽视的影响。稻田土壤与大气间CO2交换特征及其影响因素是碳循环研究的重要内容,其研究不仅是碳循环过程机理和调控机制以及模型模拟所必需的,而且可以为估算和评价稻田生态系统碳源/汇强度及其对大气CO2浓度变化的贡献提供科学依据。因此,本文以太湖稻-油轮作和红壤稻-稻生态系统为研究对象,利用历年作物产量、凋落物固碳、土壤有机碳含量、农田CO2排放等实测资料以及生态系统的物质投入和管理投入等调查资料,估算了该系统的年碳平衡和经济收益。同时,在实验室分析测定了太湖地区农田生态系统不同施肥处理下凋落物的碳含量,以期为完整的全碳分析提供数据支持。主要研究结果如下:
     1红壤地区供试稻田生态系统早稻季和晚稻季无论从碳投入-排放还是经济投入-收益上都没有显著差异,且均表现出有机无机肥配施>单施化肥>对照的效果。将红壤稻-稻系统和太湖稻-油轮作统作比较,红壤系统可以通过较小的碳投入和经济投入获得较高的碳汇效应,但经济收益不及太湖地区。综合比较可以得出,水田耕作相对于旱作有更高的碳汇效应及经济收益,并且,合理的有机无机肥配施可以达到经济效益和环境效益的双赢。
     2太湖供试稻田在水稻季和油菜季四种施肥处理下作物凋落物及根系含碳量都有一定的显著性差异。但无论水稻季还是油菜季,凋落物含碳量和根系含碳量没有一致的变化趋势。水稻季和油菜季NF处理的凋落物及根系固碳总量均远远低于其余三种施肥处理,化肥、常规、和秸秆处理的凋落物及根系固碳总量水稻季秸秆<常规<化肥,油菜季常规<化肥<秸秆。水稻季四种处理下凋落物及根系固碳量占作物固碳的百分比为4.0%(秸秆)-6.1%(无肥),油菜季为15.0%(常规)-24.4%(化肥)。
     3太湖地区供试土壤在4种施肥处理下的碳汇量和经济效益均存在显著差异。水稻季4种施肥处理均为碳汇,且有机肥处理高于化肥和无肥处理;油菜季无肥处理为弱的碳源,其余3种施肥处理为碳汇,但碳汇量低于水稻季;从全年总碳汇量来看,4种施肥处理的碳汇效应表现为:秸秆>常规>化肥>无肥。水稻季经济效益为施肥处理高于无肥处理,且有机肥处理的经济效益最好;油菜季无肥处理经济效益极低,其余3个处理经济效益为常规>秸秆>化肥;全年经济效益除无肥处理外,其余3个施肥处理均较高。总体来看,有机无机肥配施处理净碳汇效应明显高于无肥和化肥处理,而且可以取得更高的经济效益,因此,有机无机肥配施处理无论从作物产量,净碳汇量还是经济效益方面,都有较高的价值体现,是一种可持续的稻田管理措施。
Carbon cycling of cropland ecosystem is an important part of terrestrial carbon cycling. Cropland ecosystem is also an ecosystem strongly influenced by human activities. It has great contributions to sustain Global carbon balancing. Paddy is a main style of agricultural land use. It plays an important role in world agricultural production, and is of significance in terrestrial carbon cycling, the adsorption/emission of greenhouse gas and global climate change. The CO2 exchange characteristics between paddy soil and atmosphere and related affecting factors are main contents in carbon cycling research. It is not only necessary in the mechanism of carbon cycling process, control mechanism and model simulation, but also provides scientific basis for estimating and evaluating the carbon source/sink density and its contribution to concentration varieties of atmospheric CO2 in cropland ecosystem. Therefore, taking long-term fertilized rice-rape rotation system in Tai Lake region and early rice-late rice ecosystem in red soil region as test objective, its annual carbon balance and economic benefit were estimated, based on the measurement of past years grain yield, litter C content, SOC and field CO2 emission as well as the investigation of material and management inputs. Meanwhile, determining and analyzing C contents in litters in cropland ecosystem in Tai Lake region under different fertilizer treatments was carried out in laboratory to provide data validation for full carbon analysis. Main conclusion can be summarized as follow:
     1 The experimental croplad ecosystem, not only in early rice season but also in late rice season for red soil, didn't show significant difference in both carbon input-emission and economic cost-benefit, with the trend of combined inorganic/organic fertilization> chemical fertilizers only> no fertilization. Compared with the rice-rape rotation system in Tai Lake region, the rice-rice cultivation system in red soil region had less economic benefits while obtained higher carbon sink effect with less carbon and economic input. Above all, the underwater cultivation had higher carbon sink effect and economic benefits than dry cropping and reasonable inorganic/organic fertilization could promise win-win benefit for economy and environment.
     2 The carbon content in both litters and roots in rice and rape season in Tai Lake region had significant difference under four different fertilizer treatments. But it had no coincident varieties in each season. The carbon gross in roots under no fertilization was far lower than that under other three fertilizer treatments, and the trend was combined fertilization of chemical fertilizers with straw return< combined fertilization of chemical fertilizers with manure return< chemical fertilizers only in rice season, while it was combined fertilization of chemical fertilizers with manure return< chemical fertilizers only< combined fertilization of chemical fertilizers with straw return in rape season. The carbon sequestered in litters and roots accounted for 4.0%under combined fertilization of chemical fertilizers with straw return to 6.1%under no fertilization in carbon sequestered in crop in rice season, and was 15.0%under combined fertilization of chemical fertilizers with manure return to 24.4%under chemical fertilizers only that of rape season.
     3 Both the carbon sink and economic benefits have significant difference under four different fertilizer treatments in Tai Lake region. The four treatments were proved to be carbon sink in rice growing season, and the carbon sink under combined fertilization was higher than those under no fertilization and chemical fertilizers only; No fertilizer treatment was carbon source in rape growing season, the other 3 fertilizer treatments were carbon sink, but lower than that in rice season; as to the annual carbon sink, the effect of carbon sink was shown as:combined fertilization of chemical fertilizers with straw return> combined fertilization of chemical fertilizers with manure return> chemical fertilizers only> no fertilization. The economic benefits under fertilized treatments were higher than that under no fertilization, and combined inorganic/organic fertilization had highest economic benefits in rice season; the economic benefits under no fertilization was lowest, the other 3 treatments behaved as combined fertilization of chemical fertilizers with manure return> combined fertilization of chemical fertilizers with straw return> chemical fertilizers only in rape season; as to the annual economic benefits, all the treatments had higher benefits besides no fertilization treatment. Overall, the combined inorganic/organic fertilizer treatments obviously had higher net carbon sink than no fertilization and chemical fertilizers only, and could get higher economic benefits as well. Therefore, combined inorganic/organic fertilization was superior to the other treatments in yield, net carbon sink and economic benefits and could be taken as a sustainable cropland management countermeasure.
引文
Baford CC, Wofsy SC, Goulden ML, et al. Factors controlling long-and short-term sequestration of atmospheric CO2 in a mid-latitude forest[J]. Science,2003,294:1688-1691.
    BP China. Calculator of carbon emission.2007 [2007-11-03]. http://www.bp.com/sectiongenericarticle.do?categoryId=9011336&contentId=7025421
    Bruce JP, Frome M, Haites E, et al. Carbon sequestration in soils[J]. Journal of Soil Water Conservation, 1999,54:382-389
    Buyanovsky GA, Wagner GH. Carbon cycling in cultivated land and its global significance[J]. Global Change Biology,1998,4:131-141
    Campbell CA, Zentner RP, Liang BC, et al. Organic C accumulation in soil over 30 years in semiarid southwestern Saskatchewan-Effect of crop rotations and fertilizers[J]. Can J Soil Sci,2000,80: 179-192
    Cole CV, Duxbury J, Freney J, et al. Global estimates of potential mitigation of greenhouse gas emissions by agriculture[J]. Nutrient Cycling in Agroecosystems,1997,49:221-228
    Cole CV, Flack K, Lee J, et al. Agricultural sources and sinks of carbon[J]. Water, Air, Soil pollut,1993, 70:111-122
    Coombes J, Hall D, Long S, et al.邱国雄等译.生物生产力和光合作用测定技术[M].北京:科学出版社,1986
    Cox PM, Betts RA, Jones CD, et al. Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model[J]. Nature,2000,408:184-187
    European Climate Exchange. Market Date Snapshot 2005[2008-10-28]. http://www.ecxeurope.com/default flash.asp
    Fang J Y, et al. Change in forest biomass carbon storage in Chian between 1949 and 1998[J]. Science, 2001,292:2320-2322
    FAO. http://faostat.fao.org/faostat/,2005
    Goulden ML, Wofsy SC, Harden JW, et al. Sensitivity of boreal forest carbon balance to soil thaws[J]. Science,1991,279:214-216
    Ham JM, Knapp AK. Fluxes of CO2, water vapor, and energy from a prairie ecosystem during the seasonal transition from carbon sink to carbon soure[J]. A agricultural and Forest Meteorology,1998, 89:1-14
    Hollinger DY, Aber J, Dail B, et al. Spatial and temporal variability in forest-atmosphere CO2 exchange[J]. Global Change Biology,2004,10:1698-1706.
    Houghton LJT, et al. Eds. Climate change 2001:the scientific basis[M]. Cambridge university press, Cambridge.2001.185-236
    Houghton RA.Balancing the global carbon cycle with terrestrial ecosystems. In:Zepp RG, Sonntag Cheds. The Role of Nonliving Organic Matter in the Earth's Carbon Cycle. New York:John Wiley& Sons Ltd,1995.133-152
    IGBP. The terrestrial biosphere and global change:Implication for nature and managed ecosystems [J]. A synthesis of GCTE and related research,1997:1-32
    Janssens IA, Freibauer A, Ciais P, et al. Europe's terrestrial biosphere absorbs 7 to 12%of European anthropogenic CO2 emissions[J]. Science,2003,300:1538-1542
    Janzen HH, Campbell CA, Ellert BH, et al.,1998. Management effects on soil C storage in the Canadian prairies[J]. Soil Tillage Res,47:181-195
    Jiang Y, Zhang YG, Liang WJ, et al. Profile distribution and storage of soil organic carbon in an aquic brown soil as affected by land use[J]. Agricultual Sciences in China,2005,4:199-206
    Lal R, Burce JP. The potential of world cropland soils to sequester C and mitigate the greenhouse effect[J]. Environmental Science & Policy,1999,2(2):177-185
    Lal R. Carbon sequestration in dry land[J]. Annals of Arid Zone,2000,39:1-10
    Lal R. Offsetting China's CO2 emissions by soil sequestration[J]. Climate Change,2004a,65:263-275
    Lal R. Global potential of soil carbon sequestration to mitigate the green house effect[J]. Critical Review in Plant Sciences,2003,22 (2):151-18
    Law BE, Falge E, Gu L, et al. Environment contrals over carbon dioxide and water vapor exchange of terrestrial vegetation[J]. Agricultural and Forest Meteorology,2002,113:97-120.
    Li C. Modeling impacts of agricultural practices on soil C and N2O emissions. In:Lal R ed. Soil Management and Greenhouse Effect[M]. Florida:CRC Press,1995.101-112
    Litynski JT, Plasynski S, McIlvried HG, et al. The United States department of energy's regional carbon sequestration partnerships program validation phase[J]. Environment International,2008,34(1): 127-138
    Lupwayi NZ, Rice WA, Clayton GW.1999. Soil microbial biomass and carbon dioxide flux under wheat as influenced by tillage and crop rotation[J]. Can J Soil Sci,79:273-280
    Ma ZY, Edwards-Jones G Optimizing the external energy input into farmland ecosystems:a case study from Ningxia, China[J]. Agricultural Systems,1997,53(2-3):269-283
    Markus B, Anjana D, Ulrich F, et al. Role of energy efficiency standards in reducing CO2 emissions in Germany:An assessment with TIMES[J]. Energy Policy,2007,35(2):772-785
    Nyborg M, Malhi SS, Solberg ED, et al. Carbon storage and light fraction C in a grassland Dark Gray Chernozem soil as influenced by N and S fertilization[J]. Can J Soil Sci,1999,79:317-320
    Pemetta J. What is global change? Global Change News Letters,1995, (2):1-3
    Post WM, Kwon KC. Soil carbon sequestration and land-use change:Processes and potential[J]. Global Change Biology,2000,6:317-327
    Powlson DS, Olk D. Long-term soil organic matter dynamics. In:Kirk G, Olk D, eds. Carbon and Nitrogen Dynamics in Flooded Soils. Proceedings of a Workshop,2000.19-22 (http://www.irri.org/science/abstracts/008.asp)
    Qu Jiansheng, Sun Chengquan. Political contents of the global change studies:Taking the policies on climate of US as an example[J]. World Science-Technology R& D,2004,26(2):78-83
    Russell CA, Voroney RP. Carbon dioxide efflux from the floor of a boreal aspen forest,Irelationship to environmental variables and estimates of C respired[J]. Canadian Journal of Soil Science,1998, 301-309
    Salisbury F, Ross C.北京大学生物系等译[M].植物生理学.北京:科学出版社,1979,87-96
    Singh J, Gupta W. Plant decomposition and soil respiration in terrestrial ecosystems[J]. Bot Rev,1977, 43:449-529
    Smith P, Martino D, Cai ZC, et al. Greenhouse gas mitigation in agriculture[J]. Philosophical Transactions of the Royal Society B,2008,363:789-813
    Smith WN, Desjardins RL, Pattey E. The net flux of carbon from agricultural soil in Canada 1970-2010[J]. Global Change Biology,2000,6:557-568
    Soegaard H, Jensen NO, Boegh E, et al. Carbon dioxide exchange over agricultural landscape using eddy correlation and footprint modeling[J]. Agricultural and Forest Meteorology,2003,114:153-173
    Specht JE, Hume DJ, Kumudini SV. Soybean yield potential-a genetic and physiological perspective[J]. Crop Science,1999,39:1560-1570
    West TO, Marland G. A synthesis of carbon sequestration, carbon emissions, and net carbon flux in agriculture:Comparing tillage practices in the United States [J]. Agriculture, Ecosystems and Environment,2002,91(1/2/3):217-232.
    Zheng JF, Zhang XH, Li LQ, et al. Effect of long-term fertilization on C mineralization and production of CH4 and CO2 under anaerobic incubation from bulk samples and particle size fractions of a typical paddy soil[J]. Agreculture, Ecosystems and Environment,2007,120(2-4):129-138
    Zibilske LM, Bradford JM, Smart JR. Conservation tillage induced changes in organic carbon, total nitrogen and available phosphorus in a semi-arid alkaline subtropical soil[J]. Soil& Tillage Research, 2002,66:153-163
    白玮,郝晋珉,杨君,等.区域粮食生产中的农业生产资料灰色关联分析与预测[J].农业系统科学与 综合研究,2007,23(3):368-371
    陈风波,丁士军.水稻投入产出与稻农技术需求——对江苏和湖北的调查[J].农业技术经济,2007,6:44-50
    陈利容.全球气候变化对我国农业的影响[J].种子科技,2008,4:38-40
    陈泮勤.地球系统科学的发展与展望[J].地球科学进展,2003,18(6):974-979
    陈四清,崔骁勇,周广胜,等.内蒙古锡林河流域大针茅草原土壤呼吸和凋落物分解的C02排放速率研究[J].植物学报,1999,41(6):645-650
    程积民,万惠娥,胡相明,等.半干旱区封禁草地凋落物的积累与分解[J].生态学报,26(4):1207-1212
    方精云,刘国华,徐嵩龄.中国陆地生态系统的碳库.温室气体浓度和排放监测及相关过程[M].北京:中国环境科学出版社,1996:109-128
    郭继勋,祝廷成.东北地区羊草草原主要群落立枯-凋落物动态的比较研究[J].植物学报,1992,34(7):529-534
    韩冰,王效科,欧阳志云,等.中国农田生态系统土壤碳库的饱和水平及其固碳潜力[J].农村生态环境,2005,21(4):6-11
    韩纯儒.农业生态系统的能流结构及效率[J].农村生态环境,1985,(3):6-8
    韩广轩,周广胜,许振柱.中国农田生态系统土壤呼吸作用研究与展望[J].植物生态学报,2008,32(3):719-733
    韩学勇,赵凤霞,李文友.森林凋落物研究综述[J].林业科技情报,2007,39(3):12-16
    郝庆菊,王跃思,宋长春,等.三江平原农田生态系统C02收支研究[J].农业环境科学学报2007,26(4):1556-1560
    郝庆菊,王跃思,宋长春,等.垦殖对沼泽湿地CH4和N20排放的影响[J].生态学报,2007,27(8):3417-3426
    郝永芳,吴娟,周月凤.水稻本田控制灌溉技术[J].现代农业科技,2009,1:222,227
    何念祖,倪吾钟.不同肥料管理对三熟制高产稻田土壤有机碳消长与平衡的影响[J].植物营养与肥料学报,1996,2(4):315-321
    宏观经济研究院产业所课题组.安徽、江苏农业成本及补贴问题调查报告[J].宏观经济管理,2008,10:45-47
    侯鹏程,徐向东,潘根兴.不同土地利用方式对农田表土有机碳库的影响——以太湖地区吴江市为例[J].南京农业大学学报,2007,30(2):68-72
    黄耀.中国的温室气体排放、减排措施与对策[J].第四纪研究,2006,26(5):722-732
    黄斌,王敬国,龚元石,等.冬小麦夏玉米农田土壤呼吸与碳平衡的研究[J].农业环境科学学报,2006,25(1):156-160
    黄欠如,胡锋,李辉信,等.红壤性水稻土施肥的产量效应及与气候、地力的关系[J].土壤学报,2006,43(6):926-933
    黄文德,牛俊义,高玉红,等.陇东旱塬村域农田生态经济系统投入产出特征研究[J].甘肃农业大学学报,2008,3(43):98-101
    黄耀,刘世梁,沈其荣,等.环境因子对农业土壤有机碳分解的影响[J].应用生态学报,2002,13(6):709-714
    黄耀,刘世梁,沈其荣,等.农田土壤有机碳动态模拟模型的建立[J].中国农业科学,2001,34(5):465-468
    姜勇,庄秋丽,梁文举.农田生态系统土壤有机碳库及其影响因子[J].生态学杂志,2007,26(2):278-285
    李琳,张海林,陈阜,等.不同耕作措施下冬小麦生长季农田二氧化碳排放通量及其与土壤温度的关系[J].应用生态学报,2007,18(12):2765-2770
    李长生.土壤碳储量减少:中国农业之隐患-中美农业生态系统碳循环对比研究[J].第四纪研究,2000,20(4):345-350
    李俊,于强,孙晓敏,等.华北平原农田生态系统碳交换及其环境调控机制[J].中国科学D辑,地球科学,2006,36(增刊Ⅰ):210-223
    刘强,刘嘉祺,贺怀宇.温室气体浓度变化及其源与汇研究进展[J].地球科学进展,2000,15(4):453-460
    刘绍明,吴文良.县域农业生态经济系统的分析(Ⅱ)功能和效率[J].农业环境科学学报,2003,22(1):78-81
    刘允芬,欧阳华,张宪洲,等.青藏高原农田生态系统碳平衡[J].土壤学报,2002,39(5):636-642
    刘允芬.农业生态系统碳循环研究[J].自然资源学报,1995,10(1):1-8
    陆志敏,潘根兴,郑聚锋,等.不同状态样品培养下太湖地区黄泥土好气呼吸与CO2产生潜力[J].生态环境,2007,16(3):987-993
    逯非,王效科,韩冰,等.中国农田施用化学氮肥的固碳潜力及其有效性评价[J].应用生态学报,2008,19(10):2239-2250
    孟磊,蔡祖聪,丁维新.长期施肥对土壤碳储量和作物固定碳的影响.土壤学报,2005,42(5):769-776
    潘根兴,周萍,张旭辉,等.不同施肥对水稻土作物碳同化与土壤碳固定的影响——以太湖地区黄泥土肥料长期试验为例[J].生态学报,2006,26(11):3704-3710
    潘根兴.中国土壤有机碳库及其演变与应对气候变化[J].气候变化研究进展,2008,4(5):282-289
    潘瑞炽,董愚得.植物生理学(第二版)[M].北京:高等教育出版社,1995,246-253
    邱建军,王立刚,李虎,等.农田土壤有机碳含量对作物产量影响的模拟研究[J].中国农业科学, 2009,42(1):154-161
    曲建升,葛全胜,张雪芹.全球变化及其相关科学概念的发展与比较[J].地球科学进展,2008,23(12):1277-1284
    任秀娥,王勤学,童成立,等.亚热带稻田生态系统土壤呼吸的估算[J].科学通报,2007,52(13):1548-1553
    尚杰.农业生态经济学[M].北京:中国农业出版社,2000:65-66
    沈永平.IPCC WGI第四次评估报告关于全球气候变化的科学要点[J].冰川冻土,2007,29(1)
    苏永中,赵哈林.土壤有机碳储量、影响因素及其环境效应的研究进展[J].中国沙漠,2002,22(3):220-228
    孙文娟,黄耀,陈书涛,等.作物生长和氮含量对土壤-作物系CO2排放的影响[J].环境科学,2004,25(3):1-6
    汪业勖.中国森林生态系统区域碳循环研究[D].中国科学院理学博士研究生学位论文,1999
    王燕,王小彬,刘爽,等.保护性耕作及其对土壤有机碳的影响[J].中国生态农业学报,2008,16(3):766-771
    王立刚,邱建军,马永良,等.应用DNDC模型分析施肥与翻耕方式对土壤有机碳含量的长期影响[J].中国农业大学学报,2004,9(6):15-19
    王娓,郭继勋.东北松嫩平原羊草群落的土壤呼吸与枯枝落叶分解释放CO2贡献量[J].生态学报,2002,22(5):655-660
    魏小红,蔺海明,胡恒觉.甘肃河西地区农田生态系统能量投入产出及效率分析[J].草业学报,2001,10(3):79-84
    魏小红.甘肃河西地区农田生态系统能流分析[J].甘肃农业大学学报,2001,36(1):55-60
    吴庆标,王效科,郭然.土壤有机碳稳定性及其影响因素[J].土壤通报,2005,36(5):743-747
    杨景成,韩兴国,黄建辉,等.土地利用变化对陆地生态系统碳贮量的影响[J].应用生态学报,2003,14(8):1385-1390
    杨君,郝晋珉,林瑜,等.全国农业生产资料投入分析及灰色预测[J].农机化研究,2009,5:6-9
    杨士弘.城市绿化树木碳氧平衡效应研究[J].城市环境与城市生态,1996,9(1):37-39
    张心昱,陈利顶,傅伯杰,等.农田生态系统不同土地利用方式与管理措施对土壤质量的影响[J].应用生态学报,2007,18(2):303-309
    张心昱,陈利顶,傅伯杰,等.不同农业土地利用方式和管理对土壤有机碳的影响——以北京市延庆盆地为例[J].生态学报,2006,26(10):3198-3204
    张玉敏,曹志强.农药对环境的污染与对策[J].农村工作研究,2009,4:71
    赵兰坡,马晶,杨学明,等.耕作白浆土有机无机复合体腐殖质组成及类型[J].土壤学报,1997,34(1):2841
    赵荣钦,秦明周,黄爱民,耕地土壤碳固存的措施与潜力[J].生态环境,2004,13(1):81-84
    赵荣钦,秦明周.中国沿海地区农田生态系统部分碳源/汇时空差异[J].生态与农村环境学报,2007,23(2):1-6,11
    赵学勇,崔建垣,张铜会.沙化农田小麦凋落物产量测定及分解量预测[J].中国沙漠,1999,6(19):103-106
    郑聚锋,张旭辉,潘根兴,等.水稻土基底呼吸与CO2排放强度的日动态及长期不同施肥下的变化[J].植物营养与肥料学报,2006,12(4):485-494
    郑循华,徐仲均,王跃思,等.开放式空气CO2浓度增高影响稻田-大气CO2净交换的静态暗箱法观测研究[J].应用生态学报,2002,13(10):1240-1244
    周萍,张旭辉,潘根兴.长期不同施肥对太湖地区黄泥土总有机碳及颗粒态有机碳含量及深度分布的影响[J].植物营养与肥料学报,2006,12(6):765-771
    周卫军,王凯荣,郝金菊,等.红壤稻田生态系统有机物料循环对土壤有机碳转化的影响[J].生态学杂志,2006,25(2):140-144
    周志田,成升魁,刘允芬,等.中国亚热带红壤丘陵区不同土地利用方式下土壤CO2排放规律初探[J].资源科学,2002,24(2):83-87
    朱学群,刘音,顾凯平.陆地生态系统碳循环研究回顾与展望[J].安徽农业科学,2008,36(24):10640-10642,10662
    朱咏莉,童成立,吴金水,等.亚热带稻田生态系统CO2通量的季节变化特征[J].环境科学,2007,28(2):283-288
    朱咏莉,吴金水,周卫军,等.亚热带稻田生态系统CO2排放及影响因素[J].中国环境科学,2005,25(2):151-154
    庄亚辉.全球生物地球化学循环研究的进展[J].地学前缘,1997,4(1/2):163-168
    邹建文,黄耀,郑循华,等.基于静态暗箱法的陆地生态系统-大气CO2净交换估算[J].科学通报,2004,49(3):258-264
    邹建文,黄耀,宗良纲,等.稻田CO2,CH4和N20排放及其影响因素[J].环境科学学报,2003,23:758-764