不同耕作方式下紫色水稻土农田生态系统CO_2和N_2O的排放研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
气候变暖是当今全球性的环境问题,其主要原因之一是由于大气中温室气体浓度的不断增加,其中CO2和N2O被认为是两种非常重要的温室气体,两者对全球变暖的贡献分别为65%和5%。虽然N2O的贡献较低,但其单分子增温潜势却是二氧化碳的296倍,且在大气中的停留时间长达120-150年;同时,N2O在平流层中的光解产物还能影响到O3的光化学过程,对全球环境和气候有着双重危害作用,而且这种影响越来越明显。
     农业生产活动对这两种温室气体在大气中的含量有着重要影响。其中,耕作方式是农业生产的重要部分,不同耕作方式对农田生态系统中温室气体的产生与排放有着较大差异。相对于传统耕作,免耕具有优化土壤结构、增加土壤水分、减少土壤侵蚀、降低耕作成本和提高水分利用效率等优点,然而,这种耕作方式对农业生产中CO2和N2O排放的影响还没有明确的结论。
     本研究以位于西南大学农业部重庆紫色土生态环境重点野外科学观测试验站于1989年设立的长期免耕试验田为研究对象,利用静态箱-气相色谱法研究冬水田平作(DP)、水旱轮作(SH)、厢作免耕(XM)和垄作免耕(LM)等不同耕作制度下紫色水稻土种植系统中生态系统总呼吸和N2O的排放进行了研究;对油菜季SH、XM和LM三种耕作方式农田NEE动态进行了考察,并分析了温度和水分两种主要的环境因子对生态系统总呼吸和N2O排放通量的影响。结果表明:
     (1)在油菜季,没有种植作物的DP处理中,农田生态系统总呼吸始终维持在一个较低水平,且变化不大;而其他三种处理中,油菜季的生态系统总呼吸速率变化总趋势为先升高后降低,随着油菜植株的生长和温度的回升以及其他有利于生态系统呼吸因素的加强,生态系势,排放量顺序都为花期>角果成熟期>苗期>苔蕾期。
     在水稻季的苗期和分蘖期,由于水稻植株较小且温度相对较低,各耕作方式下生态系统总呼吸速率呈现出较小范围的升高;进入拔节期后,随着水稻的快速生长,农田中生态系统总呼吸速率也呈急剧增长,并在花期达到较大的排放量,各处理的最大呼吸速率分别为LM(2212.1±157.8)>XM(1909.9±402.2)>SH(1899.8±390.2)>DP(1760.7±62.8 mg CO2·m-2·h-1)。随着水稻的成熟和植株的衰老,生态系统总呼吸速率又呈下降趋势。在整个水稻季,各处理的CO2排放量整体上没有显著差异(p>0.05)。在水稻的不同生长阶段,生态系统总呼吸量为灌浆完熟期>抽穗扬花期>分蘖期>拔节期>返青期。
     (2)对油菜季NEE季节变化动态研究表明,只有在苗期前期和油菜生长的最后阶段表现出净的碳排放,而在大多数时期,油菜-土壤系统表现为净的碳固定。整个油菜生长季,各耕作方式下碳的固定为LM(1.29±0.05)>XM(1.27±0.02)>SH(1.26±0.03 t C·hm-2),免耕方式的应用对油菜-土壤系统的固碳能力有着一定的提高。
     (3)在DP处理中,全年的N2O的排放主要集中在水稻生长季,虽然水稻期的时间只占总采样期的27.35%,但其总排放量占年总排放量的54.47%。在油菜生长期内,三种种植作物的处理在不同时期分别表现为对N2O的吸收和排放,呈上下波动,但总体上表现为N2O的排放。通过单因素方差分析,各处理在整个油菜季的排放通量没有明显差异(p>0.05)。油菜的不同生长阶段的N2O排放量呈“V”型,主要的排放集中在苗期和角果成熟期。
     在水稻阶段,各处理N2O的排放通量的波动明显加强,XM处理对N2O的减排作用已经有了明显的体现,在整个研究阶段各处理的N2O累积排放量为DP(3.81±1.64)>LM(3.73±1.43)>SH(2.58±2.31)>XM(1.17±1.72 kg N2O·hm-2)。
     (4)通过对全年不同耕作方式下农田中生态系统总呼吸和N2O排放量的计算可以得出,免耕方式的应用加速了生态系统总呼吸,各处理全年总呼吸量为XM(48.17±6.36)>LM(44.46±4.16)>SH(38.78±4.68)>DP(31.63±2.78 t CO2·hm-2);而XM处理对其中N2O的排放有着较强的抑制作用,各处理N2O的年排放量为SH(10.72±3.94)>LM(10.01±2.28)>DP(7.06±0.70)>XM(6.60±2.63 kg N2O·hm-2)。
     (5)温度是影响生态系统呼吸的重要因素(p<0.05),而对N2O的排放没有较显著的影响(只有极个别的温度与N2O的排放达到显著),同时油菜季的WFPS(土壤充水孔隙度,water-filled porespace,简称WFPS)和水稻季的水深对生态系统呼吸和N2O的排放也有着一定影响;各种影响因子对两种温室气体排放的影响不是独立作用的,而是共同作用的结果,因此,只有将各种影响因素同时考虑,才能更好地解释农田中两种温室气体的变化。
Climate warming is a global environment issue today, the main reason for this issue is the increasing concentration of greenhouse gases in atmosphere, and CO2 and N2O has been paid much attention due to their substantial contribution to global warming. The contribution of CO2 to climate warming is 65%. Although the contribution of N2O is only 5%, less than CO2 significantly, then the single molecule warming potential of N2O is 296 times than CO2. Meanwhile, the retention time of N2O in atmosphere is 120-150 years. In addition, the photolysis products of N2O in stratosphere can affect the photochemical process of O3. Therefore, N2O in atmosphere have a double bad effect and this impact has become increasingly evident.
     The main sources of CO2 are fossil fuel use and land-use change, while the main source of N2O is agricultural activity. It is easily find that agricultural production activity has enormous effect on the concentration of CO2 and N2O in atmosphere. Tillage is an important part of agricultural activity, and there is a significant difference of the emission of CO2 and N2O from farm ecosystem under different tillages. Compared with conventional tillage, no-tillage could optimize soil structure, increase soil moisture, reduce soil erosion, reduce farming costs and improve water use efficiency, etc. However, the effect of no-tillage on CO2 and N2O emission from farm has not clear.
     Based on the observation of CO2, and N2O emission from soil-crop ecosystems, seasonal variation characteristic, influences factors and seasonal change of NEE in rape season were discussed in this paper. CO2 and N2O emission were measured by static chamber-gas chromatographic techniques. The tillage experiment was established in the Key Field Station for Monitoring of Eco-Environment of Purple Soil of the Ministry of Agriculture of China, located in the farm of Southwest University (30°26′N,106°26′E), Chongqing. Four tillage treatments including conventional tillage with rice only system (DP), conventional tillage with rotation of rice and rape system (SH), no-till and plain culture with rotation of rice and rape system (XM), no-till and ridge culture with rotation of rice and rape system (LM)were selected as research objectives. Results were as following:
     (1) In rape season, the main CO2 source in farm ecosystem was soil respiration in DP which has no plant in this season, and the respiration rate was maintained at a low level. The change trend of respiration rate in other three treatments for the first and then decreased. With the rape growth, temperature recovery and the strength of other factors which could cause the strengthening of the ecosystem respiration, ecosystem respiration rate gradually increased. In the whole rape season, farmland ecosystem respiration under different tillage systems has no significant difference. At different growth stages of rape growth period, the total respiratory trends were similar under different tillage systems, the emissions order was flowering> pod maturity> seedling> moss bud.
     In rice seeding and tillering stage, the respiration rate under every tillage treatment was low and only increased in a small range. The respiration rate showed a rapid increase when entering the jointing stage when the rice growth rapid. The respiration rates of each treatment reached to the maximum value in flowering stage, the order was LM(2212.1±157.8)> XM(1909.9±402.2)> SH(1899.8±390.2)>DP (1760.7±62.8 mg CO2·m-2·h-1)。At last, the respiration Tage of each treatment declined due to the plants matured and leaves withered. There had no significant difference of the total ecosystem respiration rate in different treatments. In different rice growth stages, the total ecosystem respiration rate order was mature stage> heading and flowering> tillering> jointing> turning green stage.
     (2) NEE (net ecosystem CO2 exchange) seasonal change under different treatments had similar trend. Every treatment had different dynamics of above-ground biomass and root/shoot ratio and NEE with the rape growth. The amount order of carbon sequestration from atmosphere to crop ecosystem was LM(1.29±0.05)>XM(1.27±0.02)>SH (1.26±0.03 t C·hm-2),and carbon sequestration mainly occurred in the rape-growing stage.
     (3) The N2O emission mainly occurred in rice season in DP all year. Although the time percent of rice season only 27.35%, the amount percent of N2O emission reached to 54.47%. The N2O emission in each treatment in rape growth period had no significant difference. The amount of N2O emission in different growth stage showed "V" type, mainly concentrated in seedling stage and pod maturity.
     The N2O emission flux in every treatment fluctuations significantly strengthened in rice stage. The reduction effect of XM on N2O emission had been a marked expression in this stage. The cumulative emission order of N2O throughout rice stage was DP (3.81±1.64)>LM (3.73±1.43)> SH(2.58±2.31)>XM(1.17±1.72kg N2O·hm-2).
     (4) The application of no-tillage accelerated the total ecosystem respiration, the order of annual total respiration was XM(48.17±6.36)>LM(44.46±4.16)>SH(38.78±4.68)>DP(31.63±2.78 t CO2·hm-2). However, XM had a strong inhibitory effect on N2O, the annual emission order of N2O was SH(10.72±3.94)>LM(10.01±2.28)>DP(7.06±0.70)>XM(6.60±2.63 kg N2O·hm-2).
     (5) Temperature is an important effect factor on ecosystem respiration, while the effect on N2O emission is no significant. While the WFPS in rape season and the water depth in rice season had a certain influence on ecosystem respiration and N2O emission. The impact of a varoius factors on ecosystem respiration and N2O emission are not independent, but the result of joint action. Therefore, only consider the variety of factors at the same time, the effect of tillage on the change of CO2 and N2O could be estimated better.
引文
[1]许剑平,徐涛,谢宇峰.国内外免耕法的发展研究.农机化研究.2005,(1):32~33.
    [2]谢德体,陈绍兰.水田自然免耕的理论与技术.重庆:重庆出版社.2002.1-8,60-62,172~177.
    [3]隋延婷.免耕与常规耕作下旱田CH4、N2O和CO2排放比较研究:[硕士学位论文].吉林:东北师范大学.2006.14-18.
    [4]李新举,张志国.秸秆覆盖对盐渍土水分状况的影响.干旱地区农业研究.1998,16(3):53~58.
    [5]邹应斌.国外作物免耕栽培的研究与应用.作物研究.2004,(3):24~27.
    [6]赵聚宝.秸秆覆盖对旱地作物水分利用率的影响.中国农业科学.1996,29(2):59~66.
    [7]韩永俊,尹大庆,赵艳忠.秸秆还田的研究现状.农机化研究.2003,(2):39~40.
    [8]徐阳春,沈其荣,雷宝坤,等.水旱轮作下长期免耕和施用有机肥对土壤某些肥力性状的影响.应用生态学报.2000,11(4):549~552.
    [9]徐祖祥.连续秸秆还田对作物产量和土壤养分的影响.浙江农业科学.2003,(1):35~36.
    [10]孙建,刘苗,李立军,等.免耕与留茬对土壤微生物量C、N及酶活性的影响.生态学报.2009,29(10):5508~5515.
    [11]任万军,刘代银,吴锦秀,等.免耕高留茬抛秧对稻田土壤肥力和微生物群落的影响.应生态学报.2009,20(4):817~822.
    [12]熊鸿焰,李廷轩,余海英,等.水旱轮作条件下免耕土壤微生物特性研究.植物营养与肥料学报,2009,15(1):145-150.
    [13]吴建富,潘晓华,王璐,等.双季抛栽条件下连续免耕对水稻产量和土壤肥力的影响.中国农业科学.2010,43(15):3159~3167.
    [14]郑兰君.有机肥、化肥长期配合施用对水稻产量及土壤养分的影响.中国农学通报.2001,17(3):48~50.
    [15]严洁,邓良基,黄剑.保护性耕作对土壤理化性质和作物产量的影响.中国农机化.2005,(2):31~34.
    [16]曾木祥,王蓉芳,彭世琪,等.我国主要农区秸秆还田试验.土壤通报.2002,33(5):336~339.
    [17]聂新涛.免耕与秸秆还田对农业生态环境和稻麦生产力的影响:[硕士学位论文].江苏:扬州大学.20076~16.
    [18]Alletto L, Coquet Y, Benoit P, et al.. Tillage management effects on pesticide fate in soils, A review. Agronomy for Sustainable Development.2010,30(2):367~400.
    [19]Beheydt Daan, Pascal Boeckx, Hasan Pervej Ahmed, et al. N2O emission from conventional and minimum-tilled soils. Biology and Fertility of Soils.2008,44:863~873.
    [20]张晓平,方华军,杨学明,等.免耕对黑土春夏季节温度和水分的影响.土壤通报.2005.36(3):313~316.
    [21]秦红灵,高旺盛,李春阳.北方农牧交错带免耕对农田耕层土壤温度的影响.农业工程学报.2007.23(1):40~47.
    [22]Feiziene D. Feiza V, Vaideliene A, et al.. Soil surface carbon dioxide exchange rate as affected by soil texture, different long-term tillage application and weather. Zemdirbyste-agriculture.2010,97(3):25~42.
    [23]王志民,薛国祥,陈岗,等.长期定位实验免耕覆盖对稻田土壤性状及作物产量的影响研究.西昌学院学报(自然科学版).2010,24(1):1~4.
    [24]Feiza V, Feiziene D, Auskalnis A, et al.. Sustainable tillage:results from long-term field experiments on Cambisol. Zemdirbyste-Agriculture.2010,97(2):3~14.
    [25]Moussa-Machraoui SB, Errouissi F, Ben-Hammouda M, Nouira S. Some soil properties under Mediterranean semi-arid conditions in northwestern Tunisia. Soil & Tillage Research. 2010,106(2):247~253.
    [26]郭晓霞,刘景辉,张星杰,等.免耕对土壤物理性质及作物产量的影响.干旱地区农业研究.2010,28(5):38~42.
    [27]Koga N, Tsuruta H, Tsuji H, et al. Fuel consumption-derived CO2 emissions under conventional and reduced tillage cropping systems in northern Japan. Agriculture, Ecosystems and Environment.2003,99(1-3):213~219.
    [28]Malhi SS, Lemke R. Tillage, crop residue and N fertilizer effects on crop yield, nutrient uptake, soil quality and nitrous oxide gas emissions in a second 4-yr rotation cycle. Soil & Tillage Research.2007,96:269~283.
    [29]兰全美,张锡洲,李廷轩.水旱轮作条件下免耕土壤主要理化特性研究.水体保持学报.2009,23(1):145~149.
    [30]张福武,蔡立群,陈英.免耕对土壤容重总孔隙度和水稳定团聚体的影响.甘肃农业科技.2008,8:9-11.
    [31]刘武仁,郑金玉.罗洋,等.玉米留高茬少、免耕对十壤环境的影响.玉米科学.2008,16(4):123~126.
    [32]谭春燕,孙芳,冯泽蔚,等.油菜连续免耕土壤结构变化初探.耕作与栽培.2008,3:6~7,50.
    [33]冯泽蔚,苏跃,胡朝凤,等.连续稻茬油菜免耕对土壤理化性状影响的研究.安徽农业科学.2008,36(20):8709~8711.
    [34]谢德体,曾觉廷.水田自然免耕水分特征研究.西南农业大学学报.1989,11(1):7~12.
    [35]Rodrigues da Silva VR, Reichert JM, Reinert DJ. Soil temperature variation in three different systems of soil management in blackbeans crop. Revista Brasileiea de Ciencia do Solo.2006,30(3):391~399.
    [36]Li Lin, Zhang Hai-Lin, Chen Fu, et al. CO2 flux and its correlation with soil temperature in winter wheat growth season under different tillage measures. Ying Yong Sheng Tai Xue Bao.2007,18(12):2765~2770.
    [37]黄高宝,李玲玲,张仁陟,等.免耕秸秆覆盖对旱作麦田土壤温度的影响.干旱地区农业研究.2006,24(5):1-4,19.
    [38]Kahimba FC, Ranjan RS, Froese J, et al. Cover crop effects on infiltration, soil temperature, and soil moisture distribution in the Canadian Prairies. Applied Engineering in Agriculture.2008,24(3):321~333.
    [39]黄锦法,俞建明,陆建贤,等.稻田免耕直播对土壤肥力性状与水稻生长的影响.浙江农业科学.1997,5:226~228.
    [40]魏朝富,高明等,高明.浸润垄作稻田土壤生态系统的研究.生态学杂志.1993,12(3):26~30.
    [41]茅国芳,褚金海.麦后免耕直播稻田的生态环境演变与对策.上海农业学报.1997,13(2):39~50.
    [42]廖杰江.早稻免耕抛栽不同密度对产量因子的影响.耕作与栽培.2005,2:24-25.
    [43]胡显钊,郭国雄,曾加玉,等.水稻免耕不同移栽方式效果浅析.耕作与栽培.2005,6:38~39.
    [44]Tang Y L, Zheng J G, Huang G. Studies on permanent-bed-planting with double zero tillage for rice and wheat in sichuan basin,Southwest China. Journal of Agricultural Sciences.2005,18(1):25~28.
    [45]高明,李阳兵,魏朝富,等.稻田长期垄作免耕对土壤肥力性状的影响研究.水土保持学报.2005.19(3):29~33
    [46]姜勇.梁文举,闻大中.免耕对农业土壤生物学特性的影响.土壤通报.2004,35(3):347~351.
    [47]黄国勤,黄小洋,张兆飞,等.免耕对水稻根系活力和产量性状的影响.中国农学通报.2005,21(5):170~173.
    [48]Cai Z C, Tsuruta H, Gao M, et al. Options for mitigating methane emission from a permanently flooded rice field. Global Change Biology.2003,9:37~45.
    [49]黄耀.地气系统碳氮交换:从实验到模型.北京:气象出版社,2003.
    [50]Zheng X, Han S, Huang Y, et al. Re-quantifying the emission factors based on field measurements and estimating the direct N2O emission from Chinese croplands. Global Biogeochemical Cycles.2004,18, GB2018, doi:10.1029/2003GB002167.
    [51]陈泮勤.地球系统碳循环.北京:科学出版社.2004.
    [52]董云社,齐玉春,刘纪远,等.不同降水强度4种草地群落土壤呼吸通量变化特征.科学通报.2005,50(5):473~480.
    [53]Jiang C S, Wang Y S, Zheng X H, et al. Methane and nitrous oxide emissions from three paddy rice based cultivation systems in Southwest China. Advances in Atmospheric Sciences.2006,23(3):415~424.
    [54]向平安,黄璜,黄梅,等.稻-鸭生态种养技术减排甲烷的研究及经济评价.中国农业科学.2006,39(5):968~975.
    [55]Six J, Ogle S M, Breidt F J, et al. The potential to mitigate global warming with no-tillage management is only realized when practiced in the long term. Global Change Biology. 2004,10:155~160.
    [56]Grant B, Smith W N, Desjardins R, et al. Estimated N2O and CO2 emissions as influenced by agricultural practices in Canada. Climatic Change.2004,65:315~332.
    [57]Machado A F L, Jakelaitis A, Ferreira L R, et al. Population dynamics of weeds in no-tillage and conventional crop systems. Journal of Environmental Science and Health. 2005,40(1):119~128.
    [58]Wright A L and Hons F M. Tillage impacts on soil aggregation and carbon and nitrogen sequestration under wheat cropping sequences. Soil & Tillage Research.2005,84:67~75.
    [59]Liu X J, Mosier A R, Halvorson A D, et al. The impact of nitrogen placement and tillage on NO, N2O, CH4 and CO2 fluxes from a clay loam soil. Plant and Soil.2006,280: 177~188.
    [60]Rex A O, Tony J V, Doug R S. et al. Soil carbon dioxide and methane fluxes from long-term tillage systems in continuous corn and corn-soybean rotations. Soil & Tillage Research.2007,95:182~195.
    [61]Reicosky DC, Evans SD, Cambardela CA, et al. Continuous corn with moldboard tillage: Residue and fertility effects on soil carbon. Journal of Soil and Water Conservation.2002, 57(5):277~284.
    [62]Omonode RA, Vyn TJ, Smith DR, et al. Soil carbon dioxide and methane fluxes from long-term tillage systems in continuous corn and corn-soybean rotations. Soil & Tillage Research.2007,95:182~195.
    [63]Jacinthe PA, Lal R., Kimble, J.M. Carbon budget and seasonal carbon dioxide emission from a central Ohio Luvisol as influenced by wheat residue amendment. Soil & Tillage Research.2002,67:147~157.
    [64]Oorts K, Merckx R, Grehan E, et al. Determinants of annual fluxes of CO2 and N2O in long-term no-tillage and conventional tillage systems in northern France. Soil & Tillage Research.2007,95:133~148.
    [65]刘建民,胡立峰,张爱军.保护性耕作对农田温室效应的影响研究进展.中国农学通报.2006,22(8):246~249.
    [66]Drury CF, Reynolds WD, Tan CS, et al. Emissions of Nitrous Oxide and Carbon Dioxide: Influence of Tillage Type and Nitrogen Placement Depth. Soil Science Society of American Journal.2006,70:570~581.
    [67]Helgason BL, Janzen HH, Chantigny M, et al. Toward improved coefficients for predicting direct N2O emissions from soil in Canadian agro-ecosystems. Nutrient Cycling in Agro-ecosystems.2005,72:87~99.
    [68]Ball B C, Scott A, Parker J P. Field N2O, CO2 and CH4 fluxes in relation to tillage, compaction and soil quality in Scotland. Soil & Tillage Research.1999,53:29~39.
    [69]Jacob W. E, Rattan Lal. Tillage effects on gaseous emissions from an intensively farmed organic soil in North Central Ohio. Soil & Tillage Research.2008,98:45~55.
    [70]IPCC. Intergovernmental Panel on Climate Change (IPCC), Changes in atmospheric constituents and in radiative forcing. In:Solomon S, Qin D and Manning M.(eds), Climate Change 2007:The Physical Science Basis, Contribution of Working Group Ⅰ to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, pp.2007, 211-213.
    [71]王娓.郭继勋.东北松嫩平原羊草群落的土壤呼吸与枯枝落叶分解释放贡献量.生态学报.2002,22(5):655~660.
    [72]袁红叶.川中丘陵区不同林地土壤呼吸及枯落物分解释放CO2特征研究:[硕士学位论文].重庆:西南大学.2005.1~8.
    [73]La Scsla N, Bolonhezi D, Pereira GT. Short-term soil CO2 emission after conventional and reduced tillage of a no-till sugar cane area in southern Brazil. Soil & Tillage Research. 2006,91 (1-2):244-248.
    [74]Jabro JD, Sainju U, Stevens WB, et al. Carbon dioxide flux as affected by tillage and irrigation in soil converted from perennial forages to annual crops. Journal of Environmental Management.2008,88(4):1478~1484.
    [75]Bono A, Alvarez R, Buschiazzo DE. et al. Tillage effects on soil carbon balance in a semiarid agro-ecosystem. Soil Science Society of America Journal.2008,72(4): 1140-1149.
    [76]李琳.保护性耕作对土壤有机碳库和温室气体排放的影响:[硕十学位论文].北京:中国农业大学,2007.
    [77]齐玉春,董云社.土壤氧化亚氮产生、排放及其影响因素.地理学报.1999.54(6):534~541.
    [78]李玲玲,黄高宝.张仁陟,等.免耕秸秆覆盖对旱作农田土壤水分的影响.水土保持学报.2005,19(5):94~98.
    [79]Luo JF, Saggar S, Bhandral R. et al. Effects of irrigating dairy-grazed grassland with farm dairy effluent on nitrous oxide emissions. Plant and Soil.2008,309(1):119~130.
    [80]Jarecki MK, Parkin TB, Chan ASK, et al. Greenhouse gas emission from two soil receiving nitrogen fertilizer and swine manure slurry. Journal of Environmental Quality. 2008,37(4):1432-1438.
    [81]封克,殷士学.影响氧化亚氮形成与排放的土壤因素.土壤学进展.1995,23(6):35~40.
    [82]赵建波.迟淑筠,宁堂原,等.保护性耕作条件下小麦田N2O排放及影响因素研究.水土保持学报.2008,22(3):196~200.
    [83]彭文英.免耕措施对土壤水分及利用效率的影响.土壤通报.2007,38(2):379~383.
    [84]Hao X, Chang C, Carefoot, et al. Nitrous oxide emissions from an irrigated soil as affected by fertilizer and straw management. Nutrient Cycling in Agroecosystems.2001.60:1-8.
    [85]Ma J, Ma E, Xu H, et al. Wheat straw management affects CH4 and N2O emissions from rice fields. Soil Biology & Biochemistry. dio:10.1016/j.soilbio.2009.01.024.
    [86]Huang Y, Zou J, Zheng X, et al. Nitrous oxide emissions as influenced by amendment of plant residues with different C:N ratios. Soil Biology & Biochemistry.2004,36:973~981.
    [87]Jantalia CP, dos Santos HP, Urquiaga S, et al. Fluxes of nitrous oxide from soil under different crop rotations and tillage systems in the South of Brazil. Nutrient Cycling in Agro-ecosystems.2008,82(2):161~173.
    [88]Almaraz JJ, Mabood F, Zhou XM, et al. Carbon Dioxide and Nitrous Oxide Fluxes in Corn Grown under Two Tillage Systems in Southwestern Quebec. Soil Science Society of America Journal.2009,73(1):113~119.
    [89]王艳强.川中丘陵区草地土壤-植物系统CO2、N2O和CH4通量研究:[硕士学位论文].重庆:西南农业大学,2002,7-9.
    [90]Liu XJ, Mosier AR, Halvorson AD, et al. Tillage and nitrogen application effects on nitrous and nitric oxide emissions from irrigated corn fields. Plant and Soil.2005,276(1-2): 235-249.
    [91]Menendez S, Lopez-Bellido RJ, Benitez-Vega J, et al. Long-term effect of tillage, crop rotation and N fertilization to wheat on gaseous emissions under rainfed Mediterranean conditions. European Journal of Agronomy.2008,28:559~569.
    [92]Vinten AJA, Ball BC, Sullivan MF, et al. The effects of cultivation method, fertilizer input and previous sward-type on organic C and N storage and gaseous losses under spring and-winter barley following long-term leys. Journal of Agricultural Science.2002,139: 231~243.
    [93]Drury CF, Tan CS, Reynolds WD, et al. Impacts of zone tillage and red clover on corn performance and soil quality. Soil Science Society of American Journal.2003, 67:867~877.
    [94]Galbally, I.E. Biosphere-atmosphere exchange of trace gases over Australia. In:Australia's renewable resources:sustainability and global change. Gifford R.M&M.M. Barson (eds). Bureau of rural resources. Canberra, Australia.1992,117~149.
    [95]Hara, G.W. and R.M.Daniel. Rhizobial denitrification:a review. Soil Biol. Biochem.1985, 17:1-9.
    [96]Bremner JM, Robbins SG, Blackmer AM. Sensonal variability in emission of nitrous oxide from soil. Geophysical Research Letters.1980,7(9):641-644.
    [97]Song CC, Zhang JB. Effects of soil moisture, temperature, and nitrogen fertilization on soil respiration and nitrous oxide emission during maize growth period in northeast China. Acta Agriculture Scandinavica Section B-Soil and Plant Science.2009,59(2):97~106.
    [98]Hatch D, Trindade H, Cardenas L, et al. Laboratory study of the effects of two nitrification inhibitors on greenhouse gas emissions from a slurry-treated arable soil:impact of diurnal temperature cycle. Biology and Fertility of Soils.2005,41:225-232.
    [99]王明星.大气化学.气象出版社(第二版).1999,40-50.
    [100]宋霞,刘允芬,徐小锋.箱法和涡度相关法测碳通量的比较研究.江西科学.2003,21(3):206~210.
    [101]李庆逵.中国水稻土.北京:科学出版社.1992.1~50.
    [102]刘可.四川水旱轮作田免耕与免耕除草.中国植保导刊.2007,1:46~48.
    [103]蔡派.中国免耕栽培技术推广现状与展望—兼论粮食生产重大技术补贴政策.世界农业.2007,5:30~31.
    [104]江长胜,王跃思,郑循华等.川中丘陵区冬灌田CH4和N2O的排放及其影响因素研究.应用生态学报.2005,16(3):539~544.
    [105]江长胜.王跃思,郑循华等.耕种制度对我国西南地区冬灌田甲烷和氧化亚氮排放的影响.环境科学.2006,27(2):207~213.
    [106]邹建文.稻麦轮作生态系统温室气体(CO2、CH4和N2O)排放研究:[博士学位论文].江苏:南京农业大学.2002.90-99.
    [107]IGBP (International Geosphere-Biosphere Programme).1997. The terrestrial biosphere and global change:Implication for nature and managed ecosystems, A synthesis of GCTE and related research.
    [108]江长胜.川中丘陵区农田生态系统主要温室气体排放研究:[博士学位论文].北京:中国科学院研究生院.2005,178~182.
    [109]Freney J R, Denmead O T, Watanabe I, et al..Ammonia and nitrous oxide losses following applications of ammonium sulfate to flooded rice. Australian Journal of Agricultural Research.1981,32:37~45.
    [110]Tsuruta H, Kanda K, Hirose T. Nitrous oxide emission from a rice paddy field in Japan. Nutrient Cycling in Agroecosystems.1997.49:51~58.
    [111]Mosier A R, Mohanty S K, Bhadrachalam A, et al..Evolution of dinitrogen and nitrous oxide from the soil to the atmosphere through rice plants. Biology and Fertility of Soils. 1990(9):61-67.
    [112]Aulakh M S, Khera T S, Doran J W, et al..Denitrification, N2O and CO2 fluxes in rice-wheat cropping system as affected by crop residues, fertilizer N and legume green manure. Biology and Fertility of Soils.2001,34:375-389.
    [113]Halvorson AD, Del Grosso SJ, Alluvione F. Tillage and Inorganic Nitrogen Source effects on nitrious oxide emission from irrigated cropping systems. Soil Science Society of America Journal.2010,74(2):436~445.
    [114]代光照,李成芳,曹凑贵,等.免耕施肥对稻田甲烷与氧化亚氮排放及其温室效应的影响.应用生态学报.2009,(9):2166~2172.
    [115]Li CF, Kou ZK, Yang JH, et al.. Soil CO2 fluxes from direct seeding rice fields under two tillage practices in central Chinal. Atmospheric Environment.2010,44(23):2696~2704.
    [116]Mutegi JK, Munkholm LJ, Petersen BM, et al.. Nitrous oxide emissions and controls as influenced by tillage and crop residue management strategy. Soil Biology & Biochemistry. 2010,42(10):1701~1711.