基于微气象学方法的落叶松人工林CO_2通量研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
落叶松林由于其速生的特性越来越多的受到国际通量研究领域的关注,特别是处于中高纬度地区的落叶松人工林更是国际通量界关注的焦点。本文以东北林业大学老山实验站通量观测塔(45°20′N,127°34′E)2004~2006年期间涡度相关法观测到的通量数据为基础,对寒温带落叶松人工林生态系统土壤热通量变化特征、风向对林分碳汇估计的影响、空气饱和蒸汽压亏缺对林分和呼吸的影响以及林分CO_2通量的年季变化规律进行了研究,并得出如下结论:
     1)落叶松人工林土壤热通量,4月至8月为正值,是吸收热量过程,而9月至次年3月的绝大部分时间为负值,波动平缓,是放出热量的过程;年累积值波动范围在-190.44至30MJ·m~(-2)·year~(-1)之间,说明土壤吸收热量和放出热量趋于平衡;土壤热通量和土壤热导率(κ)受净辐射影响显著,且净辐射对κ的影响要大于热通量。在冬季土壤热通量和K与4~5小时前的净辐射呈现显著相关关系,而在夏季与2~3小时前的净辐射呈现显著相关关系,说明冬季存在4~5小时左右的延迟效应而在夏季这一延迟时间为2~3小时。κ在夏季与冬季变化十分平稳,但在春季和秋季土壤冻融交替期间存在很大的波动,对不同月份κ值进行多元统计分析表明,κ在所测定的3年间多数月份间无明显差异(p>0.05),而每年3月和4月间所测定的κ值往往与其它月份存在显著差异,当使用土壤温度数据进行土壤热通量计算时,应该充分考虑3月和4月间κ值波动对通量计算的影响。此外,土壤含水率也对土壤热通量有影响,在春、秋、冬季与土壤含水率呈显著的线性相关关系,而在夏季相关性较弱。
     2)使用不同风向数据计算的净生态系统交换量(NEE)的结果差异较大。从大地形角度来看,来自人类聚集区风-西风向计算值(NEE)要远远低于非碳源风向-东风向数据的计算值(NEE),2004和2005年西风向甚至为正值,2006年西风向虽然为负值,但仅为东风向是的80%。从小地形来看,沟谷上行风(南风和东南风)NEE的结果远大于下行风(北风和西北风)NEE的结果,2004年的北风向及2004和2005年的西北风向数据拟合计算出的NEE甚至为正值。2005和2006年北风向的NEE虽然为负值,但仅为南风的60%和3%。2006年西北风向的NEE虽然为负值,但仅为东南风向NEE的33%。由此可见,地形地势及地理位置对落叶松林NEE的观测结果的影响很大。
     3)空气湿度对生态系统光合测定结果存在很大的影响,而对呼吸测定结果影响较小。从2004到2006年的结果来看,VPD<10h Pa时的最大光合碳固定速率在-25~-30μmol·m~(-2)·s~(-1)之间,而VPD>15hPa时,最大光合碳固定速率在-15μmol·m~(-2)·s~(-1)左右。VPD对呼吸测定结果影响不大,这可能最终导致VPD显著的响应林分的碳汇大小。
     4)落叶松林CO_2通量的年季变化规律十分明显,其中NEE日平均值的正向最大值一般出现在非生长季的3~4月份左右,负向最大值一般出现在6~7月份,此时森林生态系统的光合作用能力最强。2004~2006年落叶松人工林年固碳能力分别为182.47、176.44和309.46 gC·m~(-2)·year~(-1)。
Larch forest was got more attention by the international flux researchers because of its fast growth and possible carbon sink capacity, particularly the larch plantations in the middle and high latitudes. Based on the long-term data (2004~2006) measured by the eddy covariance method at Laoshan flux observation tower in Experimental Forests of Northeast Forestry University (45°20' N, 127°34' E), tried to find the soil heat flux characteristics, the influenes of wind direction on the estimation of CO_2 flux, possible influences of air humidity (vapor pressure deficit,VPD) on the stand photosynthesis and respiration, and finally annual carbon sink capacity of this cold temperate larch plantation was estimated. Following conclusions were got:
     1) From April to August, soil heat flux(SHF) of the larch plantation was positive, with the process of absorbing heat, whereas most of the SHF was negative from September to the following March with the process of giving off heat. Fluctuations of annual cumulative SHF from 2003~2005 was in the range of-190.44 to 30 MJ·m~(-2)·year~(-1), indicating a nearly balance between absorbed and given off heat for the soil. Net radiation had significant influence on SHF and soil heat conductivity(K), and the impact would be greater onκ. In winter, SHF withκand net radiation at 4~5 hours before showed a significant correlation, however, SHF withκand net radiation at 2~3 hours before showed significant correlation in summer. This finding suggests that 4~5 hours in winter but 2~3 hours time-lag effect in summer is observed in the influences of radiation on SHF.κwas very stable in summer and winter, butκabruptly fluctuated during the period soil freezing and soil-thaw in the spring and fall. Multivariate statistical analysis onκin different months in 3 years showed that there was no notable difference between most months (p>0.05), butκmeasured between every March and April often existed significant difference. Thus, when SHF was estimated with data of soil temperature, it is supposed to consider the largeκfluctuation from March to April. Furthermore, significant linear correlation between soil water content and SHF were also observed in spring, autumn and winter, but quite weak relationship in summer, indicating that soil water may also affect soil heat flux.
     2) The net ecosystem exchange (NEE) calculated by the different wind direction data was quite different. From the view of megarelief, NEE calculated utilized the data from westerly where was human gathered district was much lower than that in opposite direction from east wind (large area of forests). NEE in westerly was positive but negative in easterly in 2004 and 2005. NEE in westerly was negative in 2006, but it was only 80% of that in easterly. From the view of microtopography, NEE of the southerly was (southerly and southeasterly wind) bigger than NEE of northerly (northerly and northwest wind). NEE calculated by the north wind in 2004 and NEE calculated by the northwest wind in 2004 and 2005 were all positive. Despite NEE calculated by the northerly was negative in 2005 and 2006, but was only 60% and 3% of the southerly. In 2006, although NEE calculated from data of northwest wind was negative, but was only 33%.of southeast wind. Thus topography had important effect on the results of NEE calculation.
     3) Air humidity had great impact on the ecosystem photosynthetic results, but less affected on ecosystem respiration results. From 2004 to 2006, when vapor pressure deficit (VPD)<10 hPa, the maximum photosynthetic rate ranged from -25 to -30μmol·m~(-2)·s~(-1), and when VPD>15 hPa, maximum photosynthetic rate was about -15μmol.m~(-2)·s~(-1). VPD had little impact on the results of respiration, which may ultimately lead to VPD had a significant response to the forest carbon sink.
     4) Seasonal variation of larch forest CO_2 flux of was obvious, which the maximum respiration usually appeared in the non-growing season of March to April, and maximum photosynthesis generally occurred in the vegetative seasona of June to July. From 2004 to 2006, carbon sequestration capacity of larch plantation was 182.47, 176.44 and 309.46 gC·m~(-2)·year~(-1), respectively.
引文
[1] 于贵瑞,张雷明,孙晓敏等.亚洲区域陆地生态系统碳通量观测研究进展[J].中国科学(D辑),2004,34(增刊Ⅱ):15-29.
    [2] Schimel D S, House J I, Hibbard K A, et al. Recent patterns and mechanisms of carbon exchange by terrestrial ecosystems[J]. Nature, 2001, 414(1): 169-172.
    [3] Tood T L, Schneider S H. Ecology and climate: research strategies and implications[J]. Science, 1995, 269(3): 334-340.
    [4] 曹明奎,于贵瑞,刘纪远等.陆地生态系统碳循环的多尺度试验观测和跨尺度机理模拟[J].中国科学(D辑),2004,34(增刊Ⅱ):1-14.
    [5] Wofsy S, Harriss R. The North American Carbon Program[R]. America: Carbon Cycle Science Steering Group. 2002: 102-201.
    [6] 王文杰,于景华,毛子军等.森林生态系统CO_2通量的研究方法及研究进展[J].生态学杂志,2003,22(5):102-107.
    [7] Baldocchi D, Falge E, Gu L, et al. Fluxnet: a new tool to study the temporal and spatial variability of ecosystem—scale carbon dioxide, water vapor, and energy flux densities[J]. Bulletin of the American Meteorological Society, 2001, 82(16):2415-2434.
    [8] Baldocchi D, Finnigan J, Wilson K. On measuring net ecosystem carbon exchange over tall vegetation on complex terrain[J]. Boundary-Layer Meteorology, 2000, 96(2):257-291.
    [9] Schulze E D, Wirth C D, Heimman M L. Managing forests after Kyoto[J]. Science, 2000, 289(19): 2058-2059.
    [10] Takashi H, Ryuichi H, Yasumi F, et al. CO_2 and water vapor exchange of a larch forest in.north Japan[J]. Tellus, 2003, 55(B):244-257.
    [11] Baldocchi D, Valentini R, Runing S, et al. Strategies for measuring and modeling carbon dioxide and water vaper fluxes over terrestrial ecosystems[J]. Global Change Biology, 1996, 2(1): 159-168.
    [12] 孙晓敏,朱治林,许会萍等.涡度相关测定中平均周期参数的确定及其影响分析[J].中国科学 (D辑),2004,34(增刊Ⅱ):30-36。
    [13] 温学发,于贵瑞,孙晓敏等.复杂地形条件下森林植被湍流通量测定分析[J].中国科学(D辑),2004,34(增刊Ⅱ):57-66.
    [14] Kaimal J C, Gaynor J E, Zimmerman H A, et al. Minimizing flow distortion errors in a sonic anemometer[J]. Boundary—Layer Meteorology, 1990, 53(1): 103-115.
    [15] Ohtaki E and Matsui T. Infrared device for simultaneous measurement of fluctuations of atmospheric carbon dioxide and water vapor[J]. Boundary-Layer Meteorology, 1982,24(1): 109-119.
    [16] Ohtaki E. Application of an infrared carbon dioxide and humidity instrument to studies of turbulent transport[J]. Boundary-Layer Meteorology, 1984, 29(1): 85-107.
    [17] 王树森,朱治林,孙晓敏等.拉萨地区农田能量物质交换特征[J].中国科学(D辑),1996,26(4):359-364.
    [18] Zhu Z L, Sun X M, Zhang R H. Statistical Analysis and Comparative Study of Energy Balance Components Estimated Using Micrometeorological Techniques during HUBEX/IOP 1998/99[J]. Advances in Atmospheric Sciences, 2003, 20(2): 285-291.
    [19] Wen X F, Yu G R, Sun X M, et al. Net water vapour exchange over a nixed needle and broad-leaved forest in Changbai Mountain during autumn[J]. Journal of Geographical Sciences, 2003, 13(4): 463-468.
    [20] 张仁华,孙晓敏,朱治林等.遥感区域地表植被二氧化碳通量的机理及其应用[J].中国科学(D辑),2000,30(2):215-225.
    [21] 陈发祖,孙晓敏,汪西林等.高地下水埋条件下的水热平衡试验研究[J].地理研究,1994,13(1):32-42.
    [22] Paul B, Jean-Marc A, Patricia M. CO_2 and water vapor fluxes for 2 years above Euroflux forest site[J]. Agricultural and Forest Meteorology, 2001, 108(2): 183-197.
    [23] 朱治林,孙晓敏,袁国富等.非平坦下垫面涡度相关通量的校正方法及其在 ChinaFLUX中的应用[J].中国科学(D辑),2004,34(增刊Ⅱ):37-46.
    [24] 李正泉,于贵瑞,温学发等.中国通量观测网络(ChinaFLUX)能量平衡闭合状况的评价[J].中国科学(D辑),2004,34(增刊Ⅱ):46-56.
    [25] Lee X, Hu X Z. Forest-air fluxes of carbon, water and energy over non-flat terrain[J]. Boundary-Layer Meteorology, 2002, 103(3):277-301.
    [26] 宋霞,于贵瑞,刘允芬等.开路与闭路涡度相关系统通量观测比较研究[J].中国科学(D辑),2004,34(增刊Ⅱ):67-76.
    [27] 张军辉,韩士杰,孙晓敏等.冬季强风条件下森林冠层/大气界面开路涡动相关C0_2净交换通量的UU~(**)修正[J].中国科学(D辑),2004,34(增刊Ⅱ):77-83.
    [28] 于贵瑞,温学发,李庆康等.中国亚热带和温带典型森林生态系统呼吸的季节模式及环境响应特征[J].中国科学(D辑),2004,34(增刊Ⅱ):84-94.
    [29] 吴家兵,关德新,孙晓敏等.长白山阔叶红松林C0_2交换的涡动通量修订[J].中国科学(D辑),2004,34(增刊Ⅱ):95-102.
    [30] 关德新,吴家兵,于贵瑞等.气象条件对长白山阔叶红松林C0_2通量的影响[J].中国科学(D辑),2004,34(增刊Ⅱ):103-108.
    [31] 刘允芬,宋霞,孙晓敏等.千烟洲人工针叶林C0_2通量季节变化及其环境因子的影响[J].中国科学(D辑),2004,34(增刊Ⅱ):109-117.
    [32] Reynolds O. On the dynamical theory of incompressible viscous fluies and the determination of criterion[J]. Phil Trans Roy Soc London A, 1895, 174(10): 935- 982.
    [33] Fan S M, Wofsy S C, Bakwin PS, et al. Atmosphere-biosphere exchange of CO_2 and O_3 in the central Amazon forest[J]. J Geophys Res, 1990, 95(17).. 16851-16864.
    [34] 于贵瑞,孙晓敏.陆地生态系统通量观测的原理与方法[M].北京:高等教育出版社,2006:21-1211.
    [35] AFSC. Practice of Flux Observations in Terrestrial Ecosystems[M]. Tsukuba: Asiaflux, 2006: 12-231.
    [36] Massman W J. A simple method for estimating frequency response corrections for eddy covariance systems[J]. Agricultural and Forest Meteorology, 2000, 104(2): 185-198.
    [37] Wilczak J M, Oncley S P, Stage S A. Sonic anemometer tilt correction algorithms[J]. Boundary-LayerMeteorol, 2001, 99(1): 127-150.
    [38] Finnigan J J. A comment on the paper by Lee (1998): On micrometeorological observations of surface-air exchange over tall vegetation[J]. Agricultural and Forest Meteorology, 1999, 97(1): 55-64.
    [39] McMillen R T. An eddy correlation technique with extended applicability to nonsimple terrain[J]. Boun-LayMeteorol, 1988, 43(3): 231-245.
    [40] Foken T H, Wichura B K. Tools for quality assessment of surface-based flux measurements[J]. Agricultural and Forest Meteorology, 1995, 78(2): 83-105.
    [41] Lee X. On micrometeorological observations of surface-air exchange over tall vegetation[J]. Agricultural and ForestMeteorology, 1998, 91(1): 39-50.
    [42] Wilson K, Oldstein A, Falge E, et al. Energy balance closure at fluxnet sites[J]. Agricultural and Forest Meteorology, 2002, 113(3): 223-243.
    [43] Leuning R, Moncrieff J. Eddy-covariance CO_2 Flux measurements using open- and closed-path CO_2 analyzers: corrections for analyzer water vapor sensitivity and damping of fluctuations in air sampling tubes[J]. Boundary-Layer Meteorol, 1990, 53(1): 63-76.
    [44] Leuning R and Judd D. The relative merits of open- and closed-path analyzers for measurements of eddy fluxes[J]. Global Changes Biology, 1996, 2(3): 241-253.
    [45] Massman W J, Lee X. Eddy covariance flux corrections and uncertainties in long term studies of carbon and energy exchanges[J]. Agricultural and Forest Meteorology, 2002, 113(2): 121-144.
    [46] Hollinger D Y, Kelliher F M, Byers J N, et al. Carbon dioxide exchange between an undisturbed old-growth temperate forest and the atmosphere[J]. Ecology, 1994, 75 (1): 143-150.
    [47] Greco S and Baldocchi D. Seasonal variations of CO_2 and water vapour exchange rates over a temperate deciduous forest[J]. Global Change Biology, 1996, 2(3): 183-197.
    [48] Pilegaard K, Hummelshoj P, Jensen N, et al. Two years of continuous CO_2 eddy-flux measurements over a Danish beech forest[J]. Agricultural and Forest Meteorology, 2001, 107(1): 29-41.
    [49] Knohl A, Schulze A, Kolle O, et al. Large carbon uptake by an unmanaged 250-year-old deciduous forest in Central Germany[J]. Agricultural and Forest Meteorology, 2003, 95(2): 115-168.
    [50] Falge E, Baldocchi D, Olson R, et al. Gap filling strategies for defensible and annual sums of net ecosystem exchange[J]. Agricultural and Forest Meteorology, 2001, 107(1): 43-69.
    [51] Lindroth A A, Grelle A C, Moren A S. Long-term measurements of boreal forest carbon balance reveal large temperature sensitivity[J]. Global Change Biology, 1998, 4(5): 443-450.
    [52] Huimin W, Nobuko S, Yuangang Z, et al. Annual Carbon Sequestration by a Larch Forest in Northeast China[A]. In: Asiaflux, Proceedings of the International Conference on Research Highlights and Vanguard Technology on Environmental Engineering in Agricultural Systems(2) [C]. Kanazawa: Asiaflux, 2005: 12-15.
    [53] Pilegaard K, Hummelshoj P, Jensen O, et al. Two years of continuous CO_2 eddy-flux measurements over a Danish beech forest[J]. Agricultural and Forest Meteorology, 2001, 107(1): 29-41.
    [54] Barry J H, Byron W, Blomquist J E. Measurement of the sea-air DMS flux and transfer velocity using, eddy correlation[J]. Geographic research letters, 2004, 31 (17): 2311.
    [55] 裴志永,欧阳华,周才平.青藏高原高寒草原碳排放及其迁移过程研究[J].生态学报,2003,23(2):231-236.
    [56] 曹广民,李英年,张金霞等.环境因子对暗沃寒冻雏形土土壤C0_2释放速率的影响[J].草地学报,2001,19(4):307-313.
    [57] Aubinet M, Chermanne B, Vandenhaute M, et al. Long-term carbon dioxide exchange above a mixed forest in the Belgian Ardennes[J]. Agricultural and Forest Meteorology, 2001, 108(4): 293-315.
    [58] Baldocchi D. Assessing the eddy covariance technique for evaluating carbon dioxide exchange rates of ecosystems: past, present and future[J]. Global Change Biology, 2003, 9(8): 479-492.
    [59] Lloyd J and Taylor J A. On the temperature dependence of soil respiration[J]. Funct Eco, 1994, 8(4): 315-323.
    [60] 王文杰,祖元刚,王辉民等.利用涡度法与生理生态学方法对落叶松人工林的研究 [J].植物生态学报,2007,31(1):118-128.
    [61] 秦耀东.土壤物理学[M].北京:高等教育出版社,2003:21-166.
    [62] 贺庆棠.气象学[M].北京:中国林业出版社,1991:30-198.
    [63] 周国逸,余作岳,彭少麟.小良试验站三种生态系统能量平衡的研究[J].热带亚,热带植物学报,1999,7(2):93-101.
    [64] 秦钟,于强,许守华等.华北平原农田水热通量与作物水分利用效率的特征与模拟[J].中国科学(D辑),2004,34(增刊Ⅱ):183-192.
    [65] 董振国,于沪宁.农田作物层环境生态[M].北京:中国农业科技出版社,1994:156-223.
    [66] 朱自玺,方文松,赵国强等.麦秸和残茬覆盖对夏玉米农田小气候的影响[J].干旱地区农业研究,2000,16(2):19-24.
    [67] 申双和,崔兆韵.棉田土壤热通量的计算[J].气象科技,1999,19(3):276-281.
    [68] 王文杰,石福臣,祖元刚等.陆地生态系统二氧化碳通量网的建设和发展[J].东北林业大学学报,2002,30(4):57-61.
    [69] Wang H, Saigusa N, Yamamoto S, et al. Net ecosystem CO_2 exchange over a larch forest in Hokkaido, Japan[J]. Atmos Environment, 2004, 38(19): 7021-7032.
    [70] 翁笃鸣,高庆先,何凤翩.中国土壤热通量的气候计算及其分布特征[J].气象科学.1994,14(2):91-98.
    [71] Hanks R J and Ashcroft G L. Applied Soil Physics: Soil Water and Temperature Application[M]. Berlin: Springer-Verlag, 1980: 159.
    [72] 王旭,周国逸,张德强等.南亚热带针阔混交林土壤热通量研究[J].生态环境, 2005,14(2):260-265.
    [73] Wang H M, Saigusa N, Zu Y G, et al. Response of CO_2 flux to environmental variables in two larch forest ecosystems in East Asia[J]. Phyton-Ann REI Bot, 2005, 45(4): 339-346.
    [74] Gaylon S Campell. A introduction to Environmental Biophysics[M]. Berlin: Springer- Verlag, 1998: 113-128.
    [75] Killball B A and Jackson R D. Soil heat flux determination: Anull-alignment method[J]. Agricultural and Forest Meteorology, 1975, 15(1): 1-9.
    [76] 杨邦杰,隋红建.土壤水热运动模型及其应用[M].北京:中国科学技术出版社, 1997:256-273.
    [77] 郑秀清,樊贵盛.冻融土壤水热迁移数值模型的建立及仿真分析[J].系统仿真学报,2001,13(3):308-311.
    [78] 王秋风,牛栋,于贵瑞等.长白山森林生态系统C0_2和水热通量的模拟研究[J].中国科学D辑.2004,34(增刊Ⅱ):141—152.
    [79] 李博.生态学[M].北京:高等教育出版社,2002:152-223.
    [80] Heusinkveld B G, Jsobsa F G, Holtslag A M, et al. Surface energy balance closure in an arid region: role of soil heat flux[J]. Agricultural and Forest Meteorology, 2003, 116(2):143-158.
    [81] 塔依尔,吕新,马兰花等.古尔班通古特沙漠南缘绿洲净辐射及其热量通量的变化研究[J].石河子大学学报(自然科学版),2005,23(5):588-590.
    [82] 蒋高明,黄银晓.北京山区辽东栎林土壤释放CO_2的模拟实验研究[J].生态学报,1997,17(5):476-482.
    [83] 刘绍辉,方精云.北京山地温带森林的土壤呼吸[J].植物生态学报,1998,22(2):119-126.
    [84] 骆土寿,陈步峰,李意德.海南岛尖峰岭热带山地雨林土壤和凋落物呼吸研究[J].生态学报,2001,21(12):2013-2016.
    [85] 易志刚,蚁伟民,周国逸等.鼎湖山三种主要植被类型土壤碳释放研究[J].生态学报,2003,23(8):1673-1678.
    [86] 刘建军,王德祥,雷瑞德等.秦岭天然油松、锐齿栎林地土壤呼吸与CO_2释放[J].林业科学,2003,39(2):8-13.
    [87] 李意德,吴仲民,曾庆波等.尖峰岭热带山地雨林群落呼吸量初步测定[J].林业科学研究,1997,10(4):348-355.
    [88] Anthoni P M, Law B E,Unsworth M H. Carbon and water vapor exchange of an open-canopied ponderosa pine ecosystem[J]. Agricultural and Forest Meteorology, 1999, 95(2): 115-168.
    [89] Mahrt L. Flux sampling errors for aircraft and towers[J]. J Atmos Ocean Technol, 1998, 15(5): 416-429.
    [90] Verma A B, Baldocchi D D, Anderson D E. Eddy fluxes of CO_2, water vapor, and sensible heat over a deciduous forest[J]. Bound-Lay Meteorol, 1986, 36(1): 71-91.
    [91] Kell W, Allen G, Falge E. Energy balance closure at FLUXNET sites[J]. Agricultural and Forest Meteorology, 2002, 113: 223-243.
    [92] Goulden M L, Munger J W, Fan C B, et al.Exchange of carbon dioxide by a deciduous forest: response to interannual climate variability[J]. Science, 1996, 271(11): 1576-1578.
    [93] Black T A, Den H G,Neumann H H,et al.Annual cycles of water vapour and carbon dioxide fluxes in and above a boreal aspen forest[J]. Global Change Biology, 1996, 2(2): 219-229.
    [94] Jarvis P G, Massheder J M, Hale S E, et al. Seasonal variation of carbon dioxide, water vapor, and energy exchanges of a boreal black spruce forest[J]. J Geophys Res, 1997,102(25): 28953-28966.