西双版纳地区水稻田CH_4、CO_2和N_2O通量及其影响因素研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着人们对全球气候变化的日益关注,有关温室气体排放的研究已经成为研究的热点。我国五大稻作区稻田生态系统CH4、CO2和N2O通量已经有大量观测数据,但是热带地区水稻田CH4、CO2和N2O通量还未有观测。本研究采用静态箱(暗箱)-气相色谱法对云南西双版纳热带地区单季稻田CH4、CO2和N2O通量进行了田间原位观测。试验从2005年1月开始到2005年12月结束,包含了水稻生长季节和水稻田休闲期。试验设置了三个处理,即无氮肥对照处理(NN)、低氮施肥处理(LN)和高氮施肥处理(HN),氮肥(尿素和复合肥)水平分别为0 kg N hm-2、150 kg N hm-2和300 kg N hm-2。本研究的主要结果如下:
     1)水稻生长季节稻田CH4和CO2排放通量有明显的季节变化,而N2O的排放受施肥和晒田影响大,无明显的季节变化规律。
     2)水稻生长季节稻田CH4和CO2排放通量有明显的日变化规律。CH4排放的日变化有三种类型,即午后单峰型、下午和夜间双峰型以及无规律型。CO2排放的日变化呈午后单峰模式,而N2O排放无明显的日变化规律。
     3)与无氮肥对照相比,水稻生长季节不同氮肥水平处理对CH4排放通量的影响规律不明显,但是明显促进了CO2和N2O的排放。CH4、CO2和N2O排放通量的变化不能完全由温度变化来解释。CH4、CO2和N2O排放通量与稻田水深均无显著的相关关系。
     4)水稻生长季节无氮肥对照处理(NN)、低氮施肥处理(LN)和高氮施肥处理(HN)的CH4季节平均排放通量分别为6.69±0.37、7.19±0.43和6.04±0.31 mg m-2 h-1,CO2季节平均排放通量分别为543.28±27.57、680.92±32.26和724.58±32.40 mg m-2 h-1,N2O季节平均排放通量分别为0.04±0.01、0.17±0.03和0.15±0.03 mg m-2 h-1。
     5)休闲期稻田表现为排放CH4、CO2和N2O,但是无明显的季节排放规律。休闲期稻田CH4、CO2和N2O排放与水稻生长季节的施肥处理无明显的相关性。休闲期稻田CH4和N2O排放通量与土壤湿度有极显著的线性相关关系,而CO2排放通量与土壤湿度和采样时箱内温度都有极显著的指数相关关系。
     6)休闲期稻田无氮肥对照处理(NN)、低氮施肥处理(LN)和高氮施肥处理(HN)的CH4季节平均排放通量分别为0.51±0.16、0.19±0.03和0.09±0.02 mg m-2 h-1,CO2季节平均排放通量分别为220.56±7.76、195.18±6.99和228.36±7.94 mg m-2 h-1,N2O季节平均排放通量分别为0.04±0.00、0.03±0.01和0.04±0.01 mg m-2 h-1。
     7)水稻生长季节稻田CH4、CO2和N2O累积排放量分别占全年排放量的83.26-96.37%,48.24-56.90%和32.24-71.07%,可见稻田CH4排放以水稻生长季节贡献较大,而休闲期CO2和N2O排放也不容忽视。
The global climate change is becoming a special concern, which leads to the hot discussion of greenhouse gases emission. So far the data about CH4, CO2 and N2O emission are already available in all the five major rice culture regions in China, but there is still no relevant observation in tropical regions of China. By using static opaque chamber and gas chromatography techniques, field experiments were carried out to investigate CH4, CO2 and N2O fluxes from paddy field in Xishuangbanna, Yunnan, Southwest China. The experiment period lasted from January to December in 2005, including the rice growing season and the fallow stage. Three treatments were applied as the control(NN, no nitrogen fertilizer application), low nitrogen fertilizer level (LN, 150 kg N hm-2) and high nitrogen fertilizer level (HN, 300 kg N hm-2). The results were as follows:
     1) During rice growing season obvious seasonal changes occurred in CH4 and CO2 fluxes. Greatly controlled by water level and fertilization, N2O fluxes showed no marked seasonal variations.
     2) There were obvious diurnal variations in CH4 and CO2 fluxes. Three types of diurnal variation of CH4 emission were observed, which were afternoon-maximum mode, two-peak mode with maxima occurred both in the afternoon and at night and the irregular mode. The diurnal changes of CO2 fluxes followed afternoon-maximum pattern, while the diurnal changes of N2O fluxes showed no clear regularity.
     3) Compared with NN treatment, fertilization had no significant effect on CH4 emission, but remarkably promoted CO2 and N2O emissions in rice growing season. The changes of CH4, CO2 and N2O fluxes could not be fully explained by temperature variations. No pronounced correlations were found between water depth and the fluxes of CH4, CO2 and N2O.
     4) In rice growing season, the calculated seasonal mean CH4 fluxes were 6.69±0.37, 7.19±0.43 and 6.04±0.31 mg m-2 h-1 for treatments NN, LN and HN, respectively, and the corresponding seasonal mean CO2 fluxes were 543.28±27.57, 680.92±32.26 and 724.58±32.40 mg m-2 h-1, respectively, and accordingly the seasonal mean N2O fluxes were 0.04±0.01, 0.17±0.03 and 0.15±0.03 mg m-2 h-1, respectively.
     5) The paddy feild emitted CH4, CO2 and N2O in fallow season, however, which demonstrated no clear seasonal changes. Nitrogen fertilizer applied to the field in rice growing period showed little effect on the fallow season emissions of CH4, CO2 and N2O. CH4 and N2O fluxes significantly depended on soil moisture, and CO2 fluxes exponentially increased both with the increase of soil moisture and inner chamber temperature.
     6) During fallow period, the seasonal average CH4 fluxes were 0.51±0.16, 0.19±0.03 and 0.09±0.02 mg m-2 h-1 for treatments NN, LN and HN, respectively,and the seasonal average CO2 fluxes were 220.56±7.76, 195.18±6.99 and 228.36±7.94mg m-2 h-1, respectively, and the seasonal average N2O fluxes were 0.04±0.00, 0.03±0.01 and 0.04±0.01 mg m-2 h-1, respectively.
     7) The cumulative CH4, CO2 and N2O emissions from paddy field over rice growing season accounted for 83.26-96.37%,48.24-56.90% and 32.24-71.07% of the annual cumulative CH4, CO2 and N2O emissions, separately, which indicated that the CH4 emissions played a vital role in rice growing season and the CO2 and N2O emissions over fallow season could not be neglected.
引文
白红英,韩建刚,张一平,2003. 农田温室气体N2O释放的水热效应机理初探. 农业环境科学学报,22(6):724-726.
    蔡祖聪,1997. 氮肥施用与大气甲烷循环. 见:黄昌勇,谢正苗,徐建明主编. 土壤化学研究与应用,中国环境科学出版社,北京.
    蔡祖聪,沈光裕,颜晓元,1998. 土壤质地、温度和 Eh 对稻田甲烷排放的影响. 土壤学报,35(2):145-153.
    蔡祖聪,徐华,卢维盛,廖宗文,张建国,魏朝富,谢德体,1998. 冬季水分管理方式对稻田CH4排放量的影响. 应用生态学报,9(2):171-175.
    蔡祖聪,1999. 中国稻田甲烷排放研究进展. 土壤,5:266-269.
    蔡祖聪,Arivn, R.M.,1999. 土壤水分状况对CH4氧化、N2O和CO2排放的影响. 土壤,289-294,298.
    曹金留,任立涛,陈国庆,徐华,蔡祖聪,1998. 水稻田烤田期间甲烷排放规律研究. 农村生态环境, 14(4):1-4.
    曹金留,徐华,张宏康,邢光熹,任立涛,杨保林,1999. 苏南丘陵区稻田氧化亚氮的排放特点. 生态学杂志,l8(3):6-9.
    陈德章,王明星,上官行健,黄俊,Rasmussen, R.A., Khalil, M.K.A., 1993a. 我国西南地区的稻田甲烷排放. 地球科学进展,8(5):47-54.
    陈德章,王明星,1993b. 稻田CH4排放和土壤、大气条件的关系. 地球科学进展,8(5):37-46.
    陈冠雄,黄国宏,黄斌,吴杰,于克伟,徐慧,薛晓华,1995. 稻田甲烷和氧化亚氮排放以及养萍和施肥的影响. 应用生态学报,6(4):378-382.
    陈全胜,李凌浩,韩兴国,阎志丹,2003. 水分对土壤呼吸的影响及机理. 生态学报,23(5):972-978.
    陈玉芬,杨军,顾尉蓝,伍时照,1999. 广州地区晚造稻田氧化亚氮排放量与施肥灌溉关系的研究. 华南农业大学学报,20(2):80-84.
    丁爱菊,王明星,1995. 稻田甲烷排放的初级模式. 大气科学,19(6):733-740.
    戴爱国,王明星,沈壬兴,Schütz, H., Seiler, W., Rennenberg, H., 1991. 我国杭州秋季稻田的甲烷排放. 大气科学,15(1):102-110.
    房秋兰,沙丽清,2006. 西双版纳热带季节雨林和橡胶林土壤呼吸.植物生态学报,30(1):97-103.
    韩广轩,朱波,张中杰,高美荣,江长胜,郑循华,2004. 水旱轮作土壤-小麦系统CO2排放及其影响因素. 生态环境,13(2):182-185.
    黄国宏,陈冠雄,吴杰,黄斌,于克伟,1995. 东北典型旱作农田N2O和CH4排放通量研究.应用生态学报,6(4):383-386.
    黄耀,2003. 地气系统碳氮交换-从实验到模型. 北京:气象出版社.
    侯爱新,陈冠雄,吴杰等,王正平,1997. 稻田甲烷和氧化亚氮排放关系及其微生物学机理和影响因子. 应用生态学报,8(3):270-274.
    贾仲君,蔡祖聪,2003. 水稻植株对稻田甲烷排放的影响. 应用生态学报,14(11):2049-2053.
    江长胜,王跃思,郑循华,王明星,2004. 稻田甲烷排放影响因素及其研究进展. 土壤通报,35(5):663-669.
    焦燕,黄耀,2003. 影响农田氧化亚氮排放过程的土壤因素,气候与环境研究,8(4):457-466.
    焦燕,黄耀,宗良纲,周权锁,Sass, R.L.,Fisher, F.M.,2002. 土壤理化特性对稻田CH4排放的影响. 环境科学,23(5):1-7.
    焦燕,黄耀,宗良纲,周权锁,Sass, R.L.,2005. 氮肥水平对不同土壤CH4排放的影响. 环境科学,26(3):21-24.
    李晶,王明星,郑循华,沈壬兴,2000. 稻田生态系统甲烷排放的机理研究. 中国基础科学一研究进展,7:19-23.
    李香兰,徐华,曹金留,蔡祖聪,八木一行,2006. 水分管理对水稻生长期N2O排放的影响. 土壤,38(6):703-707.
    梁巍,张颖,岳进,吴劼,史奕,黄国宏,2004. 长效氮肥施用对黑土水旱田甲烷和氧化亚氮排放的影响. 生态学杂志,23(3):44-48.
    林光辉,1995. 全球变化研究进展与新方向. 现代生态学讲座. 北京:科学出版社.
    林匡飞,项雅玲,姜达炳,胡球兰,李志红,杜道灯,陶战,2000. 湖北地区稻田甲烷排放量及控制措施的研究. 农业环境保护,19(5):267-270.
    刘德辉,陶于祥,2000. 土壤、农业与全球变化. 火山地质与矿产,21(4):290-295.
    刘惠,赵平,王跃思,林永标,饶兴权,2006a. 华南丘陵区农林复合生态系统稻田二氧化碳排放及其影响因素. 生态学杂志,25(5):471-476.
    刘惠,赵平,林永标,饶兴权,2006b. 华南丘陵地区农林复合生态系统晚稻田甲烷和氧化亚氮排放. 生态学杂志,25(5):269-274.
    刘文杰,曾觉民,王昌命,李红梅,段文平,2001. 森林与雾露水关系研究进展. 自然资源学报,16(6):571-575.
    娄运生,李忠佩,张桃林,2004. 不同利用方式对红壤CO2排放的影响. 生态学报,24(5):978-983.
    马秀梅,朱 波,杜泽林,郑循华,2005. 冬水田休闲期温室气体排放通量的研究. 农业环境科学学报,24(6):1199-1202.
    沙丽清,郑 征,唐建维,王迎红,张一平,曹敏,王锐,刘广仁,王跃思,孙扬,2004. 西双版纳热带季节雨林的土壤呼吸研究. 中国科学 D 地球科学,34(增刊Ⅱ):167-174.
    上官行健,王明星,沈壬兴,1993a. 稻田CH4的排放规律.地球科学进展,8(50):23-36.
    上官行健,王明星,1993b.稻田土壤中甲烷的产生.地球科学进展,8(5):1-12.
    上官行健,王明星,1993c.稻田CH4排放的控制措施. 地球科学进展,8(5):55-62.
    上官行健,王明星,沈壬兴,王跃思,Wassmann, R., Rennenberg, H., Seiler, W., 谢小立,王卫东,谢克和,1994. 我国华中地区稻田甲烷排放特征. 大气科学,l8(3):358-365.
    邵可声,李震,1996. 水稻品种以及施肥措施对稻田甲烷排放的影响. 北京大学学报(自然科学版),32(4):505-513.
    孙文娟,黄耀,陈书涛,邹建文,郑循华,2005. 稻麦作物呼吸作用与植株氮含量、生物量和温度的定量关系. 生态学报,25(50):1152-1158.
    沈壬兴,上官行健,王明星,王明星,王跃思,张文,卢巨祥,许炳雄,傅桂芬,李铭珊,林子瑜,1995. 广州地区稻田甲烷排放及中国稻田甲烷排放的空间变化. 地球科学进展,10(4):387-39.
    宋文质,曾江海,1996. 我国农田土壤的主要温室气体CO2、CH4和N2O排放研究. 环境科学,17(1):85-88.
    陶 战,1992. 稻田甲烷气排放与控制的研究. 国外农业环境保护,4:1-4
    王明星,2001. 中国稻田甲烷排放. 北京:科学出版社,6-10.
    王明星,戴爱国,黄俊,任丽新,沈壬兴,Schütz, H., Rennenberg, H., Seiler, W., Rasmussen, R.A., Khalil, M.A.K., 1993. 中国CH4排放量的估算,大气科学,17(1):52-64.
    王明星,李晶,郑循华,1998. 稻田甲烷排放及产生转化、输送机理. 大气科学,22(4):600-612.
    王迎红,2005. 陆地生态系统温室气体排放观测方法研究、应用及结果比对分析. 博士学位论文. 中国科学院大气物理研究所.
    王跃思,1998. 大气中痕量化学成分的分析方法研究及实际应用. 中国科学院大气物理研究所,北京.
    王跃思,刘广仁,王迎红,孙扬,薛敏,2003. 一台气相色谱仪同时测定陆地生态系统CO2、CH4和N2O排放. 环境污染治理技术与设备,4(10):84-90.
    王增远,徐雨昌,李震,过益先,丁玉萍,王占珍,1998. 稻田甲烷排放及其控制. 作物杂志,3(3):10-11.
    王智平,1997. 中国农田N2O放量的估算. 农村生态环境,13(2):51-55.
    项虹艳,朱波,王小国,高美荣,2006. 蔬菜地CO2排放特征及其影响因素.生态环境,15(1):71-73.
    谢小立,王卫东,上官行健,王明星,1995. 施肥对稻田甲烷排放的影响. 农村生态环境学报,11(1):1-14.
    谢艳兵,梁文举,王跃思,王朋,2004. 下辽河平原稻田非生长季碳排放观测研究. 生态学杂志,23(2):11-14.
    熊效振,沈壬兴,王明星,郑循华,王跃思,李晶,Kogge, M., 1999. 太湖流域单季稻的甲烷排放研究. 大气科学,23(1):9-18.
    徐华,1999a. 土壤水分状况和氮肥施用及品种对稻田N2O排放的影响. 应用生态学报,10(2):186-188.
    徐华,蔡祖聪,1999b. 种稻盆钵土壤甲烷排放通量变化的研究. 农村生态环境,15(1):10-13,16.
    徐华,邢光熹,蔡祖聪,鹤田治雄,1999c. 丘陵区稻田N2O排放的特点. 土壤与环境,8(4):266-270.
    徐华,邢光熹,张汉辉,金继生,1995. 太湖地区水田土壤N2O排放通量及其影响因素. 土壤学报(增刊),32:144-149.
    徐文彬,洪业汤,1999. 冬闲水田土壤——一个重要的尚未确定的N2O释放源. 环境科学研究,12(30):42-45.
    邢光熹,颜晓元,2000. 中国农田N2O排放的分析估算与减缓对策. 农村生态环境,16(4):1-6.
    严玉平,2006. 西双版纳热带季节雨林、橡胶林土壤CH4、N2O通量及树干呼吸研究. 硕士学位论文. 中科院西双版纳热带植物园.
    杨军,陈玉芬,胡飞,伍时照,王国昌,1996. 广州地区早稻田施肥对N2O排放影响的初步研究. 华南农业大学学报,17(4):52-57.
    杨军,杨崇,吕雪娟,顾尉蓝,陈玉芬,1999. 广州地区施用不同有机肥对稻田氧化亚氮排放的影响. 华南农业大学学报,20(1):123-124.
    云南省统计局,1998. 云南省统计年鉴,中国统计出版社,北京.
    张玉铭,胡春胜,董文旭,陈德里,张佳宝,2004. 农田土壤N2O生成与排放影响因素及N2O总量估算的研究. 中国生态农业学报,12 (3):119-123.
    张振贤,华珞,尹逊霄,滑丽萍,高娟,2005. 农田土壤N2O的发生机制及其主要影响因素. 首都师范大学学报,26(3):114-120.
    张中杰,朱 波,江长胜,韩广轩,张美荣,2005. 川中丘陵区旱地小麦生态系统CO2、N2O和CH4排放特征. 生态学杂志,24(2):131-135.
    郑靖,王重阳,王迎红,鲁彩艳,史奕,陈欣,2005. 下辽河平原典型农田融化期氧化亚氮和甲烷排放通量研究. 生态学杂志,24(9):999-1003.
    郑循华,王明星,王跃思,沈壬兴,龚宴邦,骆冬梅,张文,金继生,李老土,1996.稻麦轮作生态系统中土壤湿度对N2O产生与排放的影响. 应用生态学报,7(3):273-279.
    郑循华,王明星,王跃思,沈壬兴,张文,龚宴邦,1997a. 温度对农田N2O产生与排放的影响. 环境科学,18(5):1-5.
    郑循华,王明星,王跃思,1997b. 华东稻田甲烷和氧化亚氮排放. 大气科学,21(2):231-237.
    郑循华,徐仲均,王跃思,韩圣慧,黄耀,蔡祖聪,朱建国,2002. 开放式空气CO2浓度增高影响稻田-大气CO2净交换的静态暗箱法观测研究. 应用生态学
    报,13(10):1240-1244.
    邹建文,黄耀,郑循华,王跃思,陈玉泉,2004. 基于静态暗箱法的陆地生态系统-大气CO2净交换估算,科学通报,49(3):258-264.
    邹建文,黄耀,宗良刚,郑循华,王跃思,2003. 稻田CO2、CH4和N2O排放及其影响因素. 环境科学学报,23(6):758-764.
    邹建文,焦燕,王跃思,黄耀,2002. 稻田CH4、N2O和CO2排放通量分析方法研究. 南京农业大学学报,25(4):45-48.
    Abao, E.B.Jr., Bronson, K.F., Wassmann, R., Singh, U., 2000. Simultaneous records of methane and. nitrous oxide emissions in rice-based cropping systems under rain fed conditions. Nutrient Cycling in Agroecosystems, 58:131-139.
    Allen, M.R., 2000. Quantifying the uncertainty in forecasts of anthropogenic climate change. Nature, 407:6l7-620.
    Bodelier, P.L.E., Hahn, A.P., Arth, I.R., Frenzel, P., 2000. Effects of ammonium-based fertilization on microbial processes involved in methane emission from soils planted with rice. Biogeochemistry, 51:225-257.
    Bosse, U.,Frenzel, P.,1997.Activity and distribution of methane-oxidizing bacteria in flooded rice soil microcosm sand in rice plants (Oryza sativa). Applied and Environmental Microbio1ogy. 63:1199-1207.
    Bouwman, A.F., 1994. Estimated global source distribution of nitrous oxide. In:Minami, K., Moisier, A.R., Sass, R.L., CH4 and N2O:Global emission and controls from rice fields and other agricultural and industrial sources. Tokyo:Yokendo, 147-159.
    Bowden, R.D., Nadelhoffer, K.J., Boone, R.D., Melillo, J.M., Garrison, J.B., 1993. Contributions of above ground litter, below ground litter, and root respiration to total soil respiration in a temperate mixed hardwood forest. Canadian Journal of Forest Research, 23:1402-1407.
    Bronson, K.F., Mosier, A.R., 1997. Effect of encapsulated calcium carbide on denitrogen,nitrous oxide,methane and carbon dioxide emissions from flooded rice.Biology and Fertility of Soils, 11:116-l20.
    Bymes, B.H., Holt, J.S., Anstin, E.R., 1993. The emission of nitrous oxide upon wetting a rice soil following a dry season fallow. Journal of Geophysical Research, 98(D12):22925-22929.
    Cai, Z.C., Xing, G.X., Yan, X.Y., Xu, H., Tsuruta, H., Yagi, K., Minami, K., 1997. Methane and nitrous oxide emissions from rice paddy fields as affected by nitrogen fertilisers and water management. Plant and Soil, 196:7-14.
    Cai, Z.C., Xing G.X., Shen, G.Y., Xu, H., Yan, X., Tsuruta, H., Yagi, K., Minami, K., 1999. Measurements of CH4, and N2O emissions from rice fields in Fengqiu, China. Soil Science and Plant Nutrition, 45(1):1-13.
    Chen, H.Z., 1981. Geographical Distribution of Paddy Soils in China, in:Proceedings of the synposiumon paddy soil. Institute of Soil Sciences. Chinese Academy of Sciences(ed.), Science Press, 101-107.
    Dalal, R.C., Wang, W.J., Robertson, G.P., Parton, W.J., 2003. Nitrous oxide emission from Australian agriculture lands and mitigation options:A review. Australian Journal of Soil Research, 41, 165-195.
    Daniel, L.K., Burger, J.A., Edwards, G.S., 1998. Estimating root respiration, microbial respiration in the rhizosphere, and root-free soil respiration in forest soils. Soil Biology & Biochemistry, 30:961-968.
    Davidson, E.A., 1992. Sources of nitric oxide and nitrous oxide following wetting of dry soil. Soil science Society of American Journal, 56:95-102.
    Debbie, K.E., Mc Taggart, I.P., Smith, K.A., 1999. Nitrous oxide emissions from intensive agricultural systems:Variations between crops and seasons, key driving variables, and mean emission factors. Journal of Geophysical Research, 104(D21):26891-26899.
    Denier van der Gon, H.A.C., Van Breemen, N., Neue, H.U., Lantin, R.S., Aduna, J.B., Alberto, M.C.R., Wassmann, R., 1996. Re1ease of entrapped methane from
    wetland rice fields upon soil drying. Global Biogeochemical Cycles,10(1):1-9.
    Dixon, R.K., Brown, S., Houghton, R.A., Solomon, A.M., Trexler, M.C., Wisniewski, J., 1994. Carbon pools and flux of global forest ecosystems. Science, 263:185-190.
    Dong, Y., Scharfee, D., Lobertm, J.M., Crutzen, P.J., Sanhueza, E., 1998. Fluxes of CO2, CH4 and N2O from a temperate forest soil:The effects of leaves and humus layers. Tellus, 50B, 243-252.
    Eichner, M.J., 1990. Nitrous oxide emissions from fertilized soils:Summary of available data. Journal of Environmental Quality, 19:272-280.
    FAO & IAEA, 1992. Measurement of methane and nitrous oxide emissions from agriculture. A Joint Undertaking by the Food and Agriculture Organization of the United States and the International Atomic Energy Agency. International Atomic Energy Agency, Vienna, 5-6.
    Galbally, I.E., 1989. Factors controlling NOx emission from soils.In:Exchange of trace gases between terrestrial ecosystem and the atmosphere. Andreae, M.O., Schimel, D.S., Dahlem, et al., (Eds.). New York:Wiley and Sons, 35-42.
    Gordon, A.M., Schlenter, R.E., Van, C.K., 1987. Seasonal patterns of soil respiration and CO2 evolution following harvesting in the white spruce forests of interior Alaska. Canadian Journal of Forest Research, 17:304-310.
    Heincke, M., Kaupenjohann, M., Efects of soil solution on the dynamics of N2O emissions:a review, Nutrient Cycling in Agroecosystems, 1999, 55(2):133-157.
    Houghton, J.T., Callander, B.A., Varney, S.K., 1992. Climate Change, The Supplementary Report to the IPCC Scientific Assessment. Cambridge :Cambridge University Press.
    Hudgens, E., Yavitt, J.B., 1997. Land-use effects on soil methane and carbon dioxide fluxes in forests near Ithaca, New York. Ecoscience, 4:24-14-222.
    Husin, Y.A., Murdiyarso, D., Khalil, M.A.K., Rasmussen, R.A., Shearer, M.J., Sabiham, S., Sunar, A., Adijuwana, H., 1995. Methane flux from Indonesian wetland rice:The effect of water management and rice variety. Chemosphere, 31:3l53-3180.
    Huang, Y., Sass, R.L., Fisher, F.M., 1997. Methane emission from Texas rice paddy soils.1.Quantitative mutli-year dependence of CH4 emission on soil property, cultivar, and grain yield. Global Change Biology, 3:479-489.
    Huang, Y., Conrad, R., Wassmann, R., Neue, H.U., 1999. Effect of soil characteristics on sequential reduction and m ethane production in sixteen rice paddy soils from China, the Philippines, and Italy. Biogeochemistry, 47(3):267-293.
    Huang, Y., Jiang, J.Y., Zong, L.G., Sass, R.L., Fisher, F.M., 2001.Comparison of field measurements of CH4 emission from rice cultivation in Nanjing, China and Texas, USA. Advances in Atmospheric Sciences, 18(7):1121-1130.
    Inubushi, K., Furukawa, Y., Hadi, A., Purnomo, E., Tsuruta, H., 2003. Seasonal changes of CO2, CH4 and N2O fluxes in relation to land-use change in tropical peatlands located in coastal area of South Kalimantan. Chemosphere, 52:603-608.
    IPCC, 1992. Climate Change 1992:The supplementary report to the IPCC Scientific assessment. New York:Cambridge University Press.
    IPCC, 1995. Climate change 1995:The science of climate change. Contribution of group Ⅰ to second assessment report of the intergovernmental panel to climate change, 15.
    IPCC, 2002. Climate Change 2001 : Impact, Adaptation, and Vulnerability. Cambridge:Cambridge University Press, 3-226.
    Jenkison, D.S., Adams, E., Wild, A., 1991. Model estimate of emission from soil in response to global warming. Nature, 351:304-306.
    Kanemasu, E.T., Flitcroft, I.D., Shah, T.D.H., Nie, D., Thurtell, G.W., Kidd, G., Simpson, I., Lin, M., Neue, H.U., Bronson, K., 1995. In:Peng, S., et al. (Eds.), Climate Change and Rice. Springer, Berlin, 91–101.
    Khalil, M.A.K., Rasmussen, R.A., Wang, M.X., Ren, L., 1990. Emissions of trace gases from Chinese rice fields and biogas generation : CH4, CO, CO2, chlorocarbon and hydrocarbon. Chemosphere, 20(1-2):207-226.
    Lindau, C.W., Delaune, R.D., Patrick, Jr., W.H., Law, V.J., 1990. Fertilizer effects on dinitrogen, nitrous oxides, and methane emissions from lowland rice. Soil science Society of America Journal, 54, 1789-1794.
    Lindau, C.W., Bollich, P.K., Delaune, R.D., Patrick, Jr., W.H., Law, V.J., 1991. Effect of urea fertilizer and environmental factors on methane emissions from a Louisiana, USA rice field. Plant and Soil, 136:195-203.
    Maybury, Kathleen, P., 1993. Microbial and invertebrate changes in Douglas-fir forest soil four years after partial and complete canopy removal. M S. thesis, Seattle:University of Washington, 130.
    Mayer, H.P., Conrad, R., 1990. Factors influencing the population of methanogenic bacteria and the initiation of methane production upon flooding of paddy soil .FEMS Microbiology Ecology, 73:103-112.
    Meyer, W.B., 1996. Human impact on the earth. Cambridge:The Cambridge University Press.
    Mishra, S., Rath, A.K., Adhya, T.K., Rao, V.R., Sethunathan, N., 1997. Effect of continuous and alternate water regimes on methane efflux from rice under greenhouse conditions. Biology and Fertility of Soils, 24:399-405.
    Miyata, A., Leuning, R., Denmead, O.T., Kim, J., Harazono, Y., 2000. Carbon dioxide and methane fluxes from an intermittently flooded paddy field. Agricultural and Forest Meteorology,102:287-303.
    Mosier, A.R., Duxbury, J.M., Freney, J.R., Heinemeyer, O., Minami, K., 1996. Nitrous oxide emission from agricultural fields : Assessment, measurement and mitigation. Plant and Soil, 181(1):95-108.
    Nakane, K., Yamamoto, M., Tsubota, H., 1983. Estimation of root respiration rate in a mature forest ecosystem. Japanese Journal of Ecology, 33:397-408.
    Nakayarna, F.S., 1990. Soil respiration. Remote sensing Reviews, 5:311-321.
    Naqvi, S.W.A., 1990. Comment on a mechanism of N2O production in the ocean. Nature, 349:373-374.
    Nouchi, I., 1994. Mechanisms of methane transport through rice plants. In: Minami, K., Mosier, A. and Sass, R.L. (Eds). CH4 and N2O:Global Emissions and Controls from Rice Fields and Other Agricultural and Industrial Sources. Yokendo Publishers, Tokyo, 27-39.
    Ohtaki, E., 1984. Application of an infrared carbon dioxide and humidity instrument to studies of turbulent transport. Boundary-Layer Meteorology, 29, 85-107.
    Ohtaki, E., Matsui, T., 1982. Infrared device for simultaneous measurement of atmospheric carbon dioxide and water vapor. Boundary-Layer Meteorology. 24, 109-119.
    O’Neill, K.P., Kasischke, E.S., Richter, D.D., 2002. Environmental controls on soil CO2 flux following fire in black spruce, white spruce, and aspen stands of interior Alaska. Canadian Journal of Forest Research, 32(9):1525-1541.
    Orchard, V.A., Cook, F.J.,1983. Relationship between soil respiration and soil moisture. Soil Biology and Biochemistry, 22:153-160.
    Patrick, H.M., Ronald, D.D., William, H.P., 1993. Methane and nitrous oxide emission from laboratory measurements of rice soil suspension effect of soil oxidation-reduction status. Chemosphere, 26:251-260.
    Parashar, D.C., Gupta, P.K., Rai, J., Sharma, R.C., Singh, N., 1993. Effect of soil temperature on methane emission from paddy fields. Chemosphere, 26:247-250.
    Parashar, D.C., Mitra, A.P., Sinha, S.K., Gupta, P.K., Rai, J., Sharma, R.C., Singh, N., Kaul, S., Lal, G., Chaudhary, A., Ray, H.S., ... Lal, S., Venkatramani, S., 1994.
    Methane budget from Indian paddy fields.In:Minami, K., Mosier, A., Sass, R.L. (Eds). CH4 and N2O:Global Emissions and Controls from Rice Fields and Other Agricultural and Industrial Sources. Yokendo Publishers, Tokyo, 85-107.
    Rey, A., Pegoraro, E., Tedeschi, V., Parri, I., Jarvis, P.G., Valentini, R., 2002. Annual variation in soil respiration and its components in a coppice oak forest in central Italy. Global Change Biology, 8(9):851-866.
    Robertson, I.A., Kuenen, J.G., 1991. Physiology of nitrifying and denitrifying bacteria. In:Rogers, J.E. and Whitman WBCEDS. Microbial Production and Consumption of Greenhouse Gases:Methane, Nitrogen Oxides and Halo Methane. American Society for Microbiology, Washington D C, 189-199.
    Rodhe, H., 1990. A comparison of the contribution of various gases to the greenhouse effect. Science, 248:1217-1219.
    Ryan, M.G., Binkley, D., Fownes, J.H., 1997. Agerekated decline in forest Prinn, R.D., Cunnold, R., Rasmussen, R., Simmonds, P., Alyea, F., Crawford, A., Fraser, P., Rosen, R., 1990. Atmospheric emissions and trends of nitrous oxide deduced from 10 years of ALEGAGE data. Journal of Geophysical Research, 95:18369-18385.
    Sass, R.L., Fisher, F.M., Wang, Y.B., Turner, F.T., Jund, M.F., 1992. Methane emission from rice fields:The effect of flood water management. Global Biogeochemical Cycles, 6:249-262.
    Schlesinger, W.H., Andrews, J.A., 2000. Soil respiration and the global carbon cycle. Biogeochemistry, 48:7-20.
    Schütz, H., Holzapfel-Pschorn, A., Conrad, R., Rennenberg, H., Seiler, W., 1989. A three- year continuous record on the influence of daytime, season, and fertilizer treatment on methane emission rates from an Italian rice paddy. Journal of Geophysical Research, 94:16405-16416.
    Schütz, H., Seiler, W., Conrad, R., 1990. Influence of soil temperature on methane emission from rice paddy fields. Biogeochemistry, 11:77-95.
    Setyanto, P., Makarim, A.K., Fagi, A.M., Wassmann, R., Buendia, L.V., 2000. Crop management affecting methane emissions from irrigated and rainfed rice in Central Java (Indonesia). Nutrient Cycling in Agroecosystems, 58:85-93.
    Singh, J.S., Singh, S., Raghubanshi, A.S., Singh, S., Kashyap, A.K., 1996. Methane flux from rice/wheat agroecosystem as affected by crop phenology, fertilization and water level. Plant and Soil, 183:323-327.
    Smith, C.J., Branden, M., Patrick, Jr., W.H., 1982. Nitrous oxide emission following urea-N fertilization of wetland rice. Soil Science and Plant Nutrition, 28:161-171.
    Svensson, B.H., 1984. Different temperature optima in methane formation when enrichments from acid peat are supplemented with acetate or hydrogen.Applied Environmental Microbiology, 48:394-398.
    Takai, Y., 1970. The mechanism of methane formation in flooded paddy soil. Soil Science and Plant Nutrition, 16:238-244.
    Toland, D.E., Zak, D.E., 1994. Seasonal patterns of soil respiration in intact and clear-cut northern hardwood forests. Canadian Journal of Forest Research, 24(8):1711-1716.
    Uchijima, Z., 1976. Maize and rice. In:Monteith, J.L. (Ed.), Vegetation and the Atmosphere. Academic Press, London, 2:233–64.
    UNFCCC, 1997. Kyoto Protocol to the United Nations Framework Convention on Climate Change. http://unfccc.int/resource/docs/convkp/conveng.pdf. Vitousek, P.M., Mooney, H.A., Lubchenco, J., Melillo, J.M., 1997. Human domination of earth’s ecosystems. Science, 277:494-499.
    Vitousek, P.M., Aber, J.D., Goodale, C.L., Aplet, G.H., 2000. Global change and wildness science. USDA Forest Service Proceedings, RMRS-P-15-VOL-1, 5-9
    Wang, M.X., Shangguan, X.J., Shen, R.X., Wassmann, R., Seiler, W., 1993. Methane production, emission and possible control measures in the rice agriculture. Advances in Atmospheric Sciences,10(3):307-314.
    Wang, Z., Kludze, H., Crozier, C.R., Patrick, Jr., W.H., 1995. Soil characteristics affecting methane production and emission in flooded rice.In:Peng, S., Ingarm, K.T., Neue, H.U., Ziska, L.H. (Eds.), Climate Change and Rice. Springer-Verlag Berlin Heidelberg, 81-90.
    Wang, Z.Y., Xu, Y.C., Li, Z., Guo, Y.X., Wassmann, R., Neue, H.U., Lantin, R.S., Buendia, L.V.B., Ding, Y.P., Wang, Z.Z., 2000. A four-year record of methane emissions from irrigated rice fields in the Beijing region of China. Nutrient Cycling in Agroecosystem, 58:55-63.
    Wassmann, R., Neue, H.U., Latin, R.S., Aduna, J.B., Alberto, M.C.R., Andales, M.J., Tan, M.J., Van der Gon, H.A.C., Denier, H., Papen, H., Rennenberg, H., Seiler, W., 1994. Temporal patterns of methane emissions from rice fields treated by different modes of N application. Journal of Geophysical Research, 99:16457-l6462.
    Wassmann, R., Neue, H.U., Bueno, C., Lantin, R.S., Alberto, M.C.R., 1998. Methane production capacities of different rice soils derived from inherent and exogenous substrates. Plant and Soil, 203:227-237.
    WBGU, 1999. WBGU special report:The accounting of biological sinks and sources Under the Kyoto Protocol.
    Weber, M.G., 1990. Forest soil respiration after cutting and burning in immature aspen ecosystems. Forest Ecology Management, 31:1-14.
    Whalen, S.C., Reeburgh, W.S., Kizer, K.S., 1991. Methane consumption and emission by taiga. Global Biochemical Cycles, 5:26l-273.
    Xu, H., Xing, G.X., Cai, Z.C., Tsuruta, H., 1997. Nitrous oxide emissions from three rice paddy fields in China. Nutrient Cycling in Agroecosystems, 49:23-28.
    Xing, G.X., 1998. N2O emission from cropland in China. Nutrient Cycling in Agroecosystems, 52:249-254.
    Yagi, K., Minami, K., 1998. Effect of organic matter application on methane emission from some Japanese paddy fields. Soil Science and Plant Nutrition. 36(4):599-610.
    Yagi, K., Tsuruta, H., Kanda, K., Minami, K., 1996. The effect of water management on methane emission from a Japanese rice paddy field. Global Biogeochemical Cycles, 10:255-267.
    Yan, X.Y., Ohara, T., Akimoto, H., 2003. Development of region-specific emission factors and estimation of methane emission from rice fields in the East, Southeast and South Asian countries. Global Change Biology, 9:237-254.
    Yavitt, J.B., Lang, F.E., Wieder, R.K., 1987. Control of carbon mineralization to CH4 and CO2 in anaerobic, Sphagnum-derived peat from Big Run Bog, West Virginia. Biogeochemistry, 4(2):141-157.
    Yagi, K., Tsuruta, H., Kanda, K., Minami, K., 1996. Effect of water management on m ethane emission from a Japanese rice paddy field : Automated methane monitoring. Global Biogeochemical Cycles, 10:255-267
    Yagi, K., Minami, K., 1989. Effects of mineral fertilizer and organic matte application on the emission of methane from Japanese paddy fields. Submitted to Soil Science and Plant Nutrition. August.
    Zheng, X.H., Wang, M.X., Wang, Y.S., Heyer, J., Kogge, M., Li, L., Jin, J., 1998. Comparison of manual and automatic methods for measurement of methane emission from rice paddy fields.Advances in Atmospheric Sciences, 15(4):569-579.
    Zheng, X.H., Wang, M.X., Wang, Y.S., Shen, R., Li, J., Heyer, J., Kogge, M., Papen, H., Jin, J., Li, L., 1999. Characters of greenhouse gas (CH4、N2O、NO)emissions from croplands of southeast China. World Resource Review, 11(2):239-246.
    Zou, J.W., Huang, Y., Zheng, X.H., 2004. Static opaque chamber-based technique for determination of net exchange of CO2 between terrestrial ecosystem and atmosphere. Chinese Science Bulletin, 49(4):381-388.