稀土(Ⅲ)络合物在碳糊电极上的吸附伏安法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文利用碳糊电极(CPE)在正电位区测定残余电流低,基线平稳的特点,首次用吸附伏安法研究稀土络合物的氧化峰并分别用来测定中、重稀土,铈和钪,为非电活性金属元素如稀土、钍、锆等的电化学分析提供了新的途径。
     全文共分三章。
     第一章利用中、重稀土(Ⅲ)-茜素氨羧络合剂(ALC)在CPE上产生的与ALC试剂峰很好分开的氧化峰,建立了吸附伏安法测定中、重稀土的新方法。在0.12 mol/L HAc-NaAc-0.03 mol/L邻苯二甲酸氢钾(pH 5.0)中,-0.2 V(vs.SCE)富集60 s,线性扫描至0.8 V,中、重稀土(Ⅲ)-ALC在碳糊电极上产生灵敏的吸附氧化峰,其二次导数峰电流与中、重稀土浓度有线性关系。重稀土Dy、Ho、Er、Tm、Yb、Lu灵敏度高,在1.0×10~(-9)~2.0×10~(-7)mol/L范围内呈线性关系,富集120 s检出限达5.0×10~(-10)mol/L(S/N=3)。中稀土Sm、Eu、Gd、Tb与Y灵敏度略低,在3.0×10~(-9)~3.0×10~(-7)mol/L范围内呈线性关系,富集120 s检出限为2.0×10~(-9)mol/L(S/N=3)。探讨了电极反应机理。该法用于稀土球墨铸铁样品中稀七(除La、Ce、Pr、Nd、Sc)的测定,结果满意。
     第二章研究了铈(Ⅲ)-茜素氨羧络合剂在碳糊电极正电位区的吸附伏安行为,探讨了在其它稀土存在下单独测定铈的最佳条件,建立了一种高灵敏度,高选择性的测定铈的新方法。在0.08 mol/LHAc-NaAc-0.012 mol/L邻苯二甲酸氢钾底液(pH 4.7)中,-0.2 V富集60 s,以100 mV/s的扫速阳极化线性扫描至0.8 V,Ce(Ⅲ)-ALC
    
    刘述梅:稀上(111)络合物在碳糊电极上的吸附伏安法研究
    络合物产生灵敏的吸附氧化峰,该峰与其它斓系元素络合物峰申‘位
    相差近100 mV,以此可单独测定饰。其二次导数峰电流与饰浓度在6.0
    火10一,一3.0 K10一7mol/L范围内呈线性关系,富集1205检出限达3.0
    火10一,m。l/LC夕解3)。电极的重现性好,在同一支电极同一表面上
    15次连续测定4.0 xlo一smc)l/LCe(HD,相对标准偏差为3.5%。探讨
    了电极反应机理。该法用于稀土球墨铸铁样品中饰的测定,结果满
    意。
     第三章研究了杭(I11)一茜素氨梭络合剂在碳糊电极正电位区的
    吸附伏安行为,利用该络合物产生的吸附氧化峰二次导数峰电流与
    杭浓度成正比测定抗。测定条件为:。.08 mol/L HAc一NaAc一O·02
    mOI_/L邻苯二甲酸氢钾底液,pH 4 .3,一0 .ZV富集455(或90。;),
    扫速150 mV/S,一0.ZV至0.SV线性扫描。测定线性范围为2.OX
    1()一,一6.0火10一7 mol/L,富集1205检出限达1.0 x10一,mo口L
     ‘国/解二3)。探讨了电极反应机理。电极的重现性好,在同一支电极
    同一表面上15次连续测定4.0 x 10一8 mol/L SC(111),相对标准偏差为
    3.7%。该法用于矿石样品中杭的测定,结果满意。
     由上一可‘矢一},各稀土一茜素氨梭络合剂在CPE正电位区的吸附伏安
    行为有一很大差异,一可以达到分别测定中、_重稀土,饰,杭的目的。
    合理设计CPE(如加修饰剂),进一步提高电极的选择性、灵敏度一和
    抗于扰能力,将是发展方向。
Carbon paste electrodes (CPEs) are characteristics of low background currents and flat measure baseline over a range of the large positive potentials in aqueous solution. The paper investigates for the first time oxidation peaks of the complexes of rare earths at a CPE by adsorptive stripping voltammetry, and presents several sensitive procedures for quantifying various rare earth elements based on the adsorptive oxidation peak. A new approach is provided for determination of non-electroactive metals such as rare earths, zirconium, thorium etc.
    The paper consists of three chapters.
    The first chapter deals with the adsorption voltammetry for the determination of middle and heavy rare earths in the presence of alizarin complexon (ALC) at a CPE. In a supporting electrolyte of 0.12 mol/L HAc-NaAc and 0.03 mol/L potassium biphthalate (pH5.0), the complexes of middle and heavy rare earths(III) with ALC yield a sensitive adsorptive oxidation peak when linear-scanning at 100mV/s from -0.2 to 0.8 V. The second-order derivative peak currents are proportional to the concentrations of middle and heavy rare earths(III). The sensitivity of the complexes of heavy rare earths(III) (Dy, Ho, Er, Tm, Yb, Lu) is higher than that of middle rare earths(III) (Sm, Eu, Gd, Tb)and Y. For heavy rare earths the detection limit attains 5.0×10-10 mol/L (S/N=3) for a 120 s preconcentration, the linear range is 1.0×10-9 -2.0×10-7 mol/L. For middle rare earths and Y the linear range is 3.0×
    
    
    
    
    10-9-3.0×10-7mol/L, and the detection limit is 2.0×10-9 mol/L(S/N=3) for a 120 s preconcentration. The relative standard deviation is 3.8 % for 20 successive determinations of 4.0×10-8 mol/L Ho3+ on the same electrode surface. The electrode processes of the adsorbed complex are investigated. The developed method has been applied to determination of the sum of rare earths (except La, Ce, Pr, Nd, Sc) in the samples of rare earth nodular graphite cast iron with satisfactory results.
    The second chapter presents a new procedure for determination of trace cerium based on the adsorption voltammetry of the Ce3+- A1C complex at a CPE. The procedure is convenient to determine alone cerium in the presence of other rare earths because there is a 100 mV difference between the peak potentials of Ce3+- A1C and other rare earth(III)-ALC complexes in a supporting electrolyte of 0.08 mol/L HAc-NaAc and 0.012 mol/L potassium biphthalate(pH 4.7) when linear-scanning at 100 mV/s from -0.2 V to 0.8 V. The second-order derivative peak currents are directly proportional to Ce3+ concentration over a range of 6.0×10-9-3.0×10-7mol/L. The detection limit is as low as 3.0×10-9mol/L (S/N=3) for 120 s preconcentration times. The RSD of 3.5% is obtained for 15 determinations of Ce3+at 4.0×10-8mol/L level on a same CPE surface. The proposed method has been applied to determination of cerium in the samples of rare earth nodular graphite cast iron.
    The final chapter is devoted to electrochemical behavior of the scandium(III)-ALC complex at a CPE. A sensitive adsorptive oxidation peak of the scandium(III)-ALC complex is obtained at the peak potential of 0.66 V in 0.08 mol/L HAc-NaAc- 0.02 mol/L potassium biphthalate
    
    
    
    (pH4.3) when linear-scanning from -0.2 V to 0.8 V at 150 mV/s. The concentrations of Sc(III) are directly proportional to the second-order derivative peak currents over a range of 2.0×10-9-6.0×10-7 mol/L. The detection limit for scandium is as low as 1.0×10-9 mol/L (S/N=3) for 120 s accumulation time. The relative standard deviation is 3.7% for 15
    successive determinations on the same electrode surface at the 4.0×10-8 mol/L level. The electrode processes of the adsorbed complex are proposed. The method has been applied successfully to the determination of scandium in ore samples.
    From the above, adsorptive oxidation behavior of various rare earths (III)-ALC at a CPE is very different within the positive potentials. The difference can be used for determination of middle and heavy rare earths, cerium and scandium, respect
引文
1.张若桦编著,申泮文审校,稀土元素化学,天津科学技术出版社,天津,(1987),P3。
    2.程介克,刘锦春,稀土元素分析,分析试验室,9(4)(1990),54~82。
    3. J.W.O'Laughlin, Handbook on the physics and chemistry of rare earths, Ed.K.A.Gschneidner Jr. And L.Eyring, North-Holland publishing Co.Amsterdam, New York, Oxford, (1979), vol.4, chap.37A。
    4. T.M.Florence, L.E.Smythe, Use of azo dyes for the polarographic determination of the lanthanides, Nature, 187(1960), 771。
    5. M.L.Thakur, Determination of microgram quantities of gadolinium by cathode-ray polarography, Talanta, 21(1974), 771。
    6.高小霞,极谱催化波,科学出版社,北京(第一版),(1991)。
    7.高小霞,稀土的电分析化学,分析科学学报,12(4)(1996),332~340。
    8.姚修仁,周继兴,尹明,钪、铀、钍、锆、稀土元素的极谱吸附催化波研究Ⅰ、钪的催化波及其在矿石中的应用,分析化学,9(1)(1981),22~26。
    9.高小霞,张曼平,稀土元素的电分析化学研究—铕与二甲酚橙极谱催化波,中国科学(B辑),5(1982),398~405。
    10. X.X.Gao, M.P.Zhang, Polarographic adsorptive complex wave of light rare earths with o-cresolphalexon, Anal.Chem., 56(1984), 1912~1916。
    11.李南强,张力,高小霞,稀土元素的电分析化学研究Ⅹ:钆-茜素红的极谱配合吸附波的研究,化学学报,41(4)(1983),351~358。
    12.李南强,赵燕南,高小霞,稀土元素的电分析化学研究ⅩⅥ.铥-茜素配位剂极谱配位吸附波的研究,化学学报,42(1984),
    
    1062~1068。
    13.李南强,崔毅,稀土-镍-茜素配位剂极谱异核配合吸附波的研究,化学学报,43(1985),955-959。
    14.李南强,吴大南,稀土-锌-茜素氨羧络合剂异核络合物极谱吸附波的研究,高等学校化学学报,10(6)(1989),591~595。
    15.李南强,吕瑞敏,稀土-茜素络合剂-乙二胺体系极谱吸附波研究,北京大学学报,25(6)(1989),706~710。
    16.崔毅,李南强,稀土-钴-茜素氨羧络合剂异核络合物极谱吸附波的研究,高等学校化学学报,15(9)(1994),1314~1316。
    17.黎拒难,赵藻藩,邸凤玲,钪-茜素S-铜-硫脲体系的络合物吸附波,武汉大学学报(自然科学版),3(1985),91~97。
    18.黎拒难,李定文,轻稀土-锌-茜素S异多核络合物极谱络合物吸附波的研究,分析化学,19(7)(1991),831~833。
    19.黎拒难,陈运泉,赵先菊,轻稀土-钇-茜素红S异多核络合物极谱络合物吸附波的研究,湘潭大学学报,15(1)(1993),104~108。
    20.黎拒难,赵先菊,苏生跃,钪-钇-茜素红S异多核络合物极谱络合物吸附波的研究,中国稀土学报,17(3)(1999),271~274。
    21.张军,黎拒难,邓培红,钪-钙-茜素S异多核络合物极谱络合物吸附波的研究,分析化学,28(4)(2000),476~478。
    22.黎拒难,彭晖,赵先菊,稀土(Ⅲ)-钼-三溴偶氮氯膦异多核络合物吸附波,冶金分析,21(4)(2001),8~11。
    23.施明连,高小霞,稀土-间硝基偶氮氯膦极谱络合吸附波的研究,北京大学学报(自然科学版),6(1987),46~52。
    24.张立群,高小霞,稀土元素的电分析化学研究—N,N’-二(2-羟基-5-磺基苯基)-C-氰基甲(?)(DSPCF)与轻稀土元素的络合吸附波,中国科学(B辑),12(1982),1057~1066。
    25.焦奎,高小霞,稀土元素的电分析化学研究Ⅸ.铽-8-羟基喹啉-高氯酸钠的极谱配合吸附波,化学学报,41(3)(1983),222~228。
    
    
    26.焦奎,高小霞,稀土元素的电分析化学研究(ⅴ):钇-罗丹明-二苯胍体系的示波极谱研究,高等学校化学学报,3(1982),327~335。
    27.张曼平,高小霞,稀土元素的电分析化学研究Ⅺ:钆与邻苯二酚紫的配位吸附波,化学学报,41(4)(1983),342~349。
    28. M.R Zhang, X.X. Gao, Polarographic adsorptive complex wave of rare earths with thymolphalexon, Anal.Chem., 56(1984), 1917-1919。
    29.高小霞,王镇棣,稀士-漂蓝6B的络合吸附波研究(Ⅰ),中国科学(B辑),6(1987),582~593。
    30.焦奎,高小霞,偶氮硝羧及钕络合物吸附性质的研究,中国科学(B辑),1(1986),28~34。
    31.黎拒难,张朝利,彭晖,赵先菊,稀土(Ⅲ)-偶氮胂Ⅲ极谱吸附波的研究,稀土,23(2)(2002),30~32。
    32.彭晖,黎拒难,罗春花,梁成都,刘正春,稀土(Ⅲ)-DBN-偶氮胂配合物极谱吸附波的研究,湘潭大学自然科学学报,20(2)(1998),70~73。
    33.彭晖,黎拒难,李海,稀土(Ⅲ)-三溴偶氮胂络合物极谱吸附波的研究,理化检验(化学分册),34(9)(1998),392~394。
    34.李南强,贺维军,荧光镓的电化学行为及稀土-荧光镓络合吸附波研究,高等学校化学学报,14(2)(1993),187~191。
    35.李南强,闵静,钪-胭脂红酸非电活性络合物的极谱研究,分析化学,17(4)(1989),346~348。
    36.周振中,钪-间氯偶氮安替比林络合吸附波的研究,分析科学学报,12(4)(1987),298~301。
    37.付晓泰,N-苯甲酰胲络合物吸附波研究及测定钆,分析测试通报,11(5)(1992),19~23。
    38. Kh.Z.Brainina, N.D.Fedorova, L.S.Fokina, Concentration of substances in polargraphic analysis. 15. Determination of cerium as
    
    cerium phytate, J.Anal.Chem.(Rus), (29)1974, 254。
    39. J.Dolezal, E.Hrabankova, V.Mosin, Cathodic stripping voltammetry of cerium, Anal.Letters, 4(1971), 887。
    40.李南强,章建康,铟-茜素配位剂极谱配位吸附波的研究,化学学报,42(1984),1151~1156。
    41.李南强,章建康,镓-茜素络合剂极谱络合吸附波的研究,高等学校化学学报,6(3)(1985),217~221。
    42.安镜如,周金魁,碱土金属的极谱研究Ⅳ.钡-钙-茜素配合剂双金属三元配合物吸附波,化学学报,44(1986),145~150。
    43. J.N.Li, F.Y.Yi, D.S.Shen, J.j,Fei, Adsorptive stripping voltammetric study of scandium-alizarin complexan complex at a carbon paste electrode, Anal. Lett., 35(8) (2002), 1361~1372。
    44.易芬云,钪(Ⅲ)、钍(Ⅳ)络合物的吸附伏安法研究,硕士学位论文,湘潭大学,(2001)。
    45. E.Bishop, Indicators, Pergamon Press, Oxford, 1972, P361。
    46. M.Gattrell, D.W.Kirk, A study of electrode passivation during a aqueous phenol electrolysis, J. Electrochem. Soc., 40(1993), 903~911。
    47. A.J.Downard, R.J.Lenihan, S.L.Simpson, B.O'Sullivan, K.J.Powell, The aluminium (Ⅲ)-4-nitrocatechol system: potentiometry, voltammetry and application to the determination of reactive Al(Ⅲ), Anal.Chim.Acta, 345(1997), 5~15。
    48. J.Wang, P.A.M. Farias, J. S. Mahmoud, Trace determination of lanthanum, cerium, and praseodymium based on adsorptive stripping voltammetry, Anal.chim.Acta, 171(1985), 215~223。
    49. J. Wang, J. M. Zadeii, Talanta, Trace determination of yttrium and some heavy rare-earths by adsorptive stripping voltammetry, Talanta, 33(4)(1986), 321~324。
    50. C.M. Wang, X. T. Fu, Polargraphic and voltammetric study of the determination of trace scandium, Anal. Lett., 26(10) (1993),
    
    2203-2215。
    51. I. Svancara, K. Vytras, J. Zima, J. Barek. Carbon paste electrodes in modem electroanalysis. A review, Crit. Rev. Anal. Chem., 31(2001), 311~345。
    52.张正奇,刘辉,黎艳飞,碳糊电极进展,分析科学学报,14(1)(1998),80~86。
    53. Kh.Z.Brainina, V.V.Ashpur, Phase electrochemical analysis with a carbon paste electrically-active electrode, Zavod Lab., 45(1)(1979), 10。
    54. M.E.Rice, Z.Galus and R.N.Adams, Effects of paste composition and surface states on electron-transfer rates, J.Electroanal.Chem., 143(1983), 89~102。
    55. I. Svancara, J.Konvalina, K.Schachl, K.Kalcher, K.Vytras, Stripping voltammetric determination of idodide with synergistic accumulation at a carbon paste electrode, Electroanalysis(N.Y.), 10(6)(1998), 435~441。
    56. A.Radi, Preconcentration and voltammetric determination of idomethacin at carbon paste electrodes, Electroanalysis(N.Y.), 10(2)(1998), 103~106。
    57. RNavrro, C. Jambon, O.Vittori, Electrochemical response of a carbon paste electrode containing an adsorbed species on incorporated alumina, Fresenius' J.Anal.Chem.,356(8)(1996), 476-479。
    58. K. Ravichandran, R.P. Baldwin, Enhanced voltammetric response by electrochemical pretreatment of carbon paste electrodes, Anal. Chem., 56(1984), 1744~1747。
    59. R.M.Wightman, M.R.Deakin, P.M.Kovach,W.O.Kuhr, and K.J.Stutts, Methods to improve electrochemical reversibility at carbon electrodes, J.Electrochem.Soc., 131 (7)(1984), 1578~1583。
    60. J.Wang, M.Bonakdar, and C.Morgan, Voltammetric measurement of tricyclic antidepressants following interfacial accumulation at carbon
    
    electrodes, Anal.Chem., 58(1986), 1024~1028。
    61. J.Wang and B.A.Freiha, Extractive preconcentration of organic compounds at carbon paste electrodes, Anal.Chem.,56(1984), 849~852。
    62.卢小泉,张焱,康敬万,王志华,朱开梅,杨军,分析化学中的化学修饰碳糊电极,分析测试学报,20(4)(2001),88~93。
    63. J.Zhang, J.N.Li, P.H.Deng, Adsorption voltammetry of the scandium-alizarin red S complex onto a carbon paste electrode, Talanta, 54(2001), 561~566。
    64. J.N.Li, J.Zhang, P.H.Deng, Carbon paste electrode for trace Zirconium(Ⅳ) determination by adsorption voltammetry, Analyst, 126(2001), 2032~2035。
    65. J.N. Li, J. Zhang, P.H.Deng, Y.Q.Peng, Adsorption voltammetry of the mix-polynuclear complex of Zirconium-calcium-alizarin red at a carbon paste electrode, Anal. Chim. Acta, 431 (2001), 81~87。
    66.王国顺,吕荣山,施清照译著,电化学分析——溶出伏安法,中国计量出版社,北京(1988),P249。
    67.杨功俊,王胤,杨晨,冷宗国,碳糊电极线性伏安法测定α-甲基多巴,应用化学,17(4)(2000),433~435。
    68.于素华,胡效亚,冷宗国,碳糊电极阳极吸附伏安法测定秋水仙碱,药学学报,32(3)(1997),210~212。
    69.杨功俊,金利通,冷宗国,陈建文,痕量多巴酚丁胺在碳糊电极上的吸附伏安行为及其痕量测定的研究,高等学校化学学报,10(1998),1574~1577。
    70.王素芬,彭图冶,CPE的吸附/萃取行为及电化学测定美拉托宁,分析化学,28(11)(2000),1350~1354。
    71. G.J. Volikakis, C.E. Efstathiou, Dtermination of rutin and other flavonoids by flow-injection/adsorptive stripping voltammetry using nujoi-graphite and diphenylether-graphite paste electrodes,
    
    Talanta 51(2000), 775~785。
    72.王怀生,张爱梅,崔慧,固体石蜡电极作粘合剂的纯碳糊电极的电化学活化及其应用于色氨酸的测定,分析化学,25(1)(1997),85~88。
    73.彭国治,王国顺等,碳糊电极测定痕量半胱氨酸,分析化学,24(11)(1996),1360。
    74.王国顺,彭国治,朱沛林,蒙脱石修饰碳糊电极测定苯酚,分析化学,21(6)(1993),672~675。
    75.卢宗桂,朱俊杰,李宣,姚大庆,高鸿,碳糊电极单扫描伏安法测定维生素B6和盐酸氯丙嗪,分析化学,20(10)(1992),1191~1194。
    76. M. R. Deakin, RM. Kovach, K.J. Stutts, R.M.Wightman, Heterogeneous mechanics of the oxidation of catechols and ascorbic at carbon electrodes, Anal.Chem, 58(1986), 1474~1480。
    77. H.Specker, H.Monien and B.Lendermann, Inverse voltammetric determination of aluminium and vanadium on a carbon paste electrode, Chem.Anal.(warsaw), 17(1972), 1003。
    78. F.J.Langmyhr, K.S.Klausen, M.H.Nouri-Nekoui, Complex formation of lanthanum(Ⅲ) or cerium(Ⅲ) with 3-aminomethylizarin-N,N-diacetic and fluoride, Anal. Chim. Acta, 57(1971),341。
    79. E.Laviron, Adsorption autoinhibition and autocatalysis in polarography and in linear potential sweep voltammetry, J.Electroanal.Chem., 52(1974), 355~396。
    80.A.J.Bard,L.R.Faulkner编著,谷林瑛,吕鸣祥,宋诗哲,许淳淳译,电化学方法原理及应用,北京化学工业出版社,北京,(1986),P598。
    81.焦奎,张曼平,高小霞,应用稀土元素的极谱络合吸附波测定植物中微量稀土总量,北京大学学报,(6)(1982),77~80。