基于生物质谱的蛋白质组学新方法研究磷酸化和糖基化修饰蛋白质
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文针对后修饰蛋白质组学研究中磷酸化蛋白质和糖基化蛋白质质谱分析所面临的特异性富集和检测灵敏度等热点难点问题,将多种技术手段,包括纳米技术、化学衍生、信号放大等,与传统的蛋白质分析方法相结合,开展了一系列的研究工作,发展了与之相关的质谱鉴定新技术和新方法,并取得了实际应用方面的成功,获得了一些创新性的研究成果。文章主要内容和所取得的主要研究成果摘要如下:
     第一章概述了质谱鉴定前处理技术对于蛋白质组学研究的意义所在和其中存在的主要问题,对于近年来所发展的各种低丰度蛋白质预富集新技术新方法分门别类的进行了细致的归纳总结。分析了磷酸化蛋白质组学和糖基化蛋白质组学研究中所面临的主要困难,并按照各种富集方法所采用的原理进行了分类并一作了详细的阐述。此外,针对纳米技术在蛋白质富集中的应用展开了综述,对于不同种类的纳米材料富集低丰度肽段/蛋白质的方法分类进行了总结,并归纳了后修饰蛋白质组学中纳米材料富集方法的特点且作了详尽的阐述。最后,提出了本论文选题的目的和意义所在。
     第二章针对翻译后修饰蛋白质组学研究中磷酸化肽段的质谱鉴定问题,发展了基于羧基衍生反应增强磷酸化多肽电子转移解离(ETD)质谱分析的新策略。由于ETD质谱在使肽段裂解的同时能够保留肽链上的后修饰信息,对于磷酸化蛋白质组学来说,采用ETD质谱分析磷酸化肽段具有巨大的潜力。然而,ETD质谱只适用于带两个或两个以上电荷的肽段,而在蛋白质组学研究中通常采用胰蛋白酶酶解的磷酸化肽段在电喷雾质谱中较一般的胰酶酶解肽段更难带上多电荷,这就限制了ETD质谱技术对于磷酸化位点的分析。采用本研究中的策略,肽段上所有的羧基基团,包括C端和肽链上酸性氨基酸残基上的羧基,与衍生试剂1-(2-嘧啶基)哌嗪(PP)反应从而带上化学标签。衍生标记后的磷酸化肽段的电荷态大幅度增加,此时再使用ETD质谱对其进行分析就显示出衍生标记的优势所在:在电喷雾离子源中电离时主要以单电荷分子离子形式存在的肽段原本并不能够使用ETD质谱进行分析,然而经过羧基衍生处理后,其电荷态有所增加,这时就能采用ETD裂解技术就能得到该肽段丰富的串联质谱图信息。此外,PP衍生技术还能提高二氧化钛富集法的特异性。这是因为衍生反应封闭了肽段上的羧基基团,从而消除了羧基与二氧化钛之间的相互作用,因此减少了富集过程中的非特异性吸附,提高了富集效率。衍生后的磷酸化肽段在反相液相色谱柱中的保留时间也有所增加,克服了某些磷酸化肽段在传统的反相液相色谱中难以分离的困难。
     第三章针对翻译后修饰蛋白质组学研究中糖基化肽段/蛋白质的分离富集问题,合成了具有核-卫星结构的功能纳米复合材料,并以此新型材料为基础发展了新的糖基化肽段/蛋白质富集方法,将其成功地应用于人类大肠癌第三期临床组织样本的N-糖基化位点的分析鉴定中。糖基化蛋白质的天然含量非常低,再加上由于糖链结构的复杂性使得每个可能发生糖基化修饰的位点上又存在微相上的不均一性,因此对于糖基化肽段/蛋白质进行质谱分析前处理非常必要。到目前为止,所发展的各类富集方法都有其固有的缺点。由于糖蛋白质组学研究的需要,急需发展更为简单灵敏且适用性广的富集新方法。近年来,纳米技术的飞速发展使其被广泛的应用于各种生物样品的分离分析研究中,而其中纳米复合材料因为集合了各种材料本身独有的特性,能够发挥出更大的优势,使得研究者们对于复合材料的关注度日益增加。本研究中合成的新型纳米复合材料由二氧化硅包裹的铁磁核心和修饰在磁核上的大量纳米金颗粒组成。其中,高质量的磁性纳米材料通过水热反应得到,其粒径分布十分均匀。随后,我们采用溶胶-凝胶法将正硅酸乙酯水解浓缩产生的二氧化硅沉积到Fe304磁珠表面,形成由薄层二氧化硅包裹的磁性纳米颗粒。本章研究中所用到的纳米金是采用柠檬酸钠还原法制备得到的。每个纳米金颗粒表面通过自组装修饰上大量的有机长链,在其链末端共价键合上能跟糖链特异性结合的硼酸官能团。这些有机长链的存在既可以降低被材料捕获的目标分子之间的空间位阻效应,又可以抑制材料表面的非特异性吸附。因此,在此基础上发展的糖基化蛋白质分离富集方法简单有效,具有很好的特异性,适用于浓度极低的糖基化肽段/蛋白质。该方法的富集特异性不论是在对标准糖基化蛋白质的选择性富集还是在胰蛋白酶酶解产物的富集中都得到了证实。实验结果表明,每克材料的吸附容量达到约79 mg辣根过氧化物酶蛋白,远高于同类型的商品化磁珠。对于所富集到的肽段/蛋白质,只需使用磁铁就能将其从溶液体系中分离,根据样品复杂程度进行清洗后,加入酸性的洗脱液即可将目标肽段/蛋白质从材料上洗脱下来。采用我们发展的这种富集技术,所得到的糖基化肽段和糖基化蛋白质的回收率分别能达到85.9%和71.6%。当将此富集方法应用于分析人类大肠癌组织样品的N-糖基化位点时,共鉴定到155个非冗余糖基化蛋白质上的194个N-糖基化位点,其中165个位点都是以前文献没有报道过的,占85.1%。
     第四章针对翻译后修饰蛋白质组学研究中糖基化蛋白质的质谱检测问题,发展了一种采用硼酸修饰磁珠分离糖基化蛋白质后对之进行纳米金标记,从而将糖基化蛋白质的质谱信号转化成纳米金的质谱信号的高灵敏度的质谱检测方法。使用MALDI质谱直接检测纳米金时可以得到强度很高的Au2+的峰,其背景噪音几乎可以忽略,因此选择纳米金粒子作为质谱信号报告分子非常理想。由于每个纳米金粒子包含超过64000个金原子,因此采用纳米金检测时的Au2+信号替代糖基化蛋白质的质谱信号的方法从理论上来讲能够将信号强度放大好几个数量级。在本章研究中,我们使用硼酸修饰的磁珠将糖基化蛋白质从溶液中分离后,通过将纳米金粒子表面修饰的羧基与蛋白质上游离氨基的反应将其共价键合于蛋白质肽链上。然后,再用酸性洗脱液将标记有纳米金的糖基化蛋白质从磁珠上释放,重新进入溶液体系,最后进行MALDI质谱分析,检测Au2+的信号。实验结果表明,采用这种信号放大的策略,对于辣根过氧化物酶的检测限可以降至7.695 fM(S/N=3),而对另外两种标准糖基化蛋白质——去唾液酸胎球蛋白和核糖核酸酶B的检测限也能降至18.87 fM(S/N=3)和322.2 fM(S/N=3)。
     第五章针对糖基化翻译后修饰蛋白质组学研究中的肼化学分离富集方法存在的问题,合成了氨基修饰的磁性纳米颗粒,并以此材料为基础发展了富集糖基化多肽的方法,同时对于富集流程进行了初步的优化。肼化学富集法的适用范围非常广,无论是N-糖基化蛋白质还是O-糖基化蛋白质,其糖链经氧化后都可以通过肼腙反应对之进行富集。然而,酰肼基具有强还原性,且极易水解生成肼,由于肼的毒性较大,因此在操作时需要特别小心。本章研究中则以更稳定更温和的氨基修饰磁性纳米颗粒为基础发展了同样适用范围较广的糖基化多肽富集法:首先使用强氧化剂高碘酸钠,将糖链上的羟基氧化成醛基,通过活泼的醛基与氨基之间的反应将糖基化多肽固体到磁珠上,选择合适的清洗缓冲溶液反复清洗材料,除去表面非特异性吸附的肽段,最后使用肽N-糖苷酶F (PNGase F)对磁珠上的糖基化多肽进行去糖基化处理后将其从材料上释放,最终进行质谱分析。我们对于富集流程中的清洗步骤进行了详细的优化考察,确定了最优清洗条件,实现了对于标准糖基化蛋白质酶解产物中糖基化多肽的特异性富集。
     总之,本论文围绕翻译后修饰蛋白质组学研究中磷酸化蛋白质和糖基化蛋白质特异性富集和质谱鉴定方面的热点难点问题,以多种技术手段为基础,以发展相关的蛋白质组学研究新技术新方法并进行实际的应用研究为目标,建立了将化学衍生标记应用于质谱分析的策略,合成了适用于不同研究目的的新型功能纳米材料,为解决翻译后修饰蛋白质组学中磷酸化肽段质谱鉴定、糖基化蛋白质特异性富集及信号放大等问题提供了新颖有效的研究手段和方法。
Based on proteome research background and development trend of nanomaterials, the research interest of this work focused on combining various techniques, including nanotechnology, chemical derivatization, signal amplification etc., with traditional bioanalytical methods in proteome research, to develop a series of novel techniques and methods to resolve existing problems in specific enrichment and mass spectrometric detection of phosphorylated proteins and glycosylated proteins in post-translational proteome research. This dissertation is divided into five parts.
     Chapter 1 summarized current situation and existing problems of pretreatment technologies prior to mass spectrometric analysis in proteomics, key advances in the development of low-abundance protein enrichment and preconcentration techniques. Since phosphorylation and glycosylation are both highly important post-translational modifications and key challenge in phosphorproteome and glycoproteome research is the development of fast and effective enrichment strategies for high-throughput identification, we highlighted several examples on various types of enrichment methods that have been utilized to specifically capture these modified proteins for subsequent mass spectrometric analysis. In the past few years, the introduction of nanoparticles into proteome research has accelerated the development of enrichment methods, so we also summarized recent developments of using different functional nanomaterials for pre-concentration of low-abundance peptides/proteins, including those containing post-translational modifications, such as phosphorylation and glycosylation, prior to mass spectrometric analysis in details. The intention and meaning of this dissertation were explained in this chapter.
     In chapter 2, a novel strategy based on carboxy group derivatization is presented for specific characterization of phosphopeptides. Electron-transfer dissociation (ETD), a relatively new dissociation method that was developed recently, has the attractive feature of independence of amide bond protonation and shows the advantage in preserving the information about post-translational modifications during peptide fragmentation, thus providing an efficient way for sequencing phosphorylated peptides/proteins. However, since ETD only works with peptides having more than one positive charge, one of the most challenging tasks posed in phosphorylation analysis is to increase ion charge state. By tagging the carboxy group with 1-(2-pyrimidyl) piperazine (PP), the ion charge states of phosphopeptides can be largely enhanced, showing great advantages for sequencing phosphorylated peptides with electron-transfer dissociation MS. For peptides that mainly hold one positive charge from electrospray ion source, they are not suited for ETD-MS/MS analysis. However, after PP-derivatization, the primary species became those who hold double charges. Thus, it was not a barrier anymore for them to be applied to ETD-MS/MS analysis. Besides, by blocking the carboxy group, the PP-derivatization method can also be employed to eliminate non-specific interactions between acidic residues and TiO2, which is the major competitive process during the TiO2-based phosphorylated peptides/proteins enrichment strategy, thus greatly increasing the selectivity toward phosphopeptides/phosphoproteins. Moreover, being tagged with a hydrophobic group, the retention time of phosphopeptides in RPLC can be prolonged, overcoming the difficulty of separating phosphopeptides in RPLC-based approach. Together with several other advantages, such as ease of handling, rapid reaction time, broad applicability and good reproducibility, this PP-derivatization method is promising for high-throughput phosphoproteome research.
     In chapter 3, a core-satellite-structured composite material has been successfully synthesized for capturing glycosylated peptides or proteins. The inherent low abundance of glycoproteins and the microheterogeneity of each glycosylation site make the enrichment procedure before MS analysis a prerequisite. Although a variety of methods are available for glycopeptides or glycoprotein enrichment, the complete mapping of glycoproteome is still a challenging task. Nanoparticles are attracting considerable interest on account of their significant potential in biotechnology and biomedicine for diagnostic and therapeutic applications. Recently, particular attention has been paid to the synthesis of composite nanoparticles that have both the biocompatibility and surface chemistry of gold and the magnetic properties of superparamagnetic particles. The novel hybrid material synthesized in our study is composed of a silicacoated ferrite "core" and numerous "satellites" of gold nanoparticles with lots of "anchors". The anchor,3-aminophenylboronic acid, designed for capturing target molecules, is highly specific toward glycosylated species. The long organic chains bridging the gold surface and the anchors could reduce the steric hindrance among the bound molecules and suppress nonspecific bindings. Due to the excellent structure of the current material, the trap-and-release enrichment of glycosylated samples is quite simple, specific, and effective. Indeed, the composite nanoparticles could be used for enriching glycosylated peptides and proteins with very low concentrations, and the enriched samples can be easily separated from bulk solution by a magnet. By using this strategy, the recovery of glycopeptides and glycoproteins after enrichment were found to be 85.9 and 71.6% separately, whereas the adsorption capacity of the composite nanoparticles was proven to be more than 79 mg of glycoproteins per gram of the material. Moreover, the new composite nanoparticles were applied to enrich glycosylated proteins from human colorectal cancer tissues for identification of N-glycosylation sites. In all,194 unique glycosylation sites mapped to 155 different glycoproteins have been identified, of which 165 sites (85.1%) were newly identified.
     Chapter 4 presents a highly sensitive glycoprotein detection method, by using magnetic microparticle to isolate glycoproteins and gold nanoparticle (AuNP) to amplify the signal intensity with mass spectrometer. The homemade AuNP is a perfect signal reporter since it gives intensive peak of Au2+ and negligible background noise with mass spectrometer. Additionally, each AuNP contains more than 64000 gold atoms so it is potentially capable of amplifying the signal intensity for several orders of magnitude once adopting Au2+ as the signal tag instead of detecting intact glycoproteins. To fulfill this purpose, carboxy group functionalized AuNP was graft onto amino groups of glycoproteins after isolating glycoproteins with boronic acid functionalized magnetic microparticles. The AuNPs bound glycoproteins were then eluted and applied to mass spectrometer. Using this strategy, the limit of detection (LOD) of horseradish peroxidase was improved to 7.695 fM (S/N=3) while that for another two glycoproteins (asialofetuin and ribonuclease b) were 18.87 fM (S/N=3) and 322.2 fM (S/N=3) respectively. Moreover, this method shows good selectivity encountering glycans and non-glycoproteins.
     In chapter 5, amine modified magnetic nanoparticles were synthesized and applied to selectively enrich glycosylated peptides from tryptic glycoprotein digestion. In this strategy, glycoproteins are digested into peptides firstly, containing both glycosylated peptides and nonglycosylated peptides. Then, the cis-diol groups of carbohydrates in glycopeptides are oxidized into aldehydes, which can form covalent bonds with amine groups immobilized on magnetic nanoparticles. Non-glycosylated peptides are washed away, whereas the glycosylated peptides still remain on the matrix material. PNGase F is then used to release the N-glycopeptides and the resulting peptides are subjected to mass spectrometric analysis. The washing buffer and washing condition are carefully optimized in this study. Finally, we realized selective enrichment of glycopeptides from tryptic digests of standard glycoproteins.
     In summary, the main contribution of this dissertation is to develop and provide several effective techniques and methods to resolve the difficulties in specific enrichment and mass spectrometric detection of phosphorylated proteins and glycosylated proteins. Several functional nanomaterials have been synthesized for different research requirements, and novel technologies have been introduced into proteome research fields. We aim at exploring and finding out new techniques in the pre-concentration and MS analysis of phosphorylated and glycosylated proteins, so that more breakthroughs can be obtained in post-translational proteome research.
引文
[1]M. Barber, R. S. Bordoli, R. D. Sedgwick, A. N. Tyler, Fast atom bombardment of solids (F.A.B.):a new ion source for mass spectrometry. J. Chem. Soc., Chem. Commun.1981,325-327.
    [2]M. Karas, F. Hillenkamp, Laser desorption ionization of proteins with molecular mass exceeding 10,000 Daltons. Anal. Chem.1988,60,2299-2301.
    [3]J. B. Fenn, M. Mann, C. K. Meng, S. F. Wong, C. M. Whitehouse, Electrospray ionization for mass spectrometry of large biomolecules. Science 1989,246,64-71.
    [4]A. H. Brockman, B. S. Dodd, R. Orlando, A desalting approach for MALDI-MS using on-probe hydrophobic self-assembled monolayers. Anal. Chem.1997,69, 4716-4720.
    [5]M. E. Warren, A. H. Brockman, R. Orlando, On-probe solid-phase extraction/MALDI-MS using ion-pairing interactions for the cleanup of peptides and protein. Anal. Chem.1998,70,3757-3761.
    [6]R. C. Beavis, B. T. Chait, Matrix-assisted laser desorption ionization mass-(?)pectrometry of proteins. Methods Enzymol.1996,270,519-551.
    [7]M. R. Larsen, S. J. Cordwell, P. Roepstorff, Graphite powder as an alternative to reversed phase material for desalting and concentration of peptide mixtures prior to mass spectrometric analysis. Proteomics 2002,2,1277-1287.
    [8]K. Karlsson, N. Cairns, G. Lubec, M. Fountoulakis, Enrichment of human brain proteins by heparin chromatography, Electrophoresis 1999,20,2970-2976.
    [9]R. L. Winston, M. C. Fitzgerald, Concentration and desalting of protein samples for mass spectrometry analysis, Anal. Biochem.1998,262,83-85.
    [10]M. Matsui, Y. Kiyozumi, T. Yamamoto, Y. Mizushina, F. Mizukami, K. Sakaguchi, Selective adsorption of biopolymers on zeolites. Chem. Eur. J.2001,7, 1555-1560.
    [11]S. Munsch, M. Hartmann, S. Ernst S, Adsorption and separation of amino acids from aqueous solutions on zeolites. Chem. Commun.2001,1978-1979.
    [12]K. Huddersman, K. Fisher, Separation of nucleosides and nucleotides using cation-exchanged zeolites. New J. Chem.2002,26,1698-1701.
    [13]Y. Zhang, X. Wang, W. Shan, B. Wu, H. Fan, X. Yu, Y. Tang, P. Yang, Enrichment of low-abundance peptides and proteins on zeolite nanocrystals for direct MALDI-TOF MS analysis. Angew. Chem. Int. Ed.2005,44,615-617.
    [14]W. Jia, X. Chen, H. Lu, P. Yang, CaCO3-poly(methyl methacrylate) nanoparticles for fast enrichment of low-abundance peptides followed by CaCO3-core removal for MALDI-TOF MS analysis. Angew. Chem. Int. Ed.2006,45,3345-3349.
    [15]C. Pan, S. Xu, H. Zou, Z. Guo, Y. Zhang, B. Guo, Carbon nanotubes as adsorbent of solid-phase extraction and matrix for laser desorption/inoization mass spectrometry. J. Am. Soc. Mass Spectrom.2005,16,263-270.
    [16]S. F. Ren, Y. L. Guo, Carbon nanotubes (2,5-dihydroxybenzoyl hydrazine) derivatives as pH adjustable enriching reagent and matrix for MALDI analysis of trace peptides. J. Am. Soc. M ass Spectrom.2006,17,1023-1027.
    [17]Y. Zhao, B. T. Chait, Protein epitope mapping by mass spectrometry. Anal. Chem. 1994,66,3723-3726.
    [18]R. W. Nelson, J. R. Krone, A. L. Bieber, P. Williams, Mass spectrometric immunoassay. Anal. Chem.1995,67,1153-1158.
    [19]G. B. Hurst, M. V. Buchanan, L. J. Foote, S. J. Kennel, Analysis for TNF-a using solid-phase affinity capture with radiolabel and MALDI-MS detection. Anal. Chem. 1999,71,4727-4733.
    [20]D. C. Schriemer, L. Li, Combining avidin-biotin chemistry with matrix-assisted laser desorption/ionization mass spectrometry. Anal. Chem.1996,68,3382-3387.
    [21]A. Doucette, D. Craft, L. Li, Protein concentration and enzyme digestion on microbeads for MALDI-TOF peptide mass mapping of proteins from dilute solutions. Anal. Chem.2000,72,3355-3362.
    [22]S. Girault, G. Chassaing, J. C. Blais, A. Brunot, G. Bolbach, Coupling of MALDI-TOF mass analysis to the separation of biotinylated peptides by magnetic streptavidin beads. Anal. Chem.1996,68,2122-2126.
    [23]M. Wilm, M. Mann, Analytical properties of the nanoelectrospray ion source. Anal. Chem.1996,68,1-8.
    [24]J. Gobom, E. Nordhoff, R. Ekman, P. Roepstorff, Rapid micro-scale proteolysis of proteins for MALDI-MS peptide mapping using immobilized trypsin. Int. J. Mass Spectrom. Ion Proc.1997,169/170,153-163.
    [25]M. Kussmann, E. Nordhoff, H. R. Nielsen, S. Haebel, M. R. Larsen, L. Jakobsen, J. Gobom, E. Mirgorodskaya, A. K. Kristensen, L. Palm, P. Roepstorff, Matrix-assisted laser desorption/ionization mass spectrometry sample preparation techniques designed for various peptide and protein analytes. J. Mass Spectrom.1997, 32,593-601.
    [26]H. E. Bromage, M. Lui, L. Lacomis, A. Grewal, R. S. Annan, D. E. McNulty, S. A. Carr, P. Tempst, Examination of micro-tip reversed-phase liquid chromatographic extraction of peptide pools for mass spectrometric analysis. J. Chromatogr., A 1998, 826,167-181.
    [27]A. H. Brockman, R. Orlando, Probe-immobilized affinity chromatography/mass spectrometry. Anal. Chem.1995,67,4581-4585.
    [28]X. Liang, D. M. Lubman, D. T. Rossi, G. D. Nordblom, C. M. Barksdale, On-probe immunoaffinity extraction by matrix-assisted laser desorption/ionization mass spectrometry. Anal. Chem.1998,70,498-503.
    [29]A. H. Brockman, N. N. Shah, R. Orlando, Optimization of a hydrophobic solid-phase extraction interface for matrix-assisted laser desorption/ionization. J. Mass Spectrom.1998,33,1141-1147.
    [30]L. Zhang, R. Orlando, Solid-phase extraction/MALDI-MS:extended ion-pairing surfaces for the on-target clean-up of protein samples. Anal. Chem.1999,71, 4753-4757.
    [31]M. Schuerenbeg, C. Luebbert, H. Eickhoff, M. Kalkum M, H. Lehrach, E. Nordhoff, Prestructured MALDI-MS sample supports. Anal. Chem.2000,72, 3436-3442.
    [32]J. Gobom, M. Schuerenberg, M. Mueller, D. Theiss, H. Lehrach, E. Nordhoff, α-Cyano-4-hydroxycinnamic acid affinity sample preparation. A protocol for MALDI-MS peptide analysis in proteomics. Anal. Chem.2001,73,434-438.
    [33]Y. Xu, J. T. Watson, M. L. Bruening, Patterned monolayer/polymer films for analysis of dilute or salt-contaminated protein samples by MALDI-MS. Anal. Chem. 2003,75,185-190.
    [34]Y. Xu, M. L. Bruening, J. T. Watson, Use of polymer-modified MALDI-MS probes to improve analyses of protein digests and DNA. Anal. Chem.2004,76, 3106-3111.
    [35]Y. Wang, X. Xia, Y. Guo, Porous anodic alumina membrane as a sample support for MALDI-TOF MS analysis of salt-containing proteins. J. Am. Soc. Mass Spectrom. 2005,16,1488-1492.
    [36]Z. H. Cheng, Y. B. Wang, Y. L. Guo, Electrophoretic ion migration directly to probe can concentrate charged analyte species for matrix-assisted laser desorption/ionization mass spectrometry. Rapid Commun. Mass Spectrom.2005,19, 424-428.
    [37]H. H. Rasmussen, E. M(?)rtz, M. Mann, P. Roepstroff, J. E. Celis, Identification of transformation sensitive proteins recorded in human two-dimensional gel protein databases by mass spectrometric peptide mapping alone and in combination with microsequencing. Electrophoresis 1994,15,406-416.
    [38]N. J. Clarke, F. Li, A. J. Tomlinson, S. Nay lor, One step microelectroelution concentration method for efficient coupling of sodium dodecylsulfate gel electrophoresis and matrix-assisted laser desorption time-of-flight mass spectrometry for protein analysis. J. Am. Soc. Mass Spectrom.1998,9,88-91.
    [39]A. J. Tomlinson, L. M. Benson, S. Jameson, D. H. Johnson, S. Naylor, Utility of membrane preconcentration-capillary electrophoresis-mass spectrometry in overcoming limited sample loading for analysis of biologically derived drug metabolites, peptides, and proteins. J. Am. Soc. Mass Spectrom.1997,8,15-24.
    [40]A. Pandey, A. V. Podtelejnikov, B. Blagoev, X. R. Bustelo, M. Mann, H. F. Lodish, Analysis of receptor signaling pathways by mass spectrometry:identification of Vav-2 as a substrate of the epidermal and platelet-derived growth factor receptors. Proc. Natl. Acad. Sci. U. S. A.2000,97,179-184.
    [41]D. T. McLachlin, B. T. Chait, Analysis of phosphorylated proteins and peptides by mass spectrometry. Curr. Opin. Chem. Biol.2001,5,591-602.
    [42]M. Mann, S. E. Ong, M. Gr(?)nborg, H. Steen, O. N. Jensen, A. Pandey, Analysis of protein phosphorylation using mass spectrometry:deciphering the phosphoproteome. Trends Biotechnol.2002,20,261-268.
    [43]K. E. Cleverley, J. C. Betts, W. P. Blackstock, J. M. Gallo, B. H. Anderton, Identification of novel in vitro PKA phosphorylation sites on the low and middle molecular mass neurofilament subunits by mass spectrometry. Biochemistry 1998,37, 3917-3930.
    [44]T. Kocher, G. Allmaier, M. Wilm, Nanoelectrospray-based detection and sequencing of substoichiometric amounts of phosphopeptides in complex mixtures. J. Mass Spectrom.2003,38,131-137.
    [45]B. A. Merrick, W. Zhou, K. J. Martin, S. Jeyarajah, C. E. Parker, J. K. Selkirk J, K. B. Tomer, C. H. Borchers, Site-specific phosphorylation of human p53 protein determined by mass spectrometry. Biochemistry 2001,40,4053-4066.
    [46]S. B. Ficarro, M. L. McCleland, P. T. Stukenberg, D. J. Burke, M. M. Ross, J. Shabanowitz J, D. F. Hunt, F. M. White, Phosphoproteome analysis by mass spectrometry and its application to Saccharomyces cerevisiae. Nat. Biotechnol.2002, 20,301-305.
    [47]M. C. Posewitz, P. Tempst, Immobilized gallium(Ⅲ) affinity chromatography of phosphopeptides. Anal. Chem.1999,71,2883-2892.
    [48]A. Stensballe, S. Andersen, O. N. Jensen, Characterization of phosphoproteins from electrophoretic gels by nanoscale Fe(Ⅲ) affinity chromatography with off-line mass spectrometry analysis. Proteomics 2001,1,207-222.
    [49]K. N. Barnouin, S. R. Hart, A. J. Thompson, M. Okuyama, M. Waterfield, R. Cramer, Enhanced phosphopeptide isolation by Fe(III)-IMAC using 1,1,1,3,3,3-hexafluoroisopropanol. Proteomics 2005,5,4376-4388.
    [50]S. R. Hart, M. D. Waterfield, A. L. Burlingame, R. Cramer, Factors governing the solubilization of phosphopeptides retained on ferric NTA IMAC beads and their analysis by MALDI TOF MS. J. Am. Soc. M ass Spectrom.2002,13,1042-1051.
    [51]Y. Zhang, X. Yu, X. Wang, W. Shan, P. Yang, Y. Tang, Zeolite nanoparticles with immobilized metal ions:isolation and MALDI-TOF-MS/MS identification of phosphopeptides. Chem. Commun.2004,2882-2883.
    [52]H. Zhou, J. D. Watts, R. Aebersold, A systematic approach to the analysis of protein phosphorylation. Nat. Biotechnol.2001,19,375-378.
    [53]H. Jaffe, Veeranna, H. C. Pant, Characterization of serine and threonine phosphorylation sites in (3-elimination/ethanethiol addition-modified proteins by electrospray tandem mass spectrometry and database searching. Biochemistry 1998, 37,16211-16224.
    [54]Y. Oda, T. Nagasu, B. T. Chait, Enrichment analysis of phosphorylated proteins as a tool for probing the phosphoproteome. Nat. Biotechnol.2001,19,379-382.
    [55]M. B. Goshe, T. P. Conrads, E. A. Panisko, N. H. Angell, T. D. Veenstra, R. D. Smith, Phosphoprotein isotope-coded affinity tag approach for isolating and quantitating phosphopeptides in proteome-wide analyses. Anal. Chem.2001,73, 2578-2586.
    [56]F. Thaler, B. Valsasina, R. Baldi, J. Xie, A. Stewart, A. Isacchi, H. M. Kalisz, L. Rusconi, A new approach to phosphoserine and phosphothreonine analysis in peptides and proteins:chemical modification, enrichment via solid-phase reversible binding, and analysis by mass spectrometry. Anal. Bioanal. Chem.2003,376,366-373.
    [57]F. Wolschin, S. Wienkoop, W. Weckwerth, Enrichment of phosphorylated proteins and peptides from complex mixtures using metal oxide/hydroxide affinity chromatography (MOAC). Proteomics 2005,5,4389-4397.
    [58]Y. Tian, Y. Zhou, S. Elliott, R. Aebersold, H. Zhang, Solid-phase extraction of N-linked glycopeptides. Nat. Protoc.2007,2,334-339.
    [59]L. Wu, D. K. Han, Overcoming the dynamic range problem in mass spectrometry-based shotgun proteomics. Expert Rev. Proteomics 2006,3,611-619.
    [60]W. Morelle, K. Canis, F. Chirat, V. Faid, J. C. Michalski, The use of mass spectrometry for the proteomic analysis of glycosylation. Proteomics 2006,6, 3993-4015.
    [61]R. Aebersold, M. Mann, Mass spectrometry-based proteomics. Nature 2003,422, 198-207.
    [62]M. Wuhrer, M. I. Catalina, A. M. Deelder, C. H. Hokke, Glycoproteomics based on tandem mass spectrometry of glycopeptides. J. Chromatogr., B 2007,849, 115-128.
    [63]H. Kaji, H. Saito, Y. Yamauchi, T. Shinkawa, M. Taoka, J. Hirabayashi, K. I. Kasai, N. Takahashi, T. Isobe, Lectin affinity capture, isotope-coded tagging and mass spectrometry to identify N-linked glycoproteins. Nat. Biotechnol.2003,21,667-672.
    [64]A. S. V. Edouart, M. C. Slomianny, O. D. Beseme, J. F. Haeuw, J. C. Michalski, Glycoproteomics and glycomics investigation of membrane N-glycosylproteins from human colon carcinoma cells. Proteomics 2008,8,3236-3256.
    [65]R. Qiu, F. E. Regnier, Comparative glycoproteomics of N-linked complex-type glycoforms containing sialic acid in human serum. Anal. Chem.2005,77,7225-7231.
    [66]T. N. Krogh, T. Berg, P. H(?)jrup, Protein analysis using enzymes immobilized to paramagnetic beads. Anal. Biochem.1999,274,153-162.
    [67]J. Bundy, C. Fenselau, Lectin-based affinity capture for MALDI-MS analysis of bacteria. Anal. Chem.1999,71,1460-1463.
    [68]L. Xiong, D. Andrews, F. Regnier, Comparative proteomics of glycoproteins based on lectin selection and isotope coding. J. Proteome Res.2003,2,618-625.
    [69]M. Madera, Y. Mechref, M. V. Novotny, Combining lectin microcolumns with high-resolution separation techniques for enrichment of glycoproteins and glycopeptides. Anal. Chem.2005,77,4081-4090.
    [70]J. L. Bundy, C. Fenselau, Lectin and carbohydrate affinity capture surfaces for mass spectrometric analysis of microorganisms. Anal. Chem.2001,73,751-757.
    [71]M. Madera, B. Mann, Y. Mechref, M. V. Novotny, Efficacy of glycoprotein enrichment by microscale lectin affinity chromatography. J. Sep. Sci.2008,31, 2722-2732.
    [72]L. Sturiale, R. Barone, A. Palmigiano, C. N. Ndosimao, P. Briones, M. Adamowicz, J. Jaeken, D. Garozzo D, Multiplexed glycoproteomic analysis of glycosylation disorders by sequential yolk immunoglobulins immunoseparation and MALDI-TOF MS. Proteomics 2008,8,3822-3832.
    [73]W. Cho, K. Jung, F. E. Regnier, Use of glycan targeting antibodies to identify cancer-associated glycoproteins in plasma of breast cancer patients. Anal. Chem.2008, 80,5286-5292.
    [74]H. J. An, T. R. Peavy, J. L. Hedrick, C. B. Lebrilla, Determination of N-glycosylation sites and site heterogeneity in glycoproteins. Anal. Chem.2003,75, 5628-5637.
    [75]Y. Wada, M. Tajiri, S. Yoshida, Hydrophilic affinity isolation and MALDI multiple-stage tandem mass spectrometry of glycopeptides for glycoproteomics. Anal. Chem.2004,76,6560-6565.
    [76]P. Hagglund, J. Bunkenborg, F. Elortza, O. N. Jensen, P. Roepstorff, A new strategy for identification of N-glycosylated proteins and unambiguous assignment of their glycosylation sites using HILIC enrichment and partial deglycosylation. J. Proteome Res.2004,3,556-566.
    [77]Y. Takegawa, K. Deguchi, H. Ito, T. Keira, H. Nakagawa, S. I. Nishimura, Simple separation of isomeric sialylated N-glycopeptides by a zwitterionic type of hydrophilic interaction chromatography. J. Sep. Sci.2006,29,2533-2540.
    [78]H. Zhang, X. J. Li, D. B. Martin, R. Aebersold R, Identification and quantification of N-linked glycoproteins using hydrazide chemistry, stable isotope labeling and mass spectrometry. Nat. Biotechnol.2003,21,660-666.
    [79]Y. Zhou, R. Aebersold, H. Zhang, Isolation of N-Linked glycopeptides from plasma. Anal. Chem.2007,79,5826-5837.
    [80]R. Chen, X. Jiang, D. Sun, G. Han, F. Wang, M. Ye, L. Wang, H. Zou, Glycoproteomics analysis of human liver tissue by combination of multiple enzyme digestion and hydrazide chemistry. J. Proteome Res.2009,8,651-661.
    [81]Z. Zou, M. Ibisate, Y. Zhou, R. Aebersold, Y. Xia, H. Zhang, Synthesis and evaluation of superparamagnetic silica particles for extraction of glycopeptides in the microtiter plate format. Anal. Chem.2008,80,1228-1234.
    [82]F. Frantzen, K. Grimsrud, D. E. Heggli, E. Sundrehagen, Protein-boronic acid conjugates and their binding to low-molecular-mass cis-diols and glycated hemoglobin. J. Chromatogr., B 1995,670,37-45.
    [83]J. H. Lee, Y. Kim, M. Y. Ha, E. K. Lee, J. Choo, Immobilization of aminophenylboronic acid on magnetic beads for the direct determination of glycoproteins by matrix assisted laser desorption ionization mass spectrometry. J. Am. Soc. Mass Spectrom.2005,16,1456-1460.
    [84]K. Sparbier, S. Koch, I. Kessler, T. Wenzel, M. Kostrzewa, Selective isolation of glycoproteins and glycopeptides for MALDI-TOF MS detection supported by magnetic particles. J. Biomol. Tech.2005,16,407-413.
    [85]K. Sparbier, A. Asperger, A. Resemann, I. Kessler, S. Koch, T. Wenzel, G. Stein, L. Vorwerg, D. Suckau, M. Kostrzewa, Analysis of glycoproteins in human serum by means of glycospecific magnetic bead separation and LC-MALDI-TOF/TOF analysis with automated glycopeptide detection. J. Biomol. Tech.2007,18,252-258.
    [86]Y. Xu, Z. Wu, L. Zhang, H. Lu, P. Yang, P. A. Webley, D. Zhao, Highly specific enrichment of glycopeptides using boronic acid-functionalized mesoporous silica. Anal. Chem.2009,81,503-508.
    [87]S. Amon, A. D. Zamfir, A. Rizzi, Glycosylation analysis of glycoproteins and proteoglycans using capillary electrophoresis-mass spectrometry strategies. Electrophoresis 2008,29,2485-2507.
    [88]W. Yoshinao, T. Michiko, Tackling difficulties in the determination of O-glycosylation sites:approaches to mucin-type glycoproteins. Trends Glycosci. Glyc. 2008,20,69-80.
    [89]P. Hao, Y. Ren, Y. Xie, Label-free relative quantification method for low-abundance glycoproteins in human serum by micrOTOF-Q. J. Chromatogr., B 2009,877,1657-1666.
    [90]S. Fields, Proteomics in genomeland. Science 2001,291,1221-1224.
    [91]N. L. Anderson, N. G. Anderson, The human plasma proteome:history, character, and diagnostic prospects. Mol. Cell. Proteomics 2002,1,845-867.
    [92]G. L. Corthals, V. C. Wasinger, D. F. Hochstrasser, J. C. Sanchez, The dynamic range of protein expression:a challenge for proteomic research. Electrophoresis 2000, 21,1104-1115.
    [93]M. Gao, C. Deng, W. Yu, Y. Zhang, P. Yang, X. Zhang, Large scale depletion of the high-abundance proteins and analysis of middle- and low-abundance proteins in human liver proteome by multidimensional liquid chromatography. Proteomics 2008, 8,939-947.
    [94]L. J. Zhang, H. J. Lu, P. Y. Yang, Development of preconcentration for mass spectrometry in proteomics. Chin. J. Anal. Chem.2007,35,146-152.
    [95]P. Alivisatos, The use of nanocrystals in biological detection. Nat. Biotechnol. 2004,22,47-52.
    [96]C. M. Niemeyer, Nanoparticles, proteins, and nucleic acids:biotechnology meets materials science. Angew. Chem. Int. Ed.2001,40,4128-4158.
    [97]Y. W. Jun, J. H. Lee, J. Cheon, Chemical design of nanoparticle probes for high-performance magnetic resonance imaging. Angew. Chem. Int. Ed.2008,47, 5122-5135.
    [98]S. Santra, D. Dutta, G. A. Walter, B. M. Moudgil, Fluorescent nanoparticle probes for cancer imaging. Technol. Cancer Res. Treat.2005,4,593-601.
    [99]J. Dobson, Gene therapy progress and prospects:magnetic nanoparticle-based gene delivery. Gene Ther.2006,13,283-287.
    [100]T. J. Yoon, J. S. Kim, B. G. Kim, K. N. Yu, M. H. Cho, J. K. Lee, Multifunctional nanoparticles possessing a "magnetic motor effect" for drug or gene delivery. Angew. Chem. Int. Ed.2005,44,1068-1071.
    [101]N. Nasongkla, E. Bey, J. Ren, H. Ai, C. Khemtong, J. S. Guthi, S. F. Chin, A. D. Sherry, D. A. Boothman, J. Gao, Multifunctional polymeric micelles as cancer-targeted, MRI-ultrasensitive drug delivery dystems. Nano Lett.2006,6, 2427-2430.
    [102]C. C. You, O. R. Miranda, B. Gider, P. S. Ghosh, I. B. Kim, B. Erdogan, S. A. Krovi, U. H. F. Bunz, V. M. Rottello, Detection and identification of proteins using nanoparticle-fluorescent polymer "chemical nose" sensors. Nat. Nanotechnol.2007,2, 318-323.
    [103]C. C. You, A. Chompoosor, V. M. Rotello, The biomacromolecule-nanoparticle interface. Nanotoday 2007,2,34-43.
    [104]J. F. Hicks, F. P. Zamborini, A. J. Osisek, R. W. Murray, The dynamics of electron self-exchange between nanoparticles. J. Am. Chem. Soc.2001,123, 7048-7053.
    [105]J. F. Hicks, D. T. Miles, R. W. Murray, Quantized double-layer charging of highly monodisperse metal nanoparticles. J. Am. Chem. Soc.2002,124, 13322-13328.
    [106]H. Skaff, K. Sill, T. Emrick, Quantum dots tailored with poly(paraphenylene vinylene). J. Am. Chem. Soc.2004,126,11322-11325.
    [107]F. X. Redl, C. T. Black, G. C. Papaefthymiou, R. L. Sandstrom, M. Yin, H. Zeng, C. B. Murray, S. P. O'Brien, Magnetic, electronic, and structural characterization of nonstoichiometric iron oxides at the nanoscale. J. Am. Chem. Soc.2004,126, 14583-14599.
    [108]H. G. Park, Nanoparticle-based detection technology for DNA analysis. Biotechnol. Bioprocess Eng.2003,8,221-226.
    [109]M. Zheng, X. Huang, Nanoparticles comprising a mixed monolayer for specific bindings with biomolecules. J. Am. Chem. Soc.2004,126,12047-12054.
    [110]D. Dutta, S. K. Sundaram, J. G. Teeguarden, B. J. Riley, L. S. Fifield, J. M. Jacobs, S. R. Addleman, G. A. Kaysen, B. M. Moudgil, T. J. Weber, Adsorbed proteins influence the biological activity and molecular targeting of nanomaterials. Toxicol. Sci.2007,100,301-315.
    [111]E. D. Kaufman, J. Belyea, M. C. Johnson, Z. M. Nicholson, J. L. Ricks, P. K. Shah, M. Bayless, T. Pettersson, Z. Feldoto, E. Blomberg, P. Claesson, S. Franzen, Probing protein adsorption onto mercaptoundecanoic acid stabilized gold nanoparticles and surfaces by quartz crystal microbalance and zeta-potential measurements. Langmuir 2007,23,6053-6062.
    [112]T. Cedervall, I. Lynch, M. Foy, T. Berggard, S. C. Donnelly, G. Cagney, S. Linse, K. A. Dawson, Detailed identification of plasma proteins adsorbed on copolymer nanoparticles. Angew. Chem. Int. Ed.2007,46,5754-5756.
    [113]S. Lindman, I. Lynch, E. Thulin, H. Nilsson, K. A. Dawson, S. Linse, Systematic investigation of the thermodynamics of HSA adsorption to N-wo-propylacrylamide/N-tert-butylacrylamide copolymer nanoparticles. Effects of particle size and hydrophobicity. Nano Lett.2007,7,914-920.
    [114]T. Cedervall, S. Lynch, S. Lindman, T. Berggard, E. Thulin, H. Nilsson, K. A. Dawson, S. Linse, Understanding the nanoparticle-protein corona using methods to quantify exchange rates and affinities of proteins for nanoparticles. Proc. Natl. Acad. Sci. U. S. A.2007,104,2050-2055.
    [115]I. Lynch, K. A. Dawson, Protein-nanoparticle interactions. Nanotoday 2008,3, 40-47.
    [116]N. O. Fischer, C. M. Mclintosh, J. M. Simard, V. M. Rotello, Inhibition of chymotrypsin through surface binding using nanoparticle-based receptors. Proc. Natl. Acad. Sci. U. S. A.2002,99,5018-5023.
    [117]C. C. Lin, Y. C. Yeh, C. Y. Yang, C. L. Chen, G. F. Chen, C. C. Chen, Y. C. Wu, Selective binding of mannose-encapsulated gold nanoparticles to type 1 pili in Escherichia coli. J. Am. Chem. Soc.2002,124,3508-3509.
    [118]M. Zheng, F. Davidson, X. Huang, Ethylene glycol monolayer protected nanoparticles for eliminating nonspecific binding with biological molecules. J. Am. Chem. Soc.2003,125,7790-7791.
    [119]C. Xu, K. Xu, H. Gu, X. Zhong, Z. Guo, R. Zheng, X. Zhang, B. Xu, Nitrilotriacetic acid-modified magnetic nanoparticles as a general agent to bind histidine-tagged proteins. J. Am. Chem. Soc.2004,126,3392-3393.
    [120]A. Robinson, J. M. Fang, P. T. Chou, K. W. Liao, R. M. Chu, S. J. Lee, Probing lectin and sperm with carbohydrate-modified quantum dots. ChemBioChem 2005,6, 1899-1905.
    [121]G. L. Nelsestuen, Y Zhang, M. B. Martinez, N. S. Key, B. Jilma, M. Verneris, A. Sinaiko, R. S. Kasthuri, Plasma protein profiling:unique and stable features of individuals. Proteomics 2005,5,4012-4024.
    [122]P. Kreunin, C. Yoo, V. Urquidi, D. M. Lubman, S. Goodison, Proteomic profiling identifies breast tumor metastasis-associated factors in an isogenic model. Proteomics 2007,7,299-312.
    [123]M. C. Daniel, D. Astruc, Gold nanoparticles:assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem. Rev.2004,104,293-346.
    [124]R. Elghanian, J. J. Storhoff, R. C. Mucic, R. L. Letsinger, C. A. Mirkin, Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles. Science 1997,277,1078-1081.
    [125]T. A. Taton, C. A. Mirkin, R. L. Letsinger, Scanometric DNA array detection with nanoparticle probes. Science 2000,289,1757-1760.
    [126]J. M. Nam, S. J. Park, C. A. Mirkin, Bio-barcodes based on oligonucleotide-modified nanoparticles. J. Am. Chem. Soc.2002,124,3820-3821.
    [127]C. H. Teng, K. C. Ho, Y. S. Lin, Y. C. Chen, Gold nanoparticles as selective and concentrating probes for samples in MALDI MS analysis. Anal. Chem.2004,76, 4337-4342.
    [128]G. Frens, Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions. Nat. Phys. Sci.1973,241,20-22.
    [129]A. Wang, C. J. Wu, S. H. Chen, Gold nanoparticle-assisted protein enrichment and electroelution for biological samples containing low protein concentration-a prelude of gel electrophoresis. J. Proteome Res.2006,5,1488-1492.
    [130]P. R. Sudhir, H. F. Wu, Z. C. Zhou, Identification of peptides using gold nanoparticle-assisted single-drop microextraction coupled with AP-MALDI mass spectrometry. Anal. Chem.2005,77,7380-7385.
    [131]W. C. Poh, K. P. Loh, Biosensing properties of diamond and carbon nanotubes. Langmuir 2004,20,5484-5492.
    [132]R. J. Chen, Y. Zhang, D. Wang, H. Dai, Noncovalent sidewall functionalization of single-walled carbon nanotubes for protein immobilization. J. Am. Chem. Soc. 2001,123,3838-3839.
    [133]M. Shim, N. W. S. Kam, R. J. Chen, Y. Li, H. Dai, Functionalization of carbon nanotubes for biocompatibility and biomolecular recognition. Nano Lett.2002,2, 285-288.
    [134]W. Y. Chen, L. S. Wang, H. T. Chiu, Y. C. Chen, C. Y. Lee, Carbon nanotubes as affinity probes for peptides and proteins in MALDI MS analysis. J. Am. Soc. Mass Spectrom.2004,15,1629-1635.
    [135]L. Jiang, L. Gao, Modified carbon nanotubes:an effective way to selective attachment of gold nanoparticles. Carbon 2003,41,2923-2929.
    [136]X. Li, Xu S, Pan C, Zhou H, Jiang X, Zhang Y, Ye M, Zou H. Enrichment of peptides from plasma for peptidome analysis using multiwalled carbon nanotubes. J. Sep. Sci.2007,30,930-943.
    [137]M. N. Haq, M. Rainer, T. Schwarzenauer, C. W. Huch, G. K. Bonn, Chemically modified carbon nanotubes as material enhanced laser desorption ionisation (MELDI) material in protein profiling. Anal. Chim. Acta 2006,561,32-39.
    [138]S. H. Friedman, D. L. DeCamp, R. P. Sijbesma, G. Srdanov, F. Wudl, G. L. Kenyon, Inhibition of the HIV-1 protease by fullerene derivatives:model building studies and experimental verification. J. Am. Chem. Soc.1993,115,6506-6509.
    [139]J. Shiea, J. P. Huang, C. F. Teng, J. Jeng, L. Y. Wang, L. Y. Chiang, Use of a water-soluble fullerene derivative as precipitating reagent and matrix-assisted laser desorption/ionization matrix to selectively detect charged species in aqueous solutions. Anal. Chem.2003,75,3587-3595.
    [140]S. J. Yu, M. W. Kang, H. C. Chang, K. M. Chen, Y. C. Yu, Bright fluorescent nanodiamonds:no photobleaching and low cytotoxicity. J. Am. Chem. Soc.2005,127, 17604-17605.
    [141]K. K. Liu, C. L. Cheng, C. C. Chang, J. I. Chao, Biocompatible and detectable carboxylated nanodiamond on human cell. Nanotechnology 2007,18, 325102-325111.
    [142]L. C. L. Huang, H. C. Chang, Adsorption and immobilization of cytochrome c on nanodiamonds. Langmuir 2004,20,5879-5884.
    [143]X. L. Kong, L. C. L. Huang, C. M. Hsu, W. H. Chen, C. C. Han, H. C. Chang, High-affinity capture of proteins by diamond nanoparticles for mass spectrometric analysis. Anal. Chem.2005,77,259-265.
    [144]W. H. Chen, S. C. Lee, S. Sabu, H. C. Fang, S. C. Chung, C. C. Han, H. C. Chang, Solid-phase extraction and elution on diamond (SPEED):a fast and general platform for proteome analysis with mass spectrometry. Anal. Chem.2006,78, 4228-4234.
    [145]L. M. Wei, Q. Shen, H. J. Lu, P. Y. Yang, Pretreatment of low-abundance peptides on detonation nanodiamond for direct analysis by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. J. Chromatogr., B 2009,877, 3631-3637.
    [146]A. Krueger, New carbon materials:biological applications of functionalized nanodiamond materials. Chem. Eur. J.2008,14,1382-1390.
    [147]A. C. Balazs, T. Emrick, T. P. Russell, Nanoparticle polymer composites:where two small worlds meet. Science 2006,314,1107-1110.
    [148]H. M. Xiong, X. Y. Guan, L. H. Jin, W. W. Shen, H. J. Lu, Y. Y. Xia, Surfactant-free synthesis of SnO2@PMMA and TiO2@PMMA core-shell nanobeads designed for peptide/protein enrichment and MALDI-TOF MS analysis. Angew. Chem. Int. Ed.2008,47,4204-4207.
    [149]W. Shen, H. Xiong, Y. Xu, S. Cai, H. Lu, P. Yang, ZnO-poly(methyl methacrylate) nanobeads for enriching and desalting low-abundant proteins followed by directly MALDI-TOF MS analysis. Anal. Chem.2008,80,6758-6763.
    [150]C. T. Kresge, M. E. Leonowics, W. J. Roth, J. C. Vartuli, J. S. Beck, Ordered mesoposous molecular sieves synthesized by a liquid-crystal template mechanism. Nature 1992,359,710-712.
    [151]D. Zhao, J. Feng, Q. Huo, N. Melosh, G. H. Fredrickson, B. F. Chmelka, G. D. Stucky, Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores. Science 1998,279,548-552.
    [152]P. Yang, T. Deng, D. Zhao, P. Feng, D. Pine, B. F. Chmelka, G. M. Whitesides, G. D. Stucky, Hierarchically ordered oxides. Science 1998,282,2244-2246.
    [153]P. Yang, D. Zhao, D. I. Margolese, B. F. Chmelka, G. D. Stucky, Generalized syntheses of large-pore mesoporous metal oxides with semicrystalline frameworks. Nature 1998,396,152-155.
    [154]C. Zuo, W. Yu, X. Zhou, D. Zhao, P. Yang, Highly efficient enrichment and subsequent digestion of proteins in the mesoporous molecular sieve silicate SBA-15 for matrix-assisted laser desorption/ionization mass spectrometry with time-of-flight/time-of-flight analyzer peptide mapping. Rapid Commun. Mass Spectrom.2006,3139-3144.
    [155]R. Tian, H. Zhang, M. Ye, X. Jiang, L. Hu, X. Li, X. Bao, H. Zou, Selective extraction of peptides from human plasma by highly ordered mesoporous silica particles for peptidome analysis. Angew. Chem. Int. Ed.2007,46,962-965.
    [156]R. Tian, M. Ye, L. Hu, X. Li, H. Zou, Selective extraction of peptides in acidic human plasma by porous silica nanoparticles for peptidome analysis with 2-D LC-MS/MS. J. Sep. Sci.2007,30,2204-2209.
    [157]R. Tian, L. Ren, H. Ma, X. Li, L. Hu, M. Ye, R. Wu, Z. Tian, Z. Liu, H. Zou, Selective enrichment of endogenous peptides by chemically modified porous nanoparticles for peptidome analysis. J. Chromatogr., A 2009,1216,1270-1278.
    [158]S. Y. Chang, N. Y. Zheng, C. S. Chen, C. D. Chen, Y. Y. Cheng, C. R. C. Wang, Analysis of peptides and proteins affinity-bound to iron oxide nanoparticles by MALDI MS. J. Am. Soc. Mass Spectrom.2007,18,910-918.
    [159]T. Hunter, Signaling—2000 and beyond. Cell 2000,100,113-127.
    [160]J. K. Kim, F. G. Mastronardi, D. D. Wood, D. M. Lubman, R. Zand, M. A. Moscarello, Multiple sclerosis-an important role for post-translational modifications of myelin basic protein in pathogenesis. Mol. Cell. Proteomics 2003,2,453-462.
    [161]M. W. H. Pinkse, P. M. Uitto, M. J. Hilhorst, B. Ooms, A. J. R. Heck, Selective isolation at the femtomole level of phosphopeptides from proteolytic digests using 2D-NanoLC-ESI-MS/MS and titanium oxide precolumns. Anal. Chem.2004,76, 3935-3943.
    [162]M. R. Larsen, T. E. Thingholm, O. N. Jensen, P. Roepstorff, T. J. D. J(?)rgensen, Highly selective enrichment of phosphorylated peptides from peptide mixtures using titanium dioxide microcolumns. Mol. Cell. Proteomics 2005,4,873-886.
    [163]C. Pan, M. Ye, Y. Liu, S. Feng, X. Jiang, G. Han, J. Zhu, H. Zou, Enrichment of phosphopeptides by Fe3+ -immobilized mesoporous nanoparticles of MCM-41 for MALDI and nano-LC-MS/MS analysis. J. Proteome Res.2006,5,3114-3124.
    [164]L. Hu, H. Zhou, Y. Li, S. Sun, L. Guo, M. Ye, X. Tian, J. Gu, S. Yang, H. Zou, Profiling of endogenous serum phosphorylated peptides by titanium (Ⅳ) immobilized mesoporous silica particles enrichment and MALDI-TOFMS detection. Anal. Chem. 2009,81,94-104.
    [165]F. Tan, Y. Zhang, W. Mi, J. Wang, J. Wei, Y. Cai, X. Qian, Enrichment of phosphopeptides by Fe3+-immobilized magnetic nanoparticles for phosphoproteome analysis of the plasma membrane of mouse liver. J. Proteome Res.2008,7, 1078-1087.
    [166]H. Zhou, R. Tian, M. Ye, S. Xu, S. Feng, C. Pan, X. Jiang, X. Li, H. Zou, Highly specific enrichment of phosphopeptides by zirconium dioxide nanoparticles for phosphoproteome analysis. Electrophoresis 2007,28,2201-2215.
    [167]C. A. Nelson, J. R. Szczech, Q. Xu, M. J. Lawrence, S. Jin, Y. Ge, Mesoporous zirconium oxide nanomaterials effectively enrich phosphopeptides for mass spectrometry-based phosphoproteomics. Chem. Commun.2009,6607-6609.
    [168]S. S. Liang, H. Makamba, S. Y. Huang, S. H. Chen, Nano-titanium dioxide composites for the enrichment of phosphopeptides. J. Chromatogr., A 2006,1116, 38-45.
    [169]H. C. Hsieh, C. Sheu, F. K. Shi, D. T. Li, Development of a titanium dioxide nanoparticle pipette-tip for the selective enrichment of phosphorylated peptides. J. Chromatogr.,A 2007,1165,128-135.
    [170]C. T. Chen, Y. C. Chen, Fe3O4/TiO2 core/shell nanoparticles as affinity probes for the analysis of phosphopeptides using TiO2 surface-assisted laser desorption/ionization mass spectrometry. Anal. Chem.2005,77,5912-5919.
    [171]C. T. Chen, Y. C. Chen, A two-matrix system for MALDI MS analysis of serine phosphorylated peptides concentrated by Fe3O4/Al2O3 magnetic nanoparticles. J. Mass Spectrom.2008,43,538-541.
    [172]H. Y. Lin, W. Y. Chen, Y. C. Chen, Iron oxide/tantalum oxide core-shell magnetic nanoparticle-based microwave-assisted extraction for phosphopeptide enrichment from complex samples for MALDI MS analysis. Anal. Bioanal. Chem. 2009,394,2129-2136.
    [173]L. Qiao, C. Roussel, J. Wan, P. Yang, H. H. Girault, B. Liu, Specific on-plate enrichment of phosphorylated peptides for direct MALDI-TOF MS analysis. J. Proteome Res.2007,6,4763-4769.
    [174]W. S. Yeap, Y. Y. Tan, K. P. Loh, Using detonation nanodiamond for the specific capture of glycoproteins. Anal. Chem.2008,80,4659-4665.
    [175]W. Zhou, N. Yao, G. Yao, C. Deng, X. Zhang, P. Yang, Facile synthesis of aminophenylboronic acid-functionalized magnetic nanoparticles for selective separation of glycopeptides and glycoproteins. Chem. Commun.2008,5577-5579.
    [1]T. Hunter, Signaling—2000 and beyond. Cell 2000,100,113-127.
    [2]J. K. Kim, F. G. Mastronardi, D. D. Wood, D. M. Lubman, R. Zand, M. A. Moscarello, Multiple sclerosis. Mol. Cell Proteomics 2003,2,453-462.
    [3]R. Aebersold, M. Mann, Mass spectrometry-based proteomics. Nature 2003,422, 198-207.
    [4]J. E. P. Syka, J. J. Coon, M. J. Schroeder, J. Shabanowitz, D. F. Hunt, Peptide and protein sequence analysis by electron transfer dissociation mass spectrometry. Proc. Natl. Acad. Sci. U. S. A.2004,101,9528-9533.
    [5]A. Pandey, A. V. Podtelejnikov, B. Blagoev, X. R. Bustelo, M. Mann, H. F. Lodish, Analysis of receptor signaling pathways by mass spectrometry:identification of Vav-2 as a substrate of the epidermal and platelet-derived growth factor receptors. Proc. Natl. Acad. Sci. U. S. A.2000,97,179-184.
    [6]M. C. Posewitz, P. Tempst, Immobilized gallium(Ⅲ) affinity chromatography of phosphopeptides. Anal. Chem.1999,71,2883-2892.
    [7]M. W. H. Pinkse, P. M. Uitto, M. J. Hilhorst, B. Ooms, A. J. R. Heck, Selective isolation at the femtomole level of phosphopeptides from proteolytic digests using 2D-NanoLC-ESI-MS/MS and titanium oxide precolumns. Anal. Chem.2004,76, 3935-3943.
    [8]M. R. Larsen, T. E. Thingholm, O. N. Jensen, P. Roepstorff, T. J. D. Jorgensen, Highly selective enrichment of phosphorylated peptides from peptide mixtures using titanium dioxide microcolumns. Mol. Cell. Proteomics 2005,4,873-886.
    [9]H. Zhou, J. D. Watts, R. Aebersold, A systematic approach to the analysis of protein phosphorylation. Nat. Biotechnol.2001,19,375-378.
    [10]Y. Oda, T. Nagasu, B. T. Chait, Enrichment analysis of phosphorylated proteins as a tool for probing the phosphoproteome. Nat. Biotechnol.2001,19,379-382.
    [11]A. Chi, C. Huttenhower, L. Y. Geer, J. J. Coon, J. E. P. Syka, D. L. Bai, J. Shabanowitz, D. J. Burke, O. G. Troyanskaya, D. F. Hunt, Analysis of phosphorylation sites on proteins from Saccharomyces cerevisiae by transfer dissociation (ETD) mass spectrometry. Proc. Natl. Acad. Sci. U. S. A.2007,104, 2193-2198.
    [12]H. Molina, D. M. Horn, N. Tang, S. Mathivanan, A. Pandey, Global proteomic profiling of phosphopeptides using electron transfer dissociation tandem mass spectrometry. Proc. Natl. Acad. Sci. U. S. A.2007,104,2199-2204.
    [13]S. J. Pitteri, P. A. Chrisman, S. A. McLuckey, Electron-transfer ion/ion reactions of doubly protonated peptides:effect of elevated bath gas temperature. Anal. Chem. 2005,77,5662-5669.
    [14]S. J. Pitteri, P. A. Chrisman, J. M. Hogan, S. A. McLuckey, Electron transfer ion/ion reactions in a three-dimensional quadrupole ion trap:reactions of doubly and triply protonated peptides with SO2·-. Anal. Chem.2005,77,1831-1839.
    [15]D. M. Good, M. Wirtala, G. C. McAlister, J. J. Coon, Performance characteristics of electron transfer dissociation mass spectrometry. Mol. Cell. Proteomics 2007,6, 1942-1951.
    [16]S. A. Beausoleil, M. Jedrychowski, D. Schwartz, J. E. Elias, J. Villen, J. Li, M. A. Cohn, L. C. Cantley, S. P. Gygi, Large-scale characterization of HeLa cell nuclear phosphoproteins. Proc. Natl. Acad. Sci. U. S. A.2004,101,12130-12135.
    [17]F. Kjeldsen, A. M. B. Giessing, C. R. Ingrell, O. N. Jensen, Peptide sequencing and characterization of post-translational modifications by enhanced ion-charging and liquid chromatography electron-transfer dissociation tandem mass spectrometry. Anal. Chem.2007,79,9243-9252.
    [18]S. B. Ficarro, M. L. McCleland, P. T. Stukenberg, D. J. Burke, M. M. Ross, J. Shabanowitz, D. F. Hunt, F. M. White, Phosphoproteome analysis by mass spectrometry and its application to Saccharomyces cerevisiae. Nat. Biotechnol.2002, 20,301-305.
    [19]Y. Xu, L. Zhang, H. Lu, P. Yang, Mass spectrometry analysis of phosphopeptides after peptide carboxy group derivatization. Anal. Chem.2008,80,8324-8328.
    [20]J. Lucas, A. Henschen, Identification and assay of phosphoserine and tyrosine-o-sulphate in fibrinopeptides by reversed-phase high-performance liquid chromatography. J. Chromatogr.1986,369,357-364.
    [21]Y. G. Tsay, Y. H. Wang, C. M. Chiu, B. J. Shen, S. C. Lee, A Strategy for identification and quantitation of phosphopeptides by liquid chromatography/tandem mass spectrometry. Anal. Biochem.2000,287,55-64.
    [22]M. J. Huddleston, R. S. Annan, M. F. Bean, S. A. Carr, Selective detection of phosphopeptides in complex mixtures by electrospray liquid chromatography/mass spectrometry. J. Am. Soc. Mass Spectrom.1993,4,710-717.
    [23]A. Tholey, H. Toll, C. G. Huber, Separation and detection of phosphorylated and nonphosphorylated peptides in liquid chromatography-mass spectrometry using monolithic columns and acidic or alkaline mobile phases. Anal. Chem.2005,77, 4618-4625.
    [24]J. Kim, K. Petritis, Y. Shen, D. G. Camp Ⅱ, R. J. Moore, R. D. Smith, Phosphopeptide elution times in reversed-phase liquid chromatography. J. Chromatogr., A 2007,1172,9-18.
    [1]R. G. Spiro, Protein glycosylation:nature, distribution, enzymatic formation, and disease implications of glycopeptide bonds. Glycobiology 2002,12,43R-56R.
    [2]L. Lehle, S. Strahl, W. Tanner, Protein glycosylation, conserved from yeast to man:a model organism helps elucidate congenital human diseases. Angew. Chem. Int. Ed.2006,45,6802-6818.
    [3]R. D. Cummings, S. Kornfeld, Fractionation of asparagine-linked oligosaccharides by serial lectin-agarose affinity chromatography. J. Biol. Chem.1982,257, 11235-11240.
    [4]Y. Wada, M. Tajiri, S. Yoshida, Hydrophilic affinity isolation and MALDI multiple-stage tandem mass spectrometry of glycopeptides for glycoproteomics. Anal. Chem.2004,76,6560-6565.
    [5]P. Hagglund, J. Bunkenborg, F. Elortza, O. N. Jensen, P. Roepstorff, A new strategy for identification of N-glycosylated proteins and unambiguous assignment of their glycosylation sites using HILIC enrichment and partial deglycosylation. J. Proteome Res.2004,3,556-566.
    [6]M. Thaysen-Andersen, I. B. Th(?)gersen, H. J. Nielsen, U. Lademann, N. Brunner, J. J. Enghild, P. H(?)jrup, Rapid and individual-specific glycoprofiling of the low abundance N-glycosylated protein tissue inhibitor of metalloproteinases-1. Mol. Cell. Proteomics 2007,6,638-647.
    [7]Y. Tian, Y. Zhou, S. Elliott, R. Aebersold, H. Zhang, Solid-phase extraction of N-linked glycopeptides. Nat. Protoc.2007,2,334-339.
    [8]W. S. Seo, J. H. Lee, X. Sun, Y. Suzuki, D. Mann, Z. Liu, M. Terashima, P. C. Yang, M. V. Mcconnell, D. G. Nishimura, H. Dai, FeCo/graphitic-shell nanocrystals as advanced magnetic-resonance-imaging and near-infrared agents. Nat. Mater.2006, 5,971-976.
    [9]J. S. Choi, Y. W. Jun, S. I. Yeon, H. C. Kim, J.S. Shin, J. Cheon, Biocompatible heterostructured nanoparticles for multimodal biological detection. J. Am. Chem. Soc. 2006,128,15982-15983.
    [10]J. H. Lee, Y. M. Huh, Y. W. Jun, J. W. Seo, J. T. Jang, H. T. Song, S. Kim, E. J. Cho, H. G. Yoon, J. S. Suh, J. Cheon, Artificially engineered magnetic nanoparticles for ultra-sensitive molecular imaging. Nat. Med.2007,13,95-99.
    [11]J. H. Lee, Y. W. Jun, S. I. Yeon, J. S. Shin, J. Cheon, Dual-mode nanoparticle probes for high-performance magnetic resonance and fluorescence imaging of neuroblastoma. Angew. Chem. Int. Ed.2006,45,8160-8162.
    [12]J. Kim, H. S. Kim, N. Lee, T. Kim, H. Kim, T. Yu, I. C. Song, W. K. Moon, T. Hyeon, Multifunctional uniform nanoparticles composed of a magnetite nanocrystal core and a mesoporous silica shell for magnetic resonance and fluorescence imaging and for drug delivery. Angew. Chem. Int. Ed.2008,47,8438-8441.
    [13]X. Zhao, R. Tapec-Dytioco, K. Wang, W. Tan, Collection of trace amounts of DNA/mRNA molecules using genomagnetic nanocapturers. Anal. Chem.2003,75, 3476-3483.
    [14]H. Gu, P. L. Ho, K. W. T. Tsang, L. Wang, B. Xu, Using biofunctional magnetic nanoparticles to capture vancomycin-resistant enterococci and other gram-positive bacteria at ultralow concentration J. Am. Chem. Soc.2003,125,15702-15703.
    [15]C. Xu, K. Xu, H. Gu, X. Zhong, Z. Guo, R. Zheng, X. Zhang, B. Xu, Nitrilotriacetic acid-modified magnetic nanoparticles as a general agent to bind histidine-tagged proteins. J. Am. Chem. Soc.2004,126,3392-3393.
    [16]C. Xu, K Xu, H. Gu, R. Zheng, H. Liu, X. Zhang, Z. Guo, B. Xu, Dopamine as a robust anchor to immobilize functional molecules on the iron oxide shell of magnetic nanoparticles. J. Am. Chem. Soc.2004,126,9938-9939.
    [17]R. Hong, N. O. Fischer, T. Emrick, V. M. Rotello, Surface PEGylation and ligand exchange chemistry of FePt nanoparticles for biological applications. Chem. Mater. 2005,17,4617-4621.
    [18]L. Wang, J. Bao, L. Wang, F. Zhang, Y. Li, One-pot synthesis and bioapplication of amine-functionalized magnetite nanoparticles and hollow nanospheres. Chem. Eur. J.2006,12,6341-6347.
    [19]T. J. Yoon, J. S. Kim, B. G. Kim, K. N. Yu, M. H. Cho, J. K. Lee, Multifunctional nanoparticles possessing a "magnetic motor effect" for drug or gene delivery. Angew. Chem. Int. Ed.2005,44,1068-1071.
    [20]N. Nasongkla, E. Bey, J. Ren, H. Ai, C. Khemtong, J. S. Guthi, S. F. Chin, A. D. Sherry, D. A. Boothman, J. Gao, Multifunctional polymeric micelles as cancer-targeted, MRI-ultrasensitive drug delivery systems. Nano Lett.2006,6, 2427-2430.
    [21]M. K. Yu, Y. Y. Jeong, J. Park, S. Park, J. W. Kim, J. J. Min, K. Kim, S. Jon, Drug-loaded superparamagnetic iron oxide nanoparticles for combined cancer imaging and therapy in vivo. Angew. Chem. Int. Ed.2008,47,5362-5365.
    [22]A. H. Lu, E. L. Salabas, F. Schuth, Magnetic nanoparticles:synthesis, protection, functionalization, and application. Angew. Chem. Int. Ed.2007,46,1222-1244.
    [23]M. C. Daniel, D. Astruc, Gold nanoparticles:assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem. Rev.2004,104,293-346.
    [24]R. Elghanian, J. J. Storhoff, R. C. Mucic, R. L. Letsinger, C. A. Mirkin, Selective colorimetric detection of polynucleotides based on distance-dependent optical properties of gold nanoparticles. Science 1997,277,1078-1081.
    [25]T. A. Taton, C. A. Mirkin, R. L. Letsinger, Scanometric DNA array detection with nanoparticle probes. Science 2000,289,1757-1760.
    [26]J. M. Nam, S. J. Park, C. A. Mirkin, Bio-barcodes based on oligonucleotide-modified nanoparticles. J. Am. Chem. Soc.2002,124,3820-3821.
    [27]W. S. Yeap, Y. Y. Tan, K. P. Loh, Using detonation nanodiamond for the specific capture of glycoproteins. Anal. Chem.2008,80,4659-4665.
    [28]K. Sparbier, S. Koch, I. Kessler, T. Wenzel, M. Kostrzewa, Selective isolation of glycoproteins and glycopeptides for MALDI-TOF MS detection supported by magnetic particles. J. Biochem. Technol.2005,16,407-413.
    [29]Y. Xu, Z. Wu, L. Zhang, H. Lu, P. Yang, P. A. Webley, D. Zhao, Highly specific enrichment of glycopeptides using boronic acid-functionalized mesoporous silica. Anal. Chem.2009,81,503-508.
    [30]H. Deng, X. Li, Q. Peng, X. Wang, J. Chen, Y. Li, Monodisperse magnetic single-crystal ferrite microspheres. Angew. Chem. Int. Ed.2005,44,2782-2785.
    [31]K. C. Grabar, R. G. Freeman, M. B. Hommer, M. J. Natan, Preparation and characterization of Au colloid monolayers. Anal. Chem.1995,67,735-743.
    [32]W. Jia, X. Chen, H. Lu, P. Yang, CaCO3-Poly(methyl methacrylate) nanoparticles for fast enrichment of low-abundance peptides followed by CaCO3-core removal for MALDI-TOF MS analysis. Angew. Chem. Int. Ed.2006,45,3345-3349.
    [33]H. M. Xiong, X. Y. Guan, L. H. Jin, W. W. Shen, H. J. Lu, Y. Y. Xia, Surfactant-free synthesis of SnO2@PMMA and TiO2@PMMA core-shell nanobeads designed for peptide/protein enrichment and MALDI-TOF MS analysis. Angew. Chem. Int. Ed.2008,47,4204-4207.
    [34]J. S. S. Gray, B. Y. Yang, R. Montgomery, Heterogeneity of glycans at each N-glycosylation site of horseradish peroxidase. Carbohydr. Res.1998,311, 61-69.
    [35]X. Liu, L. Ma, J. Li, Recent developments in the enrichment of glycopeptides for glycoproteomics. Anal. Lett.2008,41,268-277.
    [1]M. Karas, F. Hillenkamp, Laser desorption ionization of proteins with molecular masses exceeding 10,000 daltons. Anal. Chem.1988,60,2299-2301.
    [2]M. A. Daniels, K. A. Hogquist, S. C. Jameson, Sweet'n'sour:the impact of differential glycosylation on T cell responses. Nat. Immunol.2002,3,903-910.
    [3]M. V. Dwek, H. A. Ross, A. J. C. Leathem, Proteome and glycosylation mapping identifies post-translational modifications associated with aggressive breast cancer. Proteomics 2001,1,756-762.
    [4]H. H. Freeze, Update and perspectives on congenital disorders of glycosylation. Glycobiology 2001,11,129R-143R.
    [5]A. Varki, Glycan-based interactions involving vertebrate sialic-acid-recognizing proteins. Nature 2007,446,1023-1029.
    [6]R. D. Cummings, S. J. Kornfeld, Fractionation of asparagine-linked oligosaccharides by serial lectin-Agarose affinity chromatography. A rapid, sensitive, and specific technique. J. Biol. Chem.1982,257,11235-11240.
    [7]a) Y. Wada, M. Tajiri, S. Yoshida, Hydrophilic affinity isolation and MALDI multiple-stage tandem mass spectrometry of glycopeptides for glycoproteomics. Anal. Chem.2004,76,6560-6565.
    [8]P. Hagglund, J. Bunkenborg, F. Elortza, O. N. Jensen, P. J. Roepstorff, A new strategy for identification of N-glycosylated proteins and unambiguous assignment of their glycosylation sites using HILIC enrichment and partial deglycosylation. J. Proteome Res.2004,3,556-566.
    [9]M. T. Andersen, I. B. Th(?)gersen, H. J. Nielsen, U. Lademann, N. Brunner, J. J. Enghild, P. H(?)jrup, Rapid and individual-specific glycoprofiling of the low abundance N-glycosylated protein tissue inhibitor of metalloproteinases-1. Mol. Cell. Proteomics 2007,6,638-647.
    [10]Y. Tian, Y. Zhou, S. Elliott, R. Aebersold, H. Zhang, Solid-phase extraction of N-linked glycopeptides. Nat. Protoc.2007,2,334-339.
    [11]Y. Xu, Z. Wu, L. Zhang, H. Lu, P. Yang, P. A. Webley, D. Zhao, Highly specific enrichment of glycopeptides using boronic acid-functionalized mesoporous silica. Anal. Chem.2009,81,503-508.
    [12]K. Sparbier, S. Koch, I. Kessler, T. Wenzel, M. J. Kostrzewa, Selective isolation of glycoproteins and glycopeptides for MALDI-TOF MS detection supported by magnetic particles. J. Biomol. Tech.2005,16,407-413.
    [13]H. Deng, X. Li, Q. Peng, X. Wang, J. Chen, Y. Li, Monodisperse magnetic single-crystal ferrite microspheres. Angew. Chem., Int. Ed.2005,44,2782-2785.
    [14]K. C. Grabar, R. G. Freeman, M. B. Hommer, M. J. Natan, Preparation and characterization of Au colloid monolayers. Anal. Chem.1995,67,735-743.
    [15]O. Ornatsky, V. I. Baranov, D. R. Bandura, S. D. Tanner, J. Dick, Multiple cellular antigen detection by ICP-MS. J. Immunol. Methods 2006,308,68-76.
    [16]M. Dequaire, C. Degrand, B. Limoges, An electrochemical metalloimmunoassay based on a colloidal gold label. Anal. Chem.2000,72,5521-5528.
    [1]L. M. Lazar, A. C. Lazar, D. F. Cortes, J. L. Kabulski, Recent advances in the MS analysis of glycoproteins:theoretical considerations. Electrophoresis 2011,32,3-13.
    [2]H. Zhang, X. J. Li, D. B. Martin, R. Aebersold, Identification and quantification of N-linked glycoproteins using hydrazide chemistry, stable isotope labeling and mass spectrometry. Nat. Biotechnol.2003,21,660-666.
    [3]H, Zhang, E. C. Yi, X. J. Li, P. Mallick, K. S. K. Spratt, C. D. Masselon, D. G. Camp Ⅱ, R. D. Smith, C. J. Kemp, R. Aebersold, High throughput quantitative analysis of serum proteins using glycopeptide capture and liquid chromatography mass spectrometry. Mol. Cell. Proteomics 2005,4,144-155.
    [4]Y. Zhou, R. Aebersold, H. Zhang, Isolation of N-linked glycopeptides from plasma. Anal. Chem.2007,79,5826-5837.
    [5]Y. Tian, Y. Zhou, S. Elliott, R. Aebersold, H. Zhang, Solid-phase exraction of N-linked glycopeptides. Nat. Protoc.2007,2,334-339.
    [6]T. Liu, W. J. Qian, M. A. Gritsenko, D. G. Camp Ⅱ, M. E. Monroe, R. J. Moore, R. D. Smith, Human plasma N-glycoproteome analysis by immunoaffinity subtraction, hydrazide chemistry, and mass spectrometry. J. Proteome Res.2005,4,2070-2080.
    [7]H. Zhang, A. Y Liu, P. Loriaux, B. Wollscheid, Y. Zhou, J. D. Watts, R. Aebersold, Mass spectrometric detection of tissue proteins in plasma. Mol. Cell. Proteomics 2007, 6,64-71.
    [8]R. Chen, X. Jiang, D. Sun, G. Han, F. Wang, M. Ye, L. Wang, H. Zou, Glycoproteomics analysis of human liver tissue by combination of multiple enzyme digestion and hydrazide chemistry. J. Proteome Res.2009,8,651-661.
    [9]Z. Zou, M. Ibisate, Y Zhou, R. Aebersold, Y. Xia, H. Zhang, Synthesis and evaluation of superparamagnetic silica particles for extraction of glycopeptides in the microtiter plate format. Anal. Chem.2008,80,1228-1234.
    [10]J. Nilsson, U. Riietschi, A. Halim, C. Hesse, E. Carlsohn, G. Brinkmalm, G. Larson, Enrichment of glycopeptides for glycan structure and attachment site identification. Nat. Methods 2009,6,809-811.
    [11]E. Klement, Z. Lipinszki, Z. Kupihar, A. Udvardy, K. F. Medzihradszky, Enrichment of O-GlcNAc modified proteins by the periodate oxidation-hydrazide resin capture approach. J. Proteome Res.2010,9,2200-2206.
    [12]H. Deng, X. Li, Q. Peng, X. Wang, J. Chen, Y. Li, Monodisperse magnetic single-crystal ferrite microspheres. Angew. Chem. Int. Ed.2005,44,2782-2785.
    [13]J. M. Bobbitt, Periodate oxidation of carbonhydrates. Adv. Carbonhydr. Chem. 1956,11,1-41.
    [14]Y. Xu, Z. Wu, L. Zhang, H. Lu, P. Yang, P. A. Webley, D. Zhao, Highly specific enrichment of glycopeptides using boronic acid-functionalized mesoporous silica. Anal. Chem.2009,81,503-508.