椭圆和抛物方程的几类不适定问题
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文考虑了线性椭圆和抛物方程的几类不适定问题:包括抛物方程时间反向问题和椭圆方程Cauchy问题,这些问题都是严重不适定的。
     对一些比较困难的变系数问题,我们给出了若干条件稳定性结果。
     对大部分其他问题,我们均建立了相应的正则化方法,这些方法包括Tikhonov方法,截断方法和拟边界值方法。对每种方法,我们都给出了正则化参数的选取规则,给出了误差估计,提供了相应的算法,给出了若干数值例子。特别是对于拟边界值方法,我们还做了进一步的深入分析,从中总结出一些性质,这些性质可以用于其他不适定问题的研究。
     在数值实现中我们主要使用了有限差分方法和快速Fourier变换技巧。对于具有变系数的椭圆方程Cauchy问题,由于其不适定程度更强以及离散后所得到的线性方程组的维数庞大使得数值实现变得尤为困难,所以我们对其三维情形的数值实现专门进行了研究。我们用左预处理的广义最小残量方法结合拟边界值方法对其进行处理,其中一个有效的预条件矩阵被构造,一个快速直接算法也被提出,从而使得广义最小残量方法能够很好的被使用。
     本文的数值结果与理论结果是完全相符的,这些数值结果充分地体现了所给的正则化方法能够很好地求解这些不适定问题。
In this thesis,we consider some ill-posed problems of linear elliptic and parabolic equations,i.e.,Backward parabolic equation in time and Cauchy problems of elliptic equation.
     For some difficult variable coefficient cases,several conditional stability results are given.
     Some regularization methods including Tikhonov regularization method,Cut-Off regularization method and Quasi-Boundary-Value method are used for these ill-posed problems respectively. A-priori choice rule for all regularization methods and a-posteriori choice rule for some of them are given.All corresponding error estimates are obtained.About the Quasi-Boundary-Value method,we give some properties after observing its applications. These properties are helpful for dealing with other ill-posed problems.
     In the numerical aspect,we use the finite difference method and the Fast Fourier Transform to implement all regularization methods for both the constant coefficient and variable coefficient cases.For the variable coefficient case of elliptic Cauchy problem,we consider its three dimensional numerical implementation since it is more ill-posed and the coefficient matrix of the linear system is huge.A Left-Preconditioned GMRES method is used.A good preconditioner is constructed and a fast direct solver is also given to make the GMRES method work well.
     The numerical results are consistent with the theoretical results.These results show that our regularization methods for these ill-posed problems work effectively.
引文
1法国著名的数学家Jacques Salomon Hadamard(1865年12月8日-1963年10月17日)在文献[38]里首次提出不适定性的概念,即如果解不满足存在性、唯一性、稳定性这三种性质中的任意一个就称所对应的问题是不适定的。
    21789年8月21日-1857年5月23日
    2该方法在Matlab中是直接用反斜杠来实现。
    3本论文中我们用浮点的操作(Floating point operations)个数来计算一个算法的执行时间。用flop来表示一次运算[25].
    4这里S*表示矩阵S的共轭转置.
    5正弦变换可以用FFT算法来操作。
    6这种思想类似与文献[91,P274]中处理二维问题所提出的一个直接算法[91,P274]
    7对于每个矩阵A=[aij]∈Mm,n(F),定义vec A≡ [a11, …,am1,a12,…,am2,…,a1n,…,amn]T,则向量vec(A)∈Fmn参见文献[50]
    8用tridiag表示三对角矩阵
    9对于一个向量v,我们通过对其加一个随机扰动来构造噪音数据,即,vδ=v+ε randn(size(v)).
    [1]J.Aarao, B.H.Bradshaw-Hajek, S.J.Miklavcic and D.A.Ward,The extended-domain eigenfunction method for solving elliptic boundary value problems with annular domains, Journal of Physics A:Mathematical and Theoretical,43(2010), 185202(18pp).
    [2]L.S.Abdulkerimov, Regularization of an ill-posed Cauchy problem for evolution equations in a Banach space,Azerbaidzan. Gos.Univ.Ucen.Zap.Fiz.Mat.,1(1977), 32-36(MR0492645)(in Russian).
    [3]G.Alessandrini,L.Rondi,E.Rosset and S.Vessella, The stability for the Cauchy problem for elliptic equations,Inverse Problems,25(2009),123004 (47pp).
    [4]K.A.Ames and J.F.Epperson, A kernel-based method for the approximate solution of backward parabolic problems,SIAM Journal on Numerical Analysis,34(1997) 1357-1390.
    [5]K.A.Ames, G.W.Clark, J.F.Epperson and S.F.Oppenheimer,A comparison of regularizations for an ill-posed problem, Mathematics of Computation,67(1998) 1451-1471.
    [6]K.A.Ames and L.E.Payne, Asymptotic for two regularizations of the Cauchy prob-lem for the backward heat equation, Mathematical Models and Methods in Applied Sciences,8(1998),187-202.
    [7]K.A.Ames, L.E.Payne and P.W. Schaefer, Energy and pointwise bounds in some non-standard parabolic problems, Proceedings of the Royal Society of Edinburgh: Section A Mathematics,134(2004),1-9.
    [8]S.Andrieux, T.N. Baranger and A.Ben Abda, Solving Cauchy problems by mini-mizing an energy-like functional, Inverse Problems,22(2006),115-133.
    [9]M.Azaiez,F.B.Belgacem and H.El Fekih, On Cauchy problem:Ⅱ.Completion, regularization and approximation,Inverse Problems,22(2006),1307-1336.
    [10]Z.J.Bai,J.Demmel, J.Dongarra, A.Ruhe and H. van der Vorst, Templates for the solution of algebraic eigenvalue problems:A practical guide, Society for Industrial and Applied Mathematics,2000.
    [11]R. Beals,Non-Local Boundary Value Problems for Elliptic Operators,American Journal of Mathematics,87(1965),315-362.
    [12]F.B.Belgacem, Why is the Cauchy problem severely ill-posed? Inverse Problems, 23(2007),823-836.
    [13]P. Brianzi,P. Favati,O.Menchi and F.Romani, A framework for studying the regularizing properties of Krylov subspace methods,Inverse Problems,22(2006), 1007-021.
    [14]A.M. Bruaset, A survey of preconditioned iterative methods,Pitman Research Notes in Mathematics Series,Longman Scientific & Technical,1995.
    [15]G.Cain and G.H.Meyer,Separation of Variables for Partial Differential Equations: an eigenfunction approach,Chapman & Hall/CRC,2006.
    [16]D.Calvetti,B.Lewis and L.Reichel,GMRES-type methods for inconsistent sys-tems,Linear Algebra and its Applications,316(2000),157-169.
    [17]D.Calvetti,B.Lewis and L.Reichel,GMRES,L-curves,and discrete ill-posed problems, BIT Numerical Mathematics,42(2002),44-65.
    [18]D.Calvetti,B.Lewis and L.Reichel,On the regularizing properties of the GMRES method,Numerische Mathematik,91(2002),605-625.
    [19]H.Cheng, C.L.Fu and X.L.Feng, Determining surface heat flux in the steady state for the Cauchy problem for the Laplace equation,Applied Mathematics and Computation,211(2009),374-382.
    [20]J.Cheng and J.J.Liu, A quasi Tikhonov regularization for a two-dimensional backward heat problem by a fundamental solution,Inverse Problems,24(2008), 065012(18pp).
    [21]J.Cheng and M.Yamamoto,One new strategy for a priori choice of regularizing parameters in Tikhonov regularization,Inverse Problems,16(2000),L31-L38.
    [22]P.J.Davis, Circulant Matrices, AMS Chelsea Publishing,1979.
    [23]M. Denche and K.Bessila,Quasi-boundary Value Method for Non-well Posed Prob-lem for a Parabolic Equation with Integral Boundary Condition,Mathematical Problems in Engineering,7(2001),129-145.
    [24]M.Denche and K.Bessila, A modified quasi-boundary value method for ill-posed problems, Journal of Mathematical Analysis and Applications,301(2005),419-426.
    [25]L.Elden, Matrix methods in data mining and pattern recognition,SIAM,2007.
    [26]L.Elden and F.Berntsson, A stability estimate for a Cauchy problem for an elliptic partial differential equation,Inverse Problems,21(2005)1643-1653.
    [27]L.Elden and V.Simoncini,A numerical solution of a Cauchy problem for an elliptic equation by Krylov subspaces, Inverse Problems,25(2009),065002(22pp).
    [28]H.W. Engl,M.Hanke and A. Neubauer,Regularization of inverse problem, Kluwer Academic,Boston, MA,1996.
    [29]L.C.Evans, Partial differential equations,American Mathematical Society Provi-dence,1998.
    [30]X.L.Feng, L.Elden and C.L.Fu, Stability and regularization of a backward parabolic PDE with variable coefficients,Journal of Inverse and Ill-posed Problems, 18(2010),217-243.
    [31]X.L.Feng, L.Elden and C.L.Fu,A quasi-boundary-value method for the Cauchy problem for elliptic equations with nonhomogeneous Neumann data, Journal of In-verse and Ill-posed Problems(In press).
    [32]X.L.Feng, Z.Qian and C.L.Fu, Numerical approximation of solution of nonhomo-geneous backward heat conduction problem in bounded region,Mathematics and Computers in Simulation,79(2008)177-188.
    [33]F.Berntsson,Numerical Methods for Inverse Heat Conduction Problems, Linkoping University,2001,PhD thesis.
    [34]C.L.Fu,X.L.Feng and Z.Qian,The Fourier regularization for solving the Cauchy problem for the Helmholtz equation, Applied Numerical Mathematics,59(2009), 2625-640.
    [35]C.L.Fu, H.F. Li,Z.Qian and X.T.Xiong, Fourier regularization method for solv-ing a Cauchy problem for the Laplace equation, Inverse Problems in Science and Engineering,16(2008),159-169.
    [36]M.S.Gockenbach,Understanding and implementing the finite element method, So-ciety for Industrial and Applied Mathematics,2006.
    [37]C.W. Groetsch, The theory of Tikhonov regularization for Fredholm equation of the first kind, Pitman, Boston,1984.
    [38]J.Hadamard, Lectures on Cauchy problem in linear partial differential equations, Yale University Press, New Haven,CT,1923.
    [39]H.Han,D.B.Ingham and Y.Yuan,The boundary element method for the asolu-tion of the backward heat conduction equation, Journal of Computational Physics, 116(1995),292-299.
    [40]M.Hanke, Conjugate Gradient Type Methods for Ill-posed Problems(Harlow: Longman Scientific and Technical),1995.
    [41]M. Hanke and P.C.Hansen, Regularization methods for large-scale problems, Sur-veys Math.Industry,3(1993),253-315.
    [42]M.Hanke and J.Nagy, Restoration of atmospherically blurred images by symmetric indefinite conjugate gradient techniques, Inverse Problems,12(1996),157-73.
    [43]P.C. Hansen and T.K. Jensen, Smoothing-norm preconditioning for regularizing minimum-residual methods, SIAM Journal on Matrix Analysis and Applications, 29(2006),1-14.
    [44]D.N.Hao,A mollification method for ill-posed problems,Numerische Mathematik, 68(1994),469-506.
    [45]D.N.Hao,V.D.Nguyen and H.Sahli,A non-local boundary value problem method for parabolic equations backward in time,Journal of Mathematical Analysis and Applications,345(2008),805-815.
    [46]D.N. Hao, N.V. Due and D. Lesnic, A non-local boundary value problem method for the Cauchy problem for elliptic equations,Inverse Problems,25(2009), 055002(27pp).
    [47]D.N.Hao, N.V.Due and D.Lesnic,Regularization of parabolic equations backward in time by a non-local boundary value problem method,IMA Journal of Applied Mathematics,75(2010),291-315.
    [48]R.W. Hockney, A Fast Direct Solution of Poisson's Equation Using Fourier Analysis, Journal of the ACM,12(1965),95-113.
    [49]S.Holmgren and K. Otto,Semicirculant solvers and boundary corrections for first-order partial differential equations,SIAM Journal on Scientific Computing, 17(1996),613-630.
    [50]R.A.Horn and C.R. Johnson, Topics in Matrix Analysis, Cambridge University Press,1991.
    [51]K.Iijima, Numerical solution of backward heat conduction problems by a High Order Lattice-Free finite difference method,Journal of the Chinese Institute of Engineers, 27(2004),611-620.
    [52]O.Y.Imanuvilov and M. Yamamoto,Lipschitz stability in inverse parabolic roblems by the Carleman estimate, Inverse Problems,14(1998)1229-1245.
    [53]V. Isakov, Inverse Source Problems (Mathematical Surveys and Monographs vol 34) (Providence, RI:American Mathematical Society),1990.
    [54]V.Isakov, Inverse Problems for Partial Differential Equations (Applied Mathemat-ical Sciences vol 127) 2nd ed.(New York:Springer),2006.
    [55]T.K.Jensen and P.C.Hansen, Iterative regularization with minimumresidual meth-ods,BIT Numerical Mathematics,47(2007),103-120.
    [56]M.Jourhmane and N.S. Mera, An iterative algorithm for the backward heat con-duction problem based on variable relaxation factors,Inverse Problems in Science and Engineering,10(2002),293-308.
    [57]M.Kilmer and G.W. Stewart,Iterative regularization and MINRES,SIAM Journal on Matrix Analysis and Applications,21(1999),613-628.
    [58]S.M.Kirkup and M.Wadsworth,Solution of inverse diffusion problems by operator-splitting methods,Applied Mathematical Modelling,26(2002),1003-1018.
    [59]A.Kirsch,An introduction to the mathematical theory of inverse problems, Springer-Verlag, New York,1996.
    [60]R.Lattes and J.L.Lions, The method of quasi-reversibility applications to partial differential equations,Elsevier, New York,1967.
    [61]M.M.Lavrentiev,Some Improperly Posed Problems of Mathematical Physics (New York:Springer-Verlag),1967.
    [62]M.M.Lavrentiev, V.G.Romanov and S.P. Sisatskii,Nekorrektnye Zadachi Matem-aticheskoi Fiziki i Analiza(Moscow:Nauka),1980.
    [63]D.Lesnic, L.Elliott and D.B.Ingham, An iterative boundary element method for solving the backward heat conduction problem using an elliptic approximation, Inverse Problems in Science and Engineering,6(1998),255-279.
    [64]J.J.Liu,Numerical solution of forward and backward problem for 2-D heat con-duction problem, Journal of Computational and Applied Mathematics,145(2002) 459-482.
    [65]S.Lu, S.V. Pereverzev and U.Tautenhahn, Regularized Total Least Squares:Com-putational Aspects and Error Bounds,SIAM Journal on Matrix Analysis and Ap-plications,31(2009),918-941.
    [66]J.M.Marban and C.Palencia, A new numerical method for backward parabolic problems in the maximum-norm setting, SIAM Journal on Numerical Analysis, 40(2002),1405-1420.
    [67]I.V.Mel'nikova,Regularization of ill-posed differential problems, Siberian Mathe-matical Journal,33(1992),289-298.
    [68]N.S.Mera, L.Elliott,D.B.Ingham and D.Lesnic,An iterative boundary element method for solving the one dimensional backward heat conduction problem, Inter-national Journal of Heat and Mass Transfer,44(2001),1937-1946.
    [69]N.S.Mera, L.Elliott,D.B.Ingham and D.Lesnic,An inversion method with de-creasing regularization for the backward heat conduction problem, Numerical Heat Transfer,Part B,42(2002),215-230.
    [70]N.S.Mera, The method of fundamental solutions for the backward heat conduction problem, Oxford.Inverse Problems in Science and Engineering,13(2005),79-98.
    [71]K.Miller, Stabilized quasi-reversibility and other nearly best possible methods for non-well-posed problems, Symposium on Non-Well-Posed Problems and Logarith-mic Convexity, Lecture Notes in Mathematics,Springer-Verlag, Berlin,316(1973), 161-176.
    [72]W.L.Miranker, A well posed problem for the backward heat equation,Proceedings of the American Mathematical Society,12(1961),243-247.
    [73]D.A.Murio,The Mollification Method and the Numerical solution of ill-posed prob-lems[M],A Wiley-Interscience Publication,John Wiley and Sons Inc.,New York, 1993.
    [74]L.E.Payne,On a priori bounds in the Cauchy problem for elliptic equations,SIAM Journal on Mathematical Analysis,1(1970),82-89.
    [75]L.E. Payne, Improperly posed problems in partial differential equations, Regional Conference Series in Applied Mathematics, SIAM,Philadelphia, PA,1975.
    [76]L.E.Payne, Improved stability estimates for classes of illposed Cauchy problems, Applicable Analysis:An International Journal,19(1985),63-64.
    [77]Z.Qian and C.L.Fu,Regulariztion strategies for a two-dimensional inverse heat conduction problem, Inverse Problems,23(2007),1053-1068.
    [78]Z.Qian,C.L.Fu and X.L.Feng, A modified method for high order numerical deriva-tives,Applied Mathematics and Computation,182(2006),1191-1200.
    [79]Z.Qian,C.L.Fu and Z.P. Li,Two regularization methods for a Cauchy prob-lem for the Laplace equation, Journal of Mathematical Analysis and Applications, 338(2008),479-489.
    [80]C.Y. Qiu and C.L.Fu, Wavelets and regularization of the Cauchy problem for the Laplace equation,Journal of Mathematical Analysis and Applications,338(2008), 1440-1447.
    [81]A.G.Ramm and A.B.Smirnova, On stable numerical differentiation, Mathematics of Computation,70(2001),1131-1153.
    [82]Z.Ranjbar and L.Elden, A preconditioned GMRES method for solving a sideways heat equation, Technical Report LiTH-MAT-R-2010/03-SE, Department of Mathe-matics, Linkoping University,2010.
    [83]Z.Ranjbar,Numerical Solution of Ill-posed Cauchy Problems for Parabolic Equa-tions,Linkoping University,2010,PhD thesis.
    [84]H.J.Reinhardt,H.Han and D.N.Hao, Stability and regularization of a discrete approximation to the Cauchy problem for Laplace's equation,SIAM Journal on Numerical Analysis,36(1999),890-90551.
    [85]Y. Saad,Iterative Methods for Sparse Linear Systems,2nd ed.SIAM, Philadelphia, 2003.
    [86]Y. Saad and M.H.Schultz,"GMRES:A generalized minimal residual algorithm for solving nonsymmetric linear systems",SIAM Journal on Scientific and Statistical Computing,7(1986),856-869.
    [87]T.Schroter and U. Tautenhahn,On optimal regularization methods for the back-ward heat equation, Zeitschrift fur Analysis und ihre Anwendungen,15(1996),475-493.
    [88]A.Shidfar, J.Damirchi and P. Reihani,A stable numerical algorithm for identi-fying the solution of an inverse problem,Applied Mathematics and Computation, 190(2007),231-236.
    [89]R.E.Showalter, Cauchy Problem for hyper-parabolic partial differential equations, "Trends in the Theory and practice of Non-Linear Analysis",Elsevier,1983.
    [90]I.M.Skaar, Monitoring the Lining of a Melting Furnace,NTNU, Trondheim,2001, PhD thesis.
    [91]G.D.Smith, Numerical solution of partial differential equations:finite difference methods, Engineering Analysis with Boundary Elements,Oxford Applied Mathe-matics and Computing Science Series Ⅰ,1985.
    [92]P.N.Swarztrauber,The Methods of Cyclic Reduction,Fourier Analysis and the FACR Algorithm for the Discrete Solution of Poisson's Equation on a Rectangle, SIAM Review,19(1977),490-501.
    [93]U. Tautenhahn,Optimal stable solution of Cauchy problems of elliptic equations, Journal for Analysis and its Applications,15(1996),961-984.
    [94]U.Tautenhahn and T.Schroter, On optimal regularization methods for the back-ward heat equation[J],Zeitschrift fur Analysis und ihre Anwendungen,15(1996), 475-493.
    [95]A.N.Tychonoff,(1963).Solution of incorrectly formulated problems and the reg-ularization method,Doklady Akademii Nauk SSSR 151:501-504.Translated in Soviet Mathematics 4:1035-1038.
    [96]P.N. Vabishchevich, Nonlocal parabolic problems and the inverse heat-conduction problem,Differentsial'nye Uravneniya,17(1981),1193-1199(in Russian).
    [97]P.N.Vabishchevich, Numerical solution of nonlocal elliptic problems,Izv. Vyssh. Uchebn.Zaved.Mat.,1983,13-19(in Russian).
    [98]P.N.Vabishchevich and A.Y.Denisenko,Regularization of nonstationary problems for elliptic equations,Journal of Engineering Physics and Thermophysics,65(1993), 1195-1199.
    [99]P.N.Vabishchevich and P.A.Pulatov, A method of numerical solution of the Cauchy problem for elliptic equations, Vestnik Moskov.Univ. Ser.ⅩⅤ Vychisl.Mat.Kiber-net.,1984,3-8(in Russian).
    [100]T. Wei,Y.C.Hon and L.Ling, Method of fundamental solutions with regularization techniques for Cauchy problems of elliptic operators,Engineering Analysis with Boundary Elements,31(2007),373-385.
    [101]L.Yan,F.L.Yang and C.L.Fu, A meshless method for solving an inverse spacewise-dependent heat source problem, Journal of Computational Physics,228(2009),123-136.
    [102]B.Yildiz and M. ozdemir, Stability of the solution of backward heat equation on a weak compactum, Applied Mathematics and Computation,111(2000),1-6.
    [103]B.Yildiz and H.Yetis, A stability estimate on the regularized solution of the back-ward heat equation,Applied Mathematics and Computation,135(2003),561-567.