工程中含接触问题的孔边裂纹应力强度因子数值研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
带孔的零部件,如螺栓连接件等,在工程结构中有着广泛地应用。由于应力集中、零件之间接触作用,在孔边常常出现裂纹。应力强度因子是计算裂纹扩展率、剩余强度和疲劳寿命的重要参数。因此,为了确保安全,充分地利用材料,准确确定这种含裂结构的应力强度因子具有很大的实际意义。含接触的孔边裂纹问题可分为两种情况:(1)裂纹面接触问题,例如动载荷作用下的孔边裂纹问题。(2)含裂纹的部件与其它部件接触问题,如含裂螺栓连接件。考虑接触作用的孔边裂纹问题是十分复杂的。一般来说,很难获得分析解。为此,本文采用有限元法研究了四种孔边裂纹问题的应力强度因子:第一个问题是在远场拉伸载荷作用下机械连接件中螺栓孔四分之一椭圆角裂纹应力强度因子数值研究。第二个问题是在平行于裂纹的冲击压缩载荷作用下裂纹面接触对有限板中心孔单边水平裂纹动态应力强度因子的影响。第三个问题是在冲击压缩载荷作用下有限板中圆孔单边斜裂纹动态应力强度因子数值研究。第四个问题是在离心载荷作用下汽轮机叶轮T型叶根槽表面裂纹应力强度因子数值研究。
     上述问题的分析模型采用通用有限元软件ANSYS产生,裂纹尖端的平方根应力奇异性通过四分之一节点奇异单元来模拟。从经典的线弹性断裂理论出发,利用位移外插方法,给出了二维裂纹和椭圆型裂纹问题应力强度因子计算公式,这些公式为确定上述问题的应力强度因子提供了方便。
     在第一个问题的研究中,考虑了螺栓孔与螺栓(销)的接触作用,研究了孔与销之间的间隙对接触压力和应力强度因子的影响。发现接触压力和接触区域随着间隙的变化而改变。在有间隙的情况下,通过在孔边施加均匀或余弦分布载荷代替孔销之间的接触作用是不恰当的。应力强度因子的数值结果表明:随着孔与螺栓之间间隙的增加,螺栓孔角裂纹沿裂纹前缘各点的I型应力强度因子也增加。这些结果表明间隙量对I型应力强度因子有很大的影响,在对这种含裂纹机械连接件进行裂纹扩展、剩余强度和疲劳寿命评估时需要恰当考虑间隙。同时也发现,螺栓孔角裂纹的I型应力强度因子在最深点达到最大值。在第二问题的研究中,考虑了裂纹面的接触作用,研究了裂纹面接触对动态应力强度因子的影响,计算了在裂纹面有无接触情况下的动态应力强度因子。数值结果表明:考虑裂纹面的接触作用,可以消除负I型和裂纹面相互穿透或重叠现象;裂纹面接触作用对I型动态应力强度因子有很大的影响。因此,在动载荷作用下,准确的裂纹分析应包括裂纹面的接触作用,否则计算的I型动态应力强度因子与真实值有很大的差别。第三个问题讨论了裂纹面摩擦对动态应力强度因子的影响。数值结果表明:随着摩擦系数的增加,裂纹面切向相对位移减小,相应的II型动态应力强度因子也减小;裂纹面接触摩擦对II型动态应力强度因子有很大的影响。如果忽略裂纹面摩擦,II型动态应力强度因子会被高估。此外,还可以看到,摩擦对裂纹面上法向相对位移、裂纹面上的接触压力及I型动态应力强度因子影响不大。在第四个问题的研究中,使用了周期对称有限元模型,考虑了叶根与叶根槽的接触作用。数值结果表明:汽轮机叶轮T型叶根槽半椭圆表面裂纹的I型、II型和III型应力强度因子都在表面点达到最大值;即使只施加离心载荷,汽轮机叶轮T型叶根槽表面裂纹也不能被认为是纯I型裂纹。此外,还研究了沿T型叶根角裂纹前缘各点的I型应力强度因子,主要结果是I型应力强度因子在角裂纹的最深点达到最大值。这些结果对这种含裂叶片和叶轮的强度评估和剩余寿命的预测具有很大的实用价值。
     总之,在工程结构中有很多问题牵涉到裂纹和接触,本文的研究可以作为解决工程实际中这类问题的参考。
Components containing holes, such as bolted joints, are widely used in engineering structures. Cracks often exist at hole-edge because of stress concentration, contact interaction between components. Stress intensity factors are the important parameters in evaluating the crack growth, residual strength, and fatigue life of the cracked structures. Therefore, in order to ensure safety and make full use of the materials, accurate determination of stress intensity factors for cracked structures have great practical significance. The hole-edge crack problems involving contact interaction can be divided into two cases: (1) crack face contact problems, such as hole-edge crack problem under dynamic loading; and (2) problems of cracked components loaded through contact with another component, such as bolted joints with cracks. The problem of the hole-edge crack involving contact interaction is quite complicated. Usually, it is very difficult to obtain the analytical solution for the cracked problems. In this dissertation, the stress intensity factors of four hole-edge crack problems are investigated by using finite element method. The first problem is the numerical investigation of the stress intensity factors for the quarter-elliptical corner cracks at the bolt-hole of mechanical joints subjected to remote tension. The second one is the effect of contact between the crack surfaces on the dynamic stress intensity factors for a single edge horizontal crack at the center hole of a finite plate under compressive impact loading parallel to the crack. The third is the numerical investigation of the dynamic stress intensity factor for a single edge slant crack emanating from a circular hole in a finite plate subjected to compressive impact loading. The fourth is the numerical investigation of the stress intensity factors for a semi-elliptical surface crack at the T-root groove of a turbine disc under centrifugal loading.
     Finite element analysis models of the problems mentioned above are created by ANSYS. The square-root stress singularity around the crack front is simulated by quarter point singular elements. From classical theory of linear elastic fracture mechanics, the formulas for stress intensity factors for two-dimensional crack and elliptical crack are derived by using the displacement extrapolation method. These formulas provide a convenient method for the determination of stress intensity factors for those problems mentioned above.
     In the analysis of the first problem, contact interaction between the bolt-hole and the bolt (or pin) is considered, and the effects of the amount of clearance between the hole and the pin on the contact pressures and stress intensity factors are investigated. It is found that the contact pressure and contact region are variable in clearance. In the case of clearance being present, it is not appropriate that the contact interaction between the hole and the pin is replaced by applying uniform or cosine pressure distribution on bolt-hole boundary. Numerical results of the stress intensity factors show that the mode I stress intensity factors along the bolt-hole corner crack front increase with an increase in clearance between the hole and the bolt. These results indicate that the amount of clearance has a significant influence on the stress intensity factors for mode I, and its proper consideration is required to evaluate the crack growth, residual strength, and fatigue life of the cracked mechanical joints. At the same time, it is also discovered that the mode I stress intensity factor for bolt-hole corner crack reaches its maximum value at the deepest point. In the investigation of the second one, contact interaction between the crack surfaces is considered, and the effects of crack face contact on the dynamic stress intensity factors are investigated. The dynamic stress intensity factors with and without contact elements along crack surfaces are evaluated. Numerical results show that the negative mode I and a interpenetration or overlap between the crack surfaces may be prevented by taking account of the contact interaction of the crack edges, and crack face contact has a significant influence on mode I dynamic stress intensity factors. A more accurate analysis for a cracked problem under dynamic loading should include the contact interaction of the crack faces, otherwise the calculated dynamic stress intensity factors for mode I are significantly different from the true values. The third problem discusses the effect of the friction between the crack surfaces on the dynamic stress intensity factors. Results indicate that, with increasing friction, the tangential relative displacements at the crack edges and dynamic stress intensity factors for mode II decrease, and the frictional contact between the crack surfaces has a great influence on mode II dynamic stress intensity factors. If the friction between the crack surfaces is ignored, the mode II dynamic stress intensity factors may be overestimated. Additionally, it can be discovered that the friction at the crack edges has little influence on dynamic stress intensity factors for mode I, normal relative displacements, and contact pressures of the crack surfaces. In the fourth problem, finite element model with cyclic symmetry boundary conditions is used, and the contact interaction between the blade root and its groove is considered. Numerical results indicate that the mode I, II, and III stress intensity factors for semi-elliptical surface crack at the T-root groove of a turbine disc reach the maximum values of their individual modes at surface point, and the surface cracks can not be considered as pure mode I even if only centrifugal loadings are applied. Additionally, the mode I stress intensity factor along the corner crack front at T-root are investigated. Main result is the stress intensity factor for mode I reaches the maximum value at the deepest point of the corner crack. These results have a great practical valve for strength evaluation and fatigue life prediction of the cracked blade and disc.
     In conclusion, there are many problems involving crack and contact in engineering structures. The study of the paper may be regarded as a reference for solutions of the problems encountered in engineering practices.
引文
1 A. Karlsson, J. Backlund. Summary of SIF design graphs for cracks emanating from circular holes. International Journal of Fracture. 1978, 14(6): 585~596
    2 O. L. Bowie. Analysis of an infinite plate containing radial cracks originating at the boundary of an internal circular hole. J Math Phys. 1956, 35: 60~71
    3 Y. C. Hsu. The infinite sheet with two radial cracks from cylindrical hole under inclined tension or in-plane shear. International Journal of Fracture. 1977, 13(6): 839~845
    4 N. Hasebe, M. Ueda. Crack originating from a corner of a square hole. Engineering Fracture Mechanics. 1980, 13(4): 913~923
    5 J. Lai, J. Schijve. The stress intensity factor and stress concentration for a finite plate with a single crack emanating from a hole. Engineering Fracture Mechanics. 1990, 36(4): 619~630
    6 N. Hasebe, H. Irikura, T. Nakamura. Stress intensity factors of cracks initiating from a rhombic hole due to uniform heat flux. Engineering Fracture Mechanics. 1992, 42(2): 331~337
    7傅东山,张行.含孔边裂纹有限大单块板的解析变分解法.航空学报. 1992, 13(11): 602~609
    8 D. S. Fu, X. Zhang. Analytical-variational method of solution for stress intensity factors about anisotropic and isotropic finite plates with double cracks emanating from holes. Engineering Fracture Mechanics. 1995, 50(3): 311~324
    9 J. Tweed, D. P. Rooke. The distribution of stress near the tip of a radial crack at the edge of a circular hole. International Journal of Engineering Science. 1973, 11(11): 1185~1195
    10 S. Davidson. The steady linear thermoelastic problem for a circular hole with two radial edge cracks of unequal length. Engineering Fracture Mechanics. 1996, 55(3): 425~438
    11 G. G. Chell, V. Vitek. Post yield solutions for fracture mechanics analyses of cracks emanating from elliptic holes. Engineering Fracture Mechanics. 1979, 11(2): 251~259
    12 V. Shivakumar, R. G. Forman. Green's function for a crack emanating from a circular hole in an infinite sheet. International Journal of Fracture. 1980, 16(4):305~316
    13 A. F. Grandt. Stress intensity factors for cracked holes and rings loaded with polynomial crack face pressure distributions. International Journal of Fracture. 1978, 14(4): R221~R229
    14 D. P. Rooke. Stress intensity factors for cracks at holes in arbitrary stress fields. International Journal of Fracture. 1985, 27(2): R61~R65
    15吴学仁,黄新跃.受任意钉载圆孔边径向裂纹分析.航空学报.1988, 9(9): 442~447
    16吴学仁.冷挤压孔边残余应力场中裂纹的应力强度因子.航空学报. 1989, 10(9): 442~447
    17郭万林,傅祥炯.干涉配合紧固件的疲劳裂纹扩展寿命分析.航空学报, 1991, 12(2): 106~111
    18柳春图,胡互让,吴犀甲.圆柱壳孔边裂纹应力强度因子的计算和分析.计算力学学报. 1992, 9(1): 7~15
    19柳春图,韩闻生.含孔边裂纹球壳的断裂分析.应用力学学报. 1993, 10(1): 1~9
    20 M. Kamel, B. M. Liaw. Boundary element analysis of cracks at a fastener hole in an anisotropic sheet. International Journal of Fracture. 1991, 50(4): 263~280
    21 W. Z. Zhuang. Prediction of crack growth from bolt holes in a disc. International Journal of Fatigue. 2000, 22(3): 241~250
    22 W. Zhao, J. C. Newman, M. A. Sutton, et al. Stress intensity factors for corner cracks at a hole by a 3-D weight function method with stresses from the finite element method. Fatigue & Fracture of Engineering Materials & Structures. 1997, 20(9): 1255~1267.
    23 W. Zhao, J. C. Newman, M. A. Sutton, et al. Stress intensity factors for surface cracks at a hole by a three-dimensional weight function method with stresses from the finite element method. Fatigue and Fracture of Engineering Materials and Structures. 1998, 21(2):229~239
    24刘殿魁,刘宏伟.孔边裂纹对SH波的散射及其动应力强度因子.力学学报. 1999, 31(3): 292~299
    25刘殿魁,陈志刚.椭圆孔边裂纹对SH波的散射及其动应力强度因子.应用数学和力学. 2004, 25(9): 958~966
    26 S. P. Heo, W. H. Yang. Stress intensity factor analysis of elliptical corner cracks in mechanical joints by weight function method. International Journal of Fracture.2002, 115(4): 377~399
    27 S. P. Heo, W. H. Yang. Mixed-mode stress intensity factors and critical angles of crack in bolted joints by weight function method. Archive of Applied Mechanics. 2002, 72(2-3): 96~106
    28 Q. Chen, X. Wang. Weight functions and stress intensity factors for quarter-elliptical corner cracks in fastener holes. Fatigue & Fracture of Engineering Materials & Structures. 2004, 27(8): 701~712
    29谢伟,黄其青.椭圆孔边角裂纹应力强度因子的权函数求解方法.航空学报. 2007, 28(6): 238~331
    30 Y. H. Wang, Y. K. Cheung, C. W. Woo. The stress intensity factor of a crack emanating from a circular hole in a finite plate by boundary collocation method. International Journal of Fracture. 1990, 43(2): 97~108
    31 Y. H. Wang, Y. K.Cheung. Boundary collocation method for cracks emanating from a hole in an anisotropic plate. Engineering Fracture Mechanics. 1994, 48(1): 53~62
    32王元汉,李春植.任意形状孔口单边裂纹问题的边界配位解法.应用数学和力学. 1990, 11(7): 625~634
    33王元汉.含孔边裂纹板的弯曲断裂计算.航空学报. 2002, 23(6): 579~582
    34 E. F. Rybicki, M. F. Kanninen. A finite element calculation of stress intensity factors by a modified crack closure integral. Engineering Fracture Mechanics. 1977, 9(4): 931~938
    35 C. S. Shin. The stress intensity of corner cracks emanating from holes. Engineering Fracture Mechanics. 1990, 37(2): 423~436
    36 A. F. Grandt. Crack face pressure loading of semi-elliptical cracks located along the bore of a hole. Engineering Fracture Mechanics. 1981, 14(4): 843~852
    37 A. Karlsson, J. Backlund. Summary of SIF design graphs for cracks emanating from circular holes. International Journal of Fracture. 1978, 14(6): 585~596
    38张永元,洪烈君.等参奇性元在双孔边裂纹平板分析中的应用及其计算精度研究.应用数学和力学. 1986, 7(3): 85~92+137~138
    39任伟,王伟,张康达.单向拉伸有限板中心椭圆孔边裂纹应力强度因子的估算近似公式.机械强度. 1991, 13(4): 59~62
    40 K. B. Narayana, T. S. Dayananda, B. Dattaguru, et al. Cracks emanating from pin-loaded lugs. Engineering Fracture Mechanics. 1994, 47(1): 29~38
    41 W. T. Chow, S. N. Atluri. Fracture and fatigue analysis of curved or kinkedcracks near fastener holes. Finite Element in Analysis and Design. 1996, 23(2-4): 91~100
    42 S. A. Fawaz. Application of the virtual crack closure technique to calculate stress intensity factors for through cracks with an elliptical crack front. Engineering Fracture Mechanics. 1997, 59(3): 327~342
    43 X. B. Lin, R. A. Smith. Stress intensity factors for corner cracks emanating from fastener holes under tension. Engineering Fracture Mechanics. 1999, 62(6): 535~553
    44 S. H. Ju, T. L. Horng. Behaviors of a single crack in multiple bolted joints. International Journal of Solids and Structures. 1999, 36(27): 4055~4070
    45 S. H. Ju. Stress intensity factors for cracks in bolted joints. International Journal of Fracture.1997, 84(2): 129~141
    46王生楠,邹艳梅.歼击机座舱盖有机玻璃边缘螺栓孔孔边裂纹应力强度因子计算.疲劳与断裂2000—第十届全国疲劳与断裂学术会议论文集.广州: 2000
    47尹奇志,肖金生,吕运冰,李格升.孔边应力集中和裂纹尖端应力强度因子的有限元分析.武汉理工大学学报. 2002, 26(1): 47~50
    48沈海军,郭万林.锪窝孔边扇形角裂纹应力强度因子的三维有限元分析.航空学报. 2002, 23(2): 11~15
    49 S. A. Fawaz, B. Andersson. Accurate stress intensity factor solutions for corner cracks at a hole. Engineering Fracture Mechanics. 2004, 71(9-10): 1235~1254
    50 P. M. G. P. Moreira, P. F. P. de Matos, P. P. Camanho. Stress intensity factor and load transfer analysis of a cracked riveted lap joint. Materials & Design. 2007, 28(4): 1263~1270
    51 H. E. Ang, C. L. Tan. Stress intensity factors for cracks at holes in thin rotating discs. International Journal of Fracture. 1989, 40(1): R3~R11
    52 S. B. Lin, C. L. Tan. Two-dimensional boundary element contact mechanics analysis of pin-loaded lugs with single cracks. Engineering Fracture Mechanics. 1994, 48(5): 711~725
    53 P. Fedelinski, M. H. Aliabadi, D. P. Rooke. The dual boundary element method: J -integral for dynamic stress intensity factors. International Journal of Fracture. 1994, 65 (4): 369~381
    54张志华,王林江,吕庆风.含孔边裂纹各向异性有限板的二维问题.南京航空航天大学学报. 1999, 31(4): 470~474
    55陆山,黄其青.涡轮盘销钉孔损伤容限分析新方法及其应用.航空动力学报. 2002, 17(1): 87~92
    56 H. Kebir, J. M. Roelandt, L. Chanbon. Dual boundary element method modeling of aircraft structural joint with multiple site damage. Engineering Fracture Mechanics. 2006, 73(4): 418~434
    57 J. Yu, C. L. Tan, X. Wang. T-Stress solutions for cracks emanating from a circular hole in a finite plate. International Journal of Fracture. 2006, 140(1/4): 293~298
    58 X. Q. Yan. Analysis for a crack emanating from a corner of a square hole in an infinite plate using the hybrid displacement discontinuity method. Applied Mathematical Modelling. 2004, 28(9): 835~847
    59 X. Q. Yan. A numerical analysis of cracks emanating from a square hole in a rectangular plate under biaxial loads. Engineering Fracture Mechanics. 2004, 71(11): 1615~1623
    60 X. Q. Yan. Stress intensity factors for cracks emanating from a triangular or square hole in an infinite plate by boundary elements. Engineering Failure Analysis. 2005, 12(3): 362~375
    61 X. Q. Yan. A numerical analysis of cracks emanating from an elliptical hole in a 2-D elasticity plate. European Journal of Mechanics–A/Solids. 2006, 25(1): 142~153
    62 X. Q. Yan. Cracks emanating from circular hole or square hole in rectangular plate in tension. Engineering Fracture Mechanics. 2006, 73(12): 1743~154
    63 X. Q. Yan. Numerical analysis of a few complex crack problems with a boundary element method. Engineering Failure Analysis. 2006, 13(5): 805~825
    64闫相桥.无限大板椭圆孔的分支裂纹的边界元分析.哈尔滨工业大学学报, 2007, 39(7): 1084~1087
    65 X. Q. Yan. A numerical analysis of stress intensity factors for cracks emanating from an elliptical hole in a rectangular plate under biaxial loads. Journal of Harbin Institute of Technology. 2006, 13(6): 740~744
    66闫相桥.双向载荷作用下无限大板中源于正方形孔的分支裂纹的应力强度因子.哈尔滨工业大学学报. 2006, 38(8): 1224~1227, 1313
    67闫相桥.内部压力作用下矩形板中源于椭圆孔的分支裂纹应力强度因子的一种数值分析.计算力学学报. 2005, 22(6): 711~715
    68闫相桥.双轴载荷作用下源于椭圆孔的分支裂纹的一种边界元分析.固体力学学报. 2004, 25(4): 430~434
    69 X. Q. Yan. Cracks emanating from a rhombus hole in infinite and finite plate subjected to internal pressure. Engineering Failure Analysis. 2007, 14(4): 548~556
    70 X. Q. Yan. An empirical formula for stress intensity factors of cracks emanating from a circular hole in a rectangular plate in tension. Engineering Failure Analysis. 2007, 14(5): 935~940
    71 D. J. Cartwright, G. A. Ratcliffe. Strain energy release rate for radial cracks emanating from a pin loaded hole. International Journal of Fracture, 1972, 8(2): 175~181
    72 C. W. Smith, M. Jolles, W. H. Peters. Stress intensities for cracks emanating from pin-loaded holes. ASTM STP. 1977, 631: 190~201
    73 A. D. Nurse, E. W. Obrmn, E. A. Patterson. Stress intensity factors for cracks at fastener hole. Fatigue & Fracture of Engineering Materials & Structures. 1994, 17(7): 791~799
    74 J. H. Kim, S. B. Lee, S. G. Hong. Fatigue crack growth behavior of Al7050-T7451 attachment lugs under flight spectrum variation. Theoretical and Applied Fracture Mechanics. 2003, 40(2): 135~144
    75 C. Y. Park, A. F. Grandt, J. J. Suh. Stress intensity factors for surface cracks at countersunk holes. Engineering Fracture Mechanics. 2006, 73(13): 1878~1892
    76 D. J. Cartwright, A. P. Parker. Opening mode stress intensity factors for cracks in pin-loads joints. International Journal of Fracture. 1982, 18(1): 65~78
    77 D. P. Rooke. Compounded stress intensity factors for cracks at fastener holes. Engineering Fracture Mechanics. 1984, 19(2): 359~374
    78郭万林.肖寿庭.钉载孔边裂纹的应力强度因子.西北工业大学学报. 1987, 5 (1): 129~136
    79 W. L. Guo. Stress intensity factors for corner cracks at holes subjected to biaxial and pin loads. Engineering Fracture Mechanics. 1993, 46(3): 473~479
    80刘雪惠,黄其青,倪惠玲.耳片孔边穿透裂纹应力强度因子组合法计算和实验研究.西北工业大学学报. 1995, 1(1) : 105~109
    81 K. Y. Lam, T. E. Tay, W. Wang. The dugdale solution for cracks at the edge of an elliptical hole in an infinite and finite plate. Engineering Fracture Mechanics. 1996, 53(1): 97~106
    82 X. D. Wang, S. A. Meguid, P. Papanikos. Analysis of curved cracks emanatingfrom adjacent holes. Engineering Fracture Mechanics. 1999, 64(13): 337~355
    83 D. Stefanescu, L. Edwards, M. E. Fitzpatrick. Stress intensity factor correction for asymmetric through-thickness fatigue cracks at holes. International Journal of Fatigue. 2003, 25(7): 569~576
    84毋玲,孙秦.含MSD结构应力强度因子半解析数值算法研究.西北工业大学学报. 2003, 33(2): 214~217
    85刘黎明,王奇志,张行.三维有限大体中小尺寸孔边角裂纹应力强度因子显式闭合解.机械强度. 2004, 26(1), 80~86
    86郭树祥,许希武.钉载作用下多裂纹板的裂纹闭合接触问题.航空学报. 2007, 28(1): 118~122
    87 Y. M. Chen. Numerical computation of dynamic stress intensity factors by a Lagrangian finite-difference method (the HEMP code). Engineering Fracture Mechanics. 1975, 7 (4): 653~660
    88 S. Aoki, K. Kishimoto, H. Kondo, M. Sakata. Elastodynamic analysis of crack by finite element method using singular element. International Journal of Fracture. 1978, 14 (1): 59~67
    89 K. Kishimoto, S. Aoki, M. Sakata. Dynamic stress intensity factors using J-integral and finite element method. Engineering Fracture Mechanics. 1980, 13(2): 387~394
    90 V. Murti, S. Valliappan. The use of quarter point element in dynamic crack analysis. Engineering Fracture Mechanics. 1986, 23 (3): 585~614
    91 M. L. Williams. On the stress distribution at the base of a stationary crack. Journal of Applied Mechanics. 1957, 24 (1): 109~114
    92 Y. J. Lee, L. B. Freund. Fracture initiation due to asymmetric impact loading of an edge cracked plate. Journal of Applied Mechanics. 1990, 57 (1): 104~111
    93 T. Belytschko, Y. Y. Lu, L. Gu, M. Tabbara. Element free Galerkin methods for static and dynamic fracture. International Journal of Solids and Structures. 1995, 32 (17/18): 2547~2570
    94 J. Sladek, V. Sladek, P. Fedelinski. Integral formulation for elastodynamic T-stresses. International Journal of Fracture. 1997, 84 (2): 103~116
    95 J. Sladek, V. Sladek, P. Fedelinski. Computation of the second fracture parameter in elastodyanamics by the boundary element method. Advances in Engineering Software. 1999, 30 (9/11): 725~734
    96 C. H. Zhang. A 2D hyper-singular time domain traction BEM for transientelastodynamic crack analysis. Wave Motion. 2002, 35 (1): 17~40
    97 M. Enderlein, A. Ricoeur, M. Kuna. Comparison of finite element technique for
    2D and 3D crack analysis under impact loading. International Journal of Solids and Structures. 2003, 40 (13–14): 3425~3437
    98 S. W. Liu, J. H. Huang. Transient dynamic responses of cracked solid subjected to in-plane loadings. International Journal of Solids and Structures. 2003, 40(18): 4925~4940
    99 P. Fedelinski. Boundary element method in dynamic analysis of structures with cracks. Engineering Analysis with Boundary Elements. 2004, 28 (9): 1135~1147
    100 M. Marrero, J. Dominguez. Time-domain BEM for three-dimensional fracture mechanics. Engineering Fracture Mechanics. 2004, 71(11): 1557~1575
    101 Y. Guo, J. A. Nairn. Calculation of J-Integral and Stress Intensity Factors using the Material Point Method. Computer Modeling in Engineering & Sciences. 2004, 6(3): 295~308
    102 D. Xie, B. Sherrill. Calculation of transient strain energy release rates under impact loading based on the virtual crack closure technique. International Journal of Impact Engineering. 2007, 34(6): 1047~1060
    103马静娴,尚婕,范天佑.某些瞬态载荷作用下的动态应力强度因子的计算.北京理工大学学报. 1988, 8(4): 24~31
    104范天佑.断裂动力学原理与应用.北京理工大学出版社. 2006: 1~691
    105 O. L. Bowie, C. E. Freese. On the‘overlapping’problem in crack analysis. Engineering Fracture Mechanics. 1976, 8(2): 373~379
    106 C. W. Woo, Y. K. Cheung, Y. K. Chen, Y. H. Wang. A simple model for the contact problem of a finite cracked plate in bending. Engineering Fracture Mechanics. 1988, 29(2): 227~231
    107 M. Beghini, L. Bertini. Effective stress intensity factor and contact stress for a partially closed Griffith crack in bending. Engineering Fracture Mechanics. 1996, 54(5): 667~678
    108 M. Comninou. The interface crack. Journal of Applied Mechanics. 1977, 44(4): 631~636
    109 M. Comninou. The interface crack in a shear field. Journal of Applied Mechanics. 1978, 45(2): 287~290
    110 J. B. Leblond. Basic results for elastic fracture mechanics with frictionless contact between crack tips. European Journal of Mechanics- A/Solids. 2000,19(4): 633~647
    111 S. Thiagarajan, R. S. Alwar. Influence of crack closure in the case of angled crack. Engineering Fracture Mechanics. 1986, 24(4): 533~537
    112 R. D. Cordes, P. F. Joseeph. Crack surface contact of surface and internal cracks in a plate with residual stresses. International Journal of Fracture. 1994, 66(1): 1~17
    113 S. B. Liu, C. L. Tan. Two-dimensional boundary element contact mechanics analysis of angled crack problems. Engineering Fracture Mechanics. 1992, 42(2): 273~288
    114 T. C. Chen, W. H. Chen. Frictional contact analysis of multiple cracks by increment displacement and resultant traction boundary integral equation. Engineering Analysis with Boundary Elements. 1998, 21(4): 339~348
    115 M. M. I. Hammouda, A. S. Fayed, H. E. M. Sallam. Mode II stress intensity factor for contact slant cracks with frictional surfaces in uniaxially compressived plates. International Journal of Fatigue. 2002, 24(12): 1213~1222
    116 R. K. L. Su, Y. Zhu, A. Y. T. Leung. Parametric quadratic programming method for elastic contact fracture analysis. International Journal of Fracture. 2002, 117(2): 143~157
    117 A. Dorogoy, L. Banks-sills. Shear loaded interface crack under the influence of friction a finite difference solution. International Journal for Numerical Methods in Engineering. 2004, 59(13): 1749~1780
    118 A. Dorogoy, L. Banks-sills. Effect of crack face contact and friction on Brazilian disk specimens—A finite difference solution. Engineering Fracture Mechanics. 2005, 72(18): 2758~2773
    119 G. I. Giannopoulos, N. K. Anifantis. Finite element analysis of crack closure in two-dimensional bodies subjected to heating. Computer & Structures. 2005, 83(4-5): 303~314
    120王水林,葛修润,章光.受压状态下裂纹扩展的数值分析.岩石力学与工程学报. 1999, 18(6): 671~675
    121蒲军平,王元丰,姚振汉.移动接触下求解二维闭合裂纹的双重迭代边界元法.计算力学学报. 2002, 19(2): 132~136
    122 P. H. Wen, M H. Aliabad. Approximate dynamic crack frictional contact analysis for 3-D structure. Journal of the Chinese Institute of engineers. 1999, 22(6): 785~793
    123 V. V. Zozulya, P. I. Gonzalez-Chi P I. Dynamic fracture mechanics with contact interaction at the crack edges. Engineering Analysis with Boundary Elements. 2000, 24(9): 643~659
    124 A. N. Guz, O. V. Menshykov, V. V. Zozulya. Surface contact of elliptical crack under normally incident tension-compression wave. Theoretical and Appliied Fracture Mechanics. 2003, 40(3): 285~291
    125 A. V. Guz, V. V. Zozulya, A. V. Men’shikov. General spatial dynamic problem for an elliptic crack under the action of a normal shear wave, with consideration for the contact interaction of the crack faces. International Applied Mechanics. 2004, 40(2): 156~159
    126 D. Rittel, R. Levin. Mode-mixity and dynamic failure mode transition in polycarbonate. Mechanics of Materials. 1998, 30(3): 197~216
    127王晓东,邹振祝,王铎.界面裂纹尖端的动态奇异特性.固体力学学报. 1992,13(3): 235~243
    128 J. B. Liu, S. K. Sharan, D. Wang, L. Yao. A contact force model for the dynamic response of cracks. Computer & Structure. 1994, 52(4): 659~666
    129刘晶波,王铎,姚玲.动、静摩擦对可接触型裂纹动态影响的一种算法.力学学报. 1994, 26(4): 494~502
    130郭胜利,沈聚敏,刘晶波.考虑动静摩擦影响的可接触型裂纹动态响应的隐式算法.应用力学学报. 1998, 15(3): 86~89
    131周振功,沈亚鹏,马兴瑞,邹振祝.尖端具有吸附性接触的界面裂纹对瞬态弹性波作用下的动态响应.应用力学学报. 1995, 12(3): 38~44+122
    132陈建飞,汪越胜,蔡兰.与两相材料界面接触的裂纹对SH波的散射.力学学报. 2003, 35(4): 432~436
    133盖秉政,陈清才.弹性波与单侧界面裂纹相互作用问题的边界元法.力学学报. 2000, 32(3): 334~342
    134盖秉政,刘耀东.单侧裂纹梁的冲击实验.哈尔滨工业大学学报. 2005, 37(4): 444~445+494
    135彼得·艾伯哈特,胡斌.现代接触动力学.东南大学出版社. 2003: 92~134
    136凌道盛,徐兴编著.非线性有限元及程序.浙江大学出版社. 2005: 188~239
    137 G. R. Irwin. Analysis of stresses and strains near the end of a crack traversing a plate. Journal of Applied Mechanics. 1957, 24(3): 361~ 364.
    138王铎.断裂力学(上册).哈尔滨工业大学出版社. 1989: 1~163
    139匡震邦,马法尙.裂纹端部场.西安交通大学出版社. 2002: 1~139
    140 B. Yildirim, S. Dag, F. Erdogan. Three dimensional fracture analysis of FGM coating under thermomechanical loading. International Journal of Fracture. 2005, 132(4): 369~395
    141范天佑.断裂理论基础.科学出版社. 2003: 1~320
    142 L. Banks-Sills. Application of the finite element method to linear elastic fracture mechanics. Appl Mech Rev. 1991, 4(10): 447~461
    143 S. N. Atluri, T. Nishioka. Numerical studies in dynamic fracture mechanics. International Journal of Fracture. 1985, 27(3-4): 245~261
    144 W. C. Walters, G. H. Paulino, R. H. Dodds. Stress-intensity factors for surface cracks in functionally graded materials under mode-I thermomechanical loading. International Journal of Solids and Structures. 2004, 41(3-4): 1081~1118
    145 J. P. Benthem. State of stress at the vertex of a quarter-infinite crack in a half-space. International Journal of Solids and Structures. 1977, 13(5): 479~492
    146 J. P. Benthem. The quarter-infinite crack in a half-space: alternative and additional solutions. International Journal of Solids and Structures. 1980, 16(2): 119~130
    147 A. O. Ayhan, H. F. Nied. Stress intensity factors for three dimensional surface cracks using enriched finite elements. International Journal for Numerical Methods in Engineering. 2002, 54(6): 899~921
    148 M. Y. He, J. W. Hutchinson. Surface crack subject to mixed mode loading. Engineering Fracture Mechanics. 2000, 65(1): 1~14
    149 P. H. Wen, M. H. Aliabad, D. P. Rooke. An approximate analysis of dynamic contact between crack surfaces. Engineering Analysis with Boundary Elements. 1995, 16(1): 41~46
    150邢海燕,王文江,王日新,等. 50MW汽轮机断裂叶片及断口的磁记忆研究.中国电机工程学报. 2006, 26(7): 72~76
    151荆建平,孟光.汽轮机转子疲劳-蠕变损伤的非线性损伤力学分析.中国电机工程学报. 2003, 23(9): 167~173
    152史进渊,杨宇,孙庆,等.大型汽轮发电机故障特征规律的研究.中国电机工程学报. 2000, 20(7): 45~48
    153 P. J. Golden, J. R. Calcaterra. A fracture mechanics life prediction methodology applied to dovetail fretting. Tribology International. 2006, 39(10): 1172~1180
    154 R. Rajasekaran, D. Nowell. Fretting fatigue in dovetail blade roots:Experimentand analysis. Tribology International. 2006, 39(10): 1277~1285
    155 M. M. I. Hammouda, R. A. Pasha, A. S. Fayed. Modelling of cracking sites/development in axial dovetail joints of aero-engine compressor discs. International Journal of Fatigue. 2007, 29(1): 30~48
    156 B. P. Conner, T. C. Lindley, T. Nicholas, et al. Application of a fracture mechanics based life prediction method for contact fatigue. International Journal of Fatigue. 2004, 26(5): 511~520
    157 S. A. Meguid, M. H. Refaat, P. Papanikos. Theoretical and experimental studies of structural integrity of dovetail joints in aeroengine discs. Journal of Materials Processing Technology. 1996, 56(1-4): 668~677
    158 V. N. Shlyannikov, B. V. Iltchenko, N. V. Stepanov. Fracture analysis of turbine disks and computational-experimental background of the operational decisions. Engineering Failure Analysis. 2001, 8(5): 461~475
    159王荣桥,聂景旭.轻、重腐蚀涡轮盘榫齿高温复合疲劳试验研究.推进技术. 1998, 19(4): 111~115
    160王小迎,郭平英.略阳发电厂4号机叶片及叶轮断裂原因分析.西北电力技术. 2000, 28(6): 13~17
    161李光彦,沙命余.汽轮机叶轮轮缘反T型叶根槽裂纹的超声波探伤.无损检测. 1999, 21(11): 509~511
    162魏毓华.一台200MW供热汽轮机故障原因分析.东北电力技术. 2004, 25(7): 1~3
    163 S. K. Chan, I. S. Tuba. A Finite element method for contact problems of solid bodies-part II: application to turbine blades fastenings. International Journal of Mechanical Sciences. 1971, 13(7): 627~636