冷应激和冷适应游泳对大鼠心脑ATP酶、钙离子及自由基代谢的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:冬泳运动是一项冷环境中强度较大的运动。机体代谢率高,耗氧量增加。长期规律的冬泳运动被认为能促进血液循环,改善机体功能状态,提高免疫力,增强体质,进而预防各种老年性疾病的发生。但是近年来关于冬泳造成猝死的病例很多,大部分为心脑血管和血栓栓塞性疾病。目前关于机体对冷应激和冷适应运动的变化,以及机体对不同温度和运动量的反应研究甚少。因此,需更加深入地认识冬泳运动对机体的影响和作用。本文以前人关于不同水温和运动时间下冬泳运动机体的反应实验为基础资料,采用大鼠冷应激和冷适应游泳方法建立冬泳动物模型,分析这两种冬泳运动模式对机体自由基代谢、ATP酶活性和Ca ~(2+)含量的影响,深入认识冷应激和冷适应运动对机体体能状态的双向作用,为冷适应运动时机体的塑性改变提供基本数据,为广大的冬泳爱好者提供冬泳健身的科学依据,进而预防各种冬泳运动性损伤的发生。
     方法:健康雄性Sprague-Dauley(SD)大鼠30只,随机分成三组,对照组(n=10),冷应激运动组(n=10),冷适应运动组(n=10)。对照组:实验第7周处死。冷应激运动组:第6周末进行适应性游泳训练3天,每天一次,水温30℃,时间15min。第7周在8℃水温中运动一次,时间8min,运动后即刻处死。冷适应运动组:适应性游泳训练3天,每天一次,水温30℃,时间15min。正式训练:每天一次,起始水温30℃,时间40min,从第二天起水温每天下降2℃,运动时间每天缩短3min,每周训练6天,持续2周。从第3周起保持在水温为10℃,训练时间为5min水平,训练6周。第7周在8℃水温中运动一次,时间8min,,运动后即刻处死。各组大鼠每周称重一次。处死后取心、脑组织匀浆,离心,检测心、脑组织的MDA含量、SOD活性、Na+ -K+ -ATP酶、Ca ~(2+)-ATP酶活性和Ca ~(2+)含量等指标。
     结果:
     1大鼠体重变化:从实验第3周至结束,冷适应运动组体重均值均显著低于对照组和冷应激运动组(P<0.01);对照组与冷应激运动组没有统计学差异(P>0.05)。实验结束时,对照组和冷应激运动组大鼠体重增长率(52.6%,51.1%)较冷适应运动组(27.0%)显著升高(P<0.01)。
     2氧化应激指标:冷应激运动组心,脑组织MDA含量(2.45±0.30 nmol/mgprot,9.65±0.75 nmol/mgprot)较对照组显著升高(P<0.01);冷适应运动组心,脑MDA含量(1.82±0.29 nmol/mgprot ,6.68±0.78nmol/mgprot)与对照组没有差异性(P>0.05),较冷应激运动组显著降低(P<0.01)。冷应激运动组心,脑组织SOD活力(95.22±29.92 U/mgprot,153.21±10.17 U/mgprot)较对照组显著降低(P<0.01);冷适应运动组心,脑组织SOD活力(278.80±25.50 U/mgprot ,190.27±12.55 U/mgprot)与对照组没有差异性(P>0.05),较冷应激运动组显著升高(P<0.01)。3ATP酶活性和Ca ~(2+)含量:冷应激运动组心,脑组织Na + -K + -ATP酶活性(1.58±1.14μmolpi/mgprot/hour,2.13±0.32μmolpi/mgprot/hour)较对照组显著降低( P < 0.01 ) ;冷适应运动组心,脑组织Na + -K + -ATP酶活性(1.98±0.15μmolpi/mgprot/hour ,2.90±0.37μmolpi/mgprot/hour )与对照组没有差异性(P>0.05),较冷应激运动组显著升高(P<0.01)。冷应激运动组心,脑组织Ca ~(2+)-ATP酶活性(2.35±0.20μmolpi/mgprot/hour ,1.33±0.19μmolpi/mgprot/hour)较对照组显著降低(P<0.01);冷适应运动组心,脑组织Ca ~(2+)-ATP酶活性(2.67±0.23μmolpi/mgprot/hour ,1.72±0.21μmolpi/mgprot/hour)与对照组没有差异性(P>0.05),较冷应激运动组显著升高(P<0.01)。冷应激运动组心,脑组织Ca ~(2+)含量(95±6.01μmol/gprot,34±5.81μmol/gprot)较对照组升高(P<0.05)冷适应运动组心,脑组织Ca ~(2+)含量(89±5.67μmol/gprot ,29±4.85μmol/gprot)与对照组没有差异性(P>0.05),较冷应激运动组降低(P<0.05)。4MDA与ATP酶的相关性检验:心脏MDA与Na + -K+ -ATP酶相关系数是-0.726(P<0.01),成显著负相关;与Ca ~(2+)-ATP酶相关系数是—0.387(P<0.05),成负相关。脑组织MDA与Na+-K+-ATP酶相关系数是—0.697(P<0.01),成显著负相关;与Ca ~(2+)-ATP酶相关系数是—0.712(P<0.01),成显著负相关。结论:1长期的冷适应游泳对于控制体重有很好的效果,这在降低肥胖相关疾病的发病率方面可以起到积极的作用。
     2冷适应游泳能明显降低脂质过氧化损伤,提高抗氧化系统的能力,使机体对冷水运动应激的适应性增强。
     3 ATP酶活性下降和细胞钙超载与氧化应激造成的自由基损伤相关,冷适应游泳能通过长期的抗氧化适应改善ATP酶活性,维持组织正常钙含量。
Objective: Winter swimming is an exercise with high intensity in cold environment. During this exercise, metabolism rate of the body raises and oxygen consumption increases. Long-term regular winter swimming exercise is thought to promote blood circulation, improve the functional status of the body, improve immunity, enhance physical fitness, and thus prevent age-related diseases. But in recent years cases of sudden death caused by winter swimming have been increased, these deaths are mainly due to cardiac or cerebrovascular causes and thromboembolic diseases. There are very little reach about the changes of the body under cold stress and cold adaptation exercise and body reaction to different temperature and exercise intensity. Therefore, we need more in-depth research into the impact of winter swimming on body function. In this article, we used the response of the body in winter swimming under different water temperature and time as the experimental data , and established animal model of winter swimming using the method of cold stress and cold adaptation swimming in rats , analyzing the effect of two patterns of winter swimming exercise on radical metabolism , ATP activity and Ca ~(2+)content of the body, understanding the double role of cold stress and cold adaptation exercise on the physical state of the body, providing basic datas for the changes of body under cold adaptation exercise , and providing the scientific basis about winter swimming fitness for enthusiasts, Thus to prevent injuries caused by winter swimming.
     Methods: 30 Male Sprague-Dauley (SD) rats were randomly divided into three groups, control group (n = 10), cold stress sport group (n = 10), cold-adapted sport group (n = 10). Control group: NO training and were killed at the 7nd week . Cold stress sport groups: At the end of the 6 nd week, adaptive swimming training 3 days, once a day, water temperature 30℃, 15min. At the 7nd Week swimmed once, water temperature 8℃, 8min and were killed immediately after exercise. Cold-adapted sport groups: adaptive swimming 3 days, once a day, water temperature 30℃, 15min. Formal training: starting temperature 30℃, 40min, once a day. but from the 2th day, the temperature was decreased 2℃,and the exercise time was shorten 3min each day , trained 6 days a week for 2 weeks. From the 3thweek, the temperature was kept at 10℃and 5min for 4 weeks. At the 7 nd Week swimmed once, water temperature 8℃, 8min and were killed immediately after exercise. All the rats weighed once a week. After the execution, take the tissue of hearts and brains. Treat the tissues by methods of homogenate and centrifugation. Test the following indexes: MDA content, SOD activity, Na-K-ATPase activity, Ca-ATPase activity and Ca ~(2+)content.
     Results:1 Weight change: From the 3thweek to the end of the experiment, the mean of body weight in the cold-adapted sport group is significantly lower than that in the control group and the cold stress sport group (P <0.01);But there are no significant differences between the control group and the cold stress sport group(P>0.05). At end of the experiment, weight growth rate of the control group and the cold stress sport group (52.6%, 51.1%) is significantly higher than the cold-adapted sport group (27.0%) (P <0.01).
     2 Oxidative stress indicators: The MDA content of the heart and the brain in the cold stress sport group (2.45±0.30 nmol / mgprot, 9.65±0.75 nmol / mgprot) is significantly higher than that in the control group (P <0.01); The MDA content of the heart and the brain in the cold-adapted sport group(1.82±0.29nmol/mgprot, 6.68±0.78nmol/mgprot) has no difference with that in the control group (P> 0.05), but is significantly lower than that in the cold stress sport group (P <0.01). The SOD activity of the heart and the brain in the cold stree sport group(95.22±29.92 U/mgprot,153.21±10.17 U/mgprot)is significantly lower than that in the control group (P <0.01); The SOD activity of the heart and the brain in the cold-adapted sport group(278.80±25.50 U/mgprot ,190.27±12.55 U/mgprot)has no difference with that in the control group (P> 0.05), but is significantly higher than that in the cold stress sport group (P <0.01).
     3 The ATPase activity and the Ca ~(2+)content : The Na + -K + -ATPase activity of the heart and the brain in the cold stree sport group(1.58±1.14μmolpi/mgprot/hour,2.13±0.32μmolpi/mgprot/hour)is significantly lower than that in the control group (P <0.01); The Na + -K + -ATPase activity of the heart and the brain in the cold-adapted sport group; (1.98±0.15μmolpi/mgprot/hour,2.90±0.37μmolpi/mgprot/hour)has no difference with that in the control group (P>0.05), but is significantly higher than that in the cold stress sport group (P <0.01).The Ca ~(2+)-ATPase activity of the heart and the brain in the cold stree group ( 2.35±0.20μmolpi/mgprot/hour ,1.33±0.19μmolpi/mgprot/hour)is significantly lower than that in the control group (P <0.01); The Ca ~(2+)-ATPase activity of the heart and the brain in the cold-adapted sport group ( 2.67±0.23μmolpi/mgprot/hour , 1.72±0.21μmolpi/mgprot/hour ) has no difference with that in the control group (P>0.05), but is significantly higher than that in the cold stress sport group (P <0.01). The Ca ~(2+)content of the heart and the brain in the cold stress sport group(95±6.01μmol/gprot,34±5.81μmol/gprot)is higher than that in the control group (P <0.05); The Ca ~(2+)content of the heart and the brain in the cold-adapted sport group(89±5.67μmol/gprot ,29±4.85μmol/gprot)has no difference with that in the control group (P> 0.05), but is lower than that in the cold stress sport group (P <0.05).
     4 Correlation tests between MDA and ATPase: In the heart correlation coefficient between MDA and Na + -K + -ATPase is -0.726(P<0.01),shows negative correlation;In the heart correlation coefficient between MDA and Ca ~(2+)-ATPase is -0.387(P<0.05),shows negative correlation. In the brain correlation coefficient between MDA and Na + -K + -ATPase is -0.697(P<0.01),shows negative correlation;In the brain correlation coefficient between MDA and Ca ~(2+)-ATPase is -0.712(P<0.01),shows negative correlation.
     Conclusions:1 Long-term cold adapted swimming is very effective for weight control, and this could play a positive role on reducing the incidence of obesity-related diseases.
     2 Cold adapted swimming can significantly reduce damages caused by the lipid peroxidation, improve the capacity of antioxidant system, enhance the adaptability of exercise in cold water stress.
     3 The fall in ATP activity and cell calcium overload is related to free radical damage caused by oxidative stress. Through long-term antioxidant adaptation, cold adapted swimming can improve the activity of ATP and maintain normal calcium content in tissue.
引文
1.程军,石长青,刘建文.寒冷应激对机体的影响机制研究进展.Animal Scinece & Veterinary Medicine.2004,21(3):24-26
    2.王阳,张缨,陈洋,樊丽霞.冷暴露对运动机体代谢的影响.中国运动医学杂志. 2008,27(5):658-660
    3.Zsolt Radak, Hae Young Chung, Sataro Goto. Systemic adaptation to oxidative challenge induced by regular exercise. Free Radical Biology & Medicine.2008,44(2):153-159
    4.Tipton M.,Eglin C.,Gennser M.,Golden F.Immersion Deaths and deterioration in swimming performance in cold water. Lancet.1999,35(4): 626–629.
    5.张俊杰,聂平.冬泳与微循环. J of Chinese Microcirulation.2000,4(3):192-1946.Brenke R, Siem W, Maass R. Fitness by cold stimulation of Various intnsity:tens :Effects 0n Metabolism of pufine and Free radicals.Wien Med woehenschr.1994,144(3):66
    7.苏彦矩,霍少华,于动震,冬泳和游泳运动对糖尿病大鼠病情的影响.2006,10(32):63-65
    8.曹师承,符谦,杜晓平.低温游泳对小鼠血液自由基和抗氧化能力的影响.中国临床康复. 2004,8(15):2916-2915
    9.Aleksandra Jankovi, Biljana Buzadz, Aleksandra Kora,Vesna Petrovi, Ana Vasilijevi, Bato Kora. Antioxidative defense organization in retroperitoneal white adipose tissue during acclimation to cold—The involvement of L-arginine/NO pathway. Journal of Thermal Biology. 2009,34: 358–365
    10.David Hauton , Simon B. Richards, Stuart Egginton. The role of the liver in lipid metabolism during cold acclimation in non-hibernator rodents. Comparative Biochemistry and Physiology. 2006,144 (3) 372–381
    11.Alessio Sulloa, Guglielmo Brizzia, Nicola Maffulli. Deiodinating activity in the brown adipose tissue of rats following short cold exposure after strenuous exercise. Physiology & Behavior.2003, 80 (2-3) 399– 403
    12.Tadeusz Wostowski, Elz˙bieta Bonda, Alicja Krasowska. Effect of cold on lipid peroxidation in the brown adipose tissue and liver of rats.Journal of Thermal Biology.2008 ,33 (3) 180–184
    13.Cheryl D, Schaefer, James F, Staples. Mitochondrial metabolism in mammalian cold-acclimation: Magnitude and mechanisms of fatty acid uncoupling. Journal of Thermal Biology .2006,31(4): 355–361
    14.Zuocheng Wang, Yasuhide Kontani,Yuzo Sato,Takafumi Mizuno, Nozomu Mori,Hitoshi Yamashita. Muscle type difference in the regulation of UCP3 under cold conditions. Biochemical and Biophysical Research Communications . 2003,305 (2) 244–249
    15.Adams T, Heberling EJ, Human physiological responses to a standardized cold stress as modified by physical fitness. J Appl Physiol.1958,13(2):226-30
    16.Bittel JHM,Nonotte-Varly C,Livecchi-Gonnot GH,et a1.Physical fitness and thermoregulatory reactions in a cold environment in men. J Appl Physiol. 1988,65(5):1984-9.
    17.Shephard RJ. Metabolic adaptations to exercise in the cold:an update. Sports Med.1993,16 (4):266- 89
    18.Shephard RJ. Fat metabolism,exercise,and the cold.Can J SportSci.1992,17(2):83-90.
    19.Vybiral S., Lesna I.,Jansky L.,Zeman V. Thermoregulation in winter swimmers and physiological significance of human catecholamine thermogenesis.Exp Physiol. 2000, 85:321-326
    20.Simeckova M.,Jansky L., Lesna I., Vybiral S., Sramek P. Role of beta Adrenocept-ors in metabolic and cardiovascular responses of cold exposed humans.J Therm Biol.2000,25:437–442
    21.imonsen L., Stallknecht B., Bulow J. Contribution of skeletal muscle and adipose tissue to adrenaline-induced thermogenesis in man. Int J Obes Relat Metab Disord 1993;17(suppl. 3): S47–S51
    22.张陵,万宁.氧自由基脂质过氧化反应所致运动性疲劳产生机制研究进展.中国临床康复. 2005,9(4):188-190
    23.任绮.不同方式的急性运动和慢性运动对自由基的影响[J].体育科学.2004,24(4):22-25.
    24.许豪文.运动生物化学概论[M].北京:高等教育出版社.2001.48-358.
    25.?engül Yüksel, Dilek Asma.Effects of extended cold exposure on antioxidant defense system of rat hypothalamic-pituitary-adrenal axis .Journal of Thermal Biology.2006,31(4):313-317
    26.Susmita Kaushik, Jyotdeep Kaur. Chronic cold exposure affects the antioxidant defense system in various rat tissues. Clinica Chimica Acta.2003,333(1):69-77
    27.Matthew C. Schmidt, E.W. Askew, Donald E. Roberts, Ronald L. Prior, W.Y. Ensign, Robert E. Hesslink. Oxidative Stress in Humans Training in a Cold, Moderate Altitude Environment and Their Response to a Phytochemical Antioxidant Supplement. Wilderness and Environmental Medicine.2002,13(2):94-105
    28.赵丽,熊开宇,龚丽景.运动诱导机体对氧应激系统性适应的分子机制. China Healthcare Frontiers. 2009,4(9):46-48
    29.李海英,赵娟,李海生. Na + -K + -ATP酶和Ca 2 +-ATP酶活性影响因素的研究进展. Modern Journal of Integrated Traditional Chinese and Western Medicine.2008,17(9):1449-1450
    30.姚景莉,朱国行,秦震,等.急性脑梗塞病人的红细胞膜ATP酶活性变化和自由基损伤[J].中风与神经疾病杂志.1996,13(3):16-17
    31.刘树森.线粒体呼吸链电子漏和质子漏的相互作用——电子漏引起质子漏[J].中国科学. 1995,B(25):596
    32.刘丽萍.细胞凋亡与运动训练关系的研究进展[J].河北体育学院学报.2000,14(1):75
    33.张勇.耗竭性运动对大鼠心肌线粒体膜流动性及复合物1和影响[J].生物化学与生物物理学学报.1995,27(3):339
    34.Lamb GD,Stephenson DG. Effects 0f intracellular PH and [Mg2+] on excitation-contraction coupling in skeletal muscle fibers of the rat.[J].Physiol.1994,478:331.
    1.Dillard CJ.Litov RE.savin WM.et a1.EffecI of exercise,vitamin E and ozone on pulmonary function and lipid peroxidation.J Appl physical 1978,45(6):927-32
    2.Davies KJA、Quintanilha AT、Brooks GA,et al. Free radicals and tissue damage produced by exercise .Biochem Biophys Res Commun.1982,107(4):1198-205
    3.Sen CK.Oxidants and antioxidants in exercise.J Appl Physical 1995 ,79(3):675-86
    4.Sen.CK,Hanninen 0.Physiological antioxidants//Sen CK,Packer L,Hannien O(eds)Exercise and Oxygen Toxicity. Amsteram; Elsevier 1994:89-126
    5.张勇.中国应用生理学杂志,1998,14(2):46—49
    6.Nakajima K,Uchida S,Suzuki A,et a1.Auton Neurosci.20O3,103(1-2):83-92
    7.Lemaitre F,Meunier N,Bedu M.Undersea Hyperb Med.2002,29(1):39—49
    8.Davies K,et a1.Free radicals and tissue damage produced by exercise[J].sports Med,1982,10(4):1198
    9.Mitchell M,et a1.Seurm enzyme levels and lipid oxidation in ulrtamarathon runners [J].Ann 0f Sports Med,1986,3:39.
    10.Ohno T,et a1.Physical training and tasting erythrocyte activities 0f Free radical scavenging enzyme systems in sedentary men [J].Eur Appl Physical.1988,57:173
    11.Levin R,et a1.Are indices 0f free radical damage related to exercise inte-nsity[J].Eur Appl Physical,1987,56:313
    12.叶春,王瑞元,丁益.热休克对急性运动大鼠骨骼肌中MDA和SOD的影响[J].中国运动医学杂志,2002,21(3):253
    13.丁树哲.疲劳运动条件下对大鼠心肌线粒体膜结构影响的研究[J].中国运动医学杂志,1992,(1):22.
    14.Jenkins RR.Free radicals chemistry relationship to exercises [J].1988,(5):156
    15.Sjodin B.Bisohemical mechanisms for oxygen free radical formation during exercise[J].Sports Med,1990,10:236
    16.张陵,万宁.氧自由基脂质过氧化反应所致运动性疲劳产生机制研究进展.中国实验诊断学. 2006,10(9):1104-1108
    17. Gomez-Cabrera,M.C.,Martinez,A.,Santangelo,G.,et a1.,Oxidative stress in marathon runners:interest of antioxidant supplementation.Br.J.Nutr.2006,96 (SuppI.1),S3l-S33
    18.Ikeda,S.,Kawamoto,H.,Kasaoka,K.,et a1.,Muscle type specific response of PGC-1 alpha and oxidative enzymes during voluntary wheel running in mouse skeletal muscle.Acta Physical (Oxf.),2006,l88:2l7-223.
    19.Ji,L.L.,Gomez-Cabrera,M .C.,Vina,j.,Exercise and hormesis:activation of celluar antioxidant signaling pathway.Ann.N.Y.Acad.Sci.2006,l067 :425-435
    20.Grune,T.,Merker,K.,Jubg,T.,et a1.,Protein oxidation and degradation during postmitotic senescence. Free Radic.Bio1.Med.2005,39:1208-12l5
    21.Kjaer,M.,Magnusson,P.,Krogsgaard,M.,et a1.,Extracellular matrix adaptation of tendon and skeleta1 muscle to exercise.J.Anat.2006,208:445-450
    22.Kiens , B.Skeletal muscle lipid metabolism in exercise and insulin resistance.Physio1. Rev.2006,86:205-243
    23.Olson,A.K., Eadie, B.D., Ernst,C.,et a1.,Environmental enrichment and voluntary exercise massively increase neurogenesis in the adult hippocampus via dissociable pathways.Hippocampus,2006,16:250-260.
    24.Rennie,M .J.,Bohe,J.,Smith,K.,et al,Branched_chain amino acids as fuels and anabolic signals in human muscle.J.Nutr.2006,l36:264S-268S
    25.Radak,Z.,Kumagai,S.,Nakamoto,H.,et a1.,8 -Oxoguanosine and uracil repair of nuclear andd mitochondrial DNA in red and white skeletal muscle of exercise trained old rats.J. App1.Physio1.2007,102(4):1696-701
    26.?engül Yüksel, Dilek Asma.Effects of extended cold exposure on antioxidant defense system of rat hypothalamic-pituitary-adrenal axis .Journal of Thermal Biology.2006,31(4):313-317
    27.Susmita Kaushik, Jyotdeep Kaur. Chronic cold exposure affects the antioxidant defense system in various rat tissues. Clinica Chimica Acta.2003,333(1):69-77
    28.Juha Oksa, Hannu Kaikkonen, Pasi Sorvisto, Marko Vaappo, Vesa Martikkala, Hannu Rintam?ki. Changes in maximal cardiorespiratory capacity and submaximal strain while exercising in cold. Journal of Thermal Biology.2004,29(7-8):815-818
    29.Matthew C. Schmidt, E.W. Askew, Donald E. Roberts, Ronald L. Prior, W.Y. Ensign, Robert E. Hesslink. Oxidative Stress in Humans Training in a Cold, Moderate Altitude Environment and Their Response to a Phytochemical Antioxidant Supplement. Wilderness and Environmental Medicine.2002,13(2):94-105
    30.Prikryl P,Rysanek K,Tovarek J. et a1. Effect of cold stress in catecholamines cyclic cAMP and cyclic cGMP in hardened and unhardened men [J].Act Nerv Supper.1982,(24):32
    31.Lewis T.Observations upon the reactions of the vessels of the human skin to cold[J].Hear. 1930,(15):177
    32.Shuhei Izawa, Kijin Kim, Takayuki Akimoto, Nayoung Ahn, Hoseong Lee, Katsuhiko Suzuki. Effects of Cold Environment Exposure and Cold Acclimatization on Exercise-Induced Salivary Cortisol Response. Wilderness and Environmental Medicine.2009,20(3):239-243
    33.徐扬,杨泽田,苏成芝.冷适应大鼠脑垂体、下丘脑、脾淋巴细胞和血浆B一内啡肽及其mRNA的变化[J].生理学报.l992,(44):45
    34.Tipton M.,Eglin C.,Gennser M.,Golden F.Immersion Deaths and deterioration in swimming performance in cold water. Lancet.1999,354: 626–629.
    35.The Eurowinter group. Cold exposure and winter mortality from ischaemic heart disease, cerebrovascular disease,respiratory disease, and all causes in warm and cold regions of Europe. Lancet.1997,349:1341–1346.
    36.Inoue Y., Nakao M., Araki T., Ueda H. Thermoregulatory responses of young and older men to cold exposure. Eur J Appl Physiol Occup Physiol.1992,65:492–498
    37.Vybiral S., Lesna I.,Jansky L.,Zeman V. Thermoregulation in winter swimmers and physiological significance of human catecholamine thermogenesis.Exp Physiol. 2000, 85:321-326
    38.Teramoto S.,Ouchi Y. Swimming in cold water. Lancet.1999,354: 1733
    39.Simeckova M.,Jansky L., Lesna I., Vybiral S., Sramek P. Role of beta adrenoceptors in metabolic and cardiovascular responses of cold exposed humans.J Therm Biol.2000,25:437–442
    40.Simonsen L., Stallknecht B., Bulow J. Contribution of skeletal muscle and adipose tissue to adrenaline-induced thermogenesis in man. Int J Obes Relat Metab Disord 1993;17(suppl. 3): S47–S51
    41.Huttunen P., Rintamaki H., Hirvonen J. Effect of regular winter swimming on the activity of the sympathoadrenal system before and after a single cold water immersion. Int J Circumpolar Health 2001; 60: 400–406
    42.Hermanussen M.,Jensen F., Hirsch N.et al. Acute and Chronic effects of winter swimming on LH, FSH, prolactin,growth hormone, TSH, cortisol, serum glucose and insulin.Arctic Med Res .1995, 54: 45–51
    43.Dugue B.,Leppanen E.Adaptation related to cytokines in man: effects of regular swimming in ice-cold water. Clin Physiol.2000,20: 114–12144.Brenke R.Winter-swimming: an extreme form of bddy Hardening.Therapeutikon.1990,4: 466–472.
    45.Siems W.G.,Brenke R.,Sommerburg O.,Grune T.Improved antioxidative protection in winter swimmers. Q J Med 1999,92:193–198.46.Kloner R. A.,Jennings R.B.Consequences of brief ischemia:stunning, preconditioning, and their clinical implications:part 1. Circulation.2001,104: 2981–2989.