激光制备CaTiSiO_5基高频介质陶瓷的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高频介质陶瓷材料在现代功能陶瓷材料中占有非常重要的地位,具有广泛的用途。高频介质陶瓷材料在高频(1MHz)下的介质损耗低、介电常数温度系数范围宽,广泛用作陶瓷电容器的电介质。根据介电常数温度系数可分为两大类:一类是热补偿电容器介质陶瓷材料。热补偿电容器介质陶瓷具有较大的负介电常数温度系数,如CaTiO3、TiO2等。热补偿电容器主要用在振荡回路里,以补偿回路电感元件的正温度系数,使回路谐振频率保持不变或变化很小。另一类是热稳定电容器介质陶瓷材料,其介电常数温度系数的绝对值很小,如TiO2-CaTiSiO5、CaTiO3-CaTiSiO5、CaTiO3-Ca(M g1/3Nb2/3)O3、SrZrO3-SrTiO3、CaTiO3-CaZrO3等。使用此类电介质材料制作的高稳定电容器广泛应用于移动通讯、卫星通讯、精密仪器和军用雷达等领域。其中CaTiO3-CaTiSiO5介质陶瓷是一种优良的高频介电陶瓷,它由单斜型CaTiSiO5(εr≈40,tanδ≈5×10-4,αε≈+1200×10-6/℃)和正交型CaTiO3(εr≈150,tanδ≈2.5×10-4,αε=-1800×10-6/℃)两相组成,具有较为优良的介电性能:εr≈82,tanδ≈4×10-4,αε≈±25×10-6/℃,因而日益受到关注。Ti02和CaTiSiO5以适当的摩尔比(0.82:0.18)进行复合也能够获得具有介电性能的复合材料,即较高介电常数、较低的介质损耗和接近于零的介电常数温度系数。
     随着现代通讯技术的迅猛发展,陶瓷电容器也向小型化、大容量方面发展,而介电常数大、介质损耗小的介质陶瓷是制造高性能陶瓷电容器的前提条件。那么,提高CaTiO3-CaTiSiO5、(CaTiSiO5)0.18(TiO2)0.82陶瓷的介电性能是拓宽CaTiO3-CaTiSiO5、(CaTiSiO5)0.18(TiO2)0.82介质陶瓷应用范围的迫切课题。近年来,激光烧结技术在制备新材料和提高材料性能方面,显示出独特的优势。本工作采用激光烧结技术制备CaTiO3-CaTiSiO5、(CaTiSiO5)0.18(TiO2)0.82介质陶瓷,并采用X射线衍射(XRD)、扫描电子显微镜(SEM)、精密阻抗分析仪、拉曼散射等对材料的晶格结构、化学组成、微观结构、介电性能等进行测试与分析。
     根据样品的物理性能和微观结构确定了激光烧结CaTiO3-CaTiSiO5、(CaTiSiO5)0.18(TiO2)0.82介质陶瓷的最佳工艺分别为:激光功率1.2 kW,离焦量90mm,烧结时间140s;激光功率1.0 kW,离焦量140 mm,烧结时间240s。
     CaTiO3-CaTiSiO5陶瓷样品的介电性能与高温炉烧结相比,介电常数由炉烧的82提高到376,介质损耗和温度系数基本不变。微观结构也发生显著变化,样品比较致密没有大量的气孔和微裂纹,晶粒较大,生长完整并且呈树枝状定向生长,晶粒之间相互连成一体形成树枝状结构群。激光烧结的(CaTiSiO5)0.18(TiO2)0.82介质陶瓷致密度、纯度很高,形成了逆激光光束方向呈板条状规则生长的微观结构,有利于其介电性能的提高。在功能陶瓷的制备技术中,与其它定向生长技术相比激光烧结技术具有操作简单、晶粒定向生长强、效率高、致密度和纯度高等优点。
The high frequency dielectric ceramic materials has a very important position in modern functional ceramic materials, With a wide range of uses. Undering the high-frequency (1MHz) conditions The high frequency dielectric ceramic materials have low dielectric loss, wide range temperature coefficient of dielectric constant. It is widely used in ceramic capacitors dielectric. According to the temperature coefficient of dielectric constant It can be divided into two categories.One is the capacitor dielectric ceramic materials for thermal compensation,The capacitor dielectric ceramics of thermal compensation has a large negative temperature coefficient of dielectric constant.For example CaTiO3、TiO2 and so on.The capacitor dielectric ceramics of thermal compensation are used in the oscillator circuit into loop to compensate the positive temperature coefficient of inductance components, so that the resonant frequency circuit to maintain the same or little change.The other is thermally stable capacitor dielectric ceramics, It has a very small temperature coefficient of dielectric absolute value of the number, Such as TiO2-CaTiSiO5、CaTiO3-CaTiSiO5、CaTiO3-Ca(Mg1/3Nb2/3)O3、SrZrO3-SrTiO3、CaTiO3-CaZrO3 and so on.The thermally stable capacitor dielectric ceramics are widely used in mobile communications, satellite communications, precision instruments and military radar and other fields.The CaTiO3-CaTiSiO5 dielectric ceramic is an excellent high-frequency dielectric ceramics, It is monoclinic CaTiSiO5 (εr≈40, tanδ≈5×10-4,αε≈+1200×10-6/℃) and orthogonal CaTiO3 (εr≈40, tanδ≈5×10-4αε≈+1200×10-6/℃) two phases, It has a more excellent dielectric properties(εr≈82, tanδ≈4×10-4,αε≈±25×10-6/℃), Thus a growing concern. By the appropriate molar ratio (0.82:0.18) of compound TiO2 and CaTiSiO5 was also able to obtain a composite dielectric properties of composite materials, That has a high dielectric constant, low dielectric loss and near-zero temperature coefficient of dielectric constant.
     Also with the rapid development of modern communication technology, Ceramic capacitors toward small, high-capacity areas direction.what's more, the dielectric ceramics of large dielectric constant and dielectric small loss is a prerequisite to create high-performance ceramic capacitors. Therefore, improving the dielectric properties of CaTiO3-CaTiSiO5、(CaTiSiO5)0.18(TiO2)0.82 dielectric ceramics is to broaden the scope of application of ceramic CaTiO3-CaTiSiO5、(CaTiSiO5)0.i8(TiO2)0.82 pressing issue. In recently years, laser sintering technology in the preparation of new materials and improve material performance shows a unique advantage. This work is the preparation of CaTiO3-CaTiSiO5 (CaTiSiO5)0.18(TiO2)0.82 dielectric ceramics using of laser sintering technology, and its preparation has been systematically studied. The lattice structure, chemical composition, microstructure, dielectric properties and so on were measured and analyzed by X-ray diffraction (XRD), scanning electron microscopy (SEM), precision impedance analyzer, Raman scattering et al measurement.
     According to the physical properties and microstructure of the sample, The optimum technology of CaTiO3-CaTiSiO5, (CaTiSiO5)0.18(TiO2)0.82 dielectric ceramics by laser sintering were:Laser power 1.2 kW, defocus 90 mm, the sintering time 140s; laser power 1.0 kW, defocus 140 mm, sintering time 240s. CaTiO3-CaTiSiO5 dielectric properties of ceramic samples comparing with the high temperature furnace sintered, dielectric constant increased to 376 from 82 which the sample sintered by the furnace, dielectric loss and temperature coefficient basically unchanged. The microstructure changed significantly, the sample was dense without a large number of pores and micro-cracks, the grain was large and grew integrallty and alignmently, these grains connected each other and formed dendritic structure group. The density and purity of (CaTiSiO5)0.18(TiO2)0.82 dielectric ceramics are perfect, the sintered sample showed lath-shaped microstructure formed by regular growth with the laser beam in the opposite direction, which is beneficial to the improvement of dielectric properties. Among the techniques for formation of functional ceramics, compared with other orientated growth technology, the laser sintering technology is simple operation, strong orientated growth of grain, high efficiency, density and purity.
引文
[1]单丹.无铅陶瓷电容器介质材料的制备与性能研究[D].[硕士学位论文].天津:天津大学.2004,7
    [2]Y. Yuan, X. M. Chen. Temperature-stable dielectric ceramics with nominal composition of Ca6Ti2Ta803o[J]. Journal of the European Ceramic Society,2006,(26):1987-1990
    [3]I-Nan Lin, Ta Chih Chia. High frequency dielectric properties of Ba(Mg1/3Ta2/3)O3 complex perovskite ceramics[J]. Journal of the European Ceramic Society, 2003,(23):2633-2637
    [4]曹良足,喻佑华.钛酸锌微波介电陶瓷的改性研究现状[J].电子元件与材料,2008,27(2):5-7
    [5]陈长庆,吴霞宛.高频高压高介MLCC瓷介的研究[J].硅酸盐通报,2003,22(2):43-45
    [6]杨辉,张启龙,王家邦等.微波介质陶瓷及器件研究进展[J].硅酸盐学报,2003,31(10):965-971
    [7]曲远方.功能陶瓷及应用[M],化学工艺出版社,2003.275-292
    [8]赵明远,徐重阳,王长安等(Ba1-xSrx)TiO3介电常数与温度、频率的关系[J].华中科技大学学报,2003,31(3):72-74
    [9]刘维良.先进陶瓷工艺学[M].武汉理工大学出版社,2004.281-284
    [10]徐政,倪宏伟.现代功能陶瓷[M].国防工业出版社,1998.16-24
    [11]江东亮.精细陶瓷材料[M].中国物资出版社,2000.182-184
    [12]于海杰.两类无铅陶瓷的压电性能和介电性能研究[D].[硕士学位论文].济南:山东大学.2007,4
    [13]X. M. Chen, L. Li, X. Q. Liu. Layered complex structures of MgTiO3 and CaTiO3 dielectric ceramics[J]. Materials Science and Engineering B,2003,99(1-3):255-258
    [14]S. M. Yang, H. Z. Kou, H. J. Wang et al. The photoelectrochemical properties of N3 sensitized CaTiO3 modified TiO2 nanocrystalline electrodes[J]. Electrochimica Acta,2009,55(1):305-310
    [15]K. Neufuss, A. Rudajevova.Thermal properties of the plasma-sprayed MgTiO3-CaTiO3 and CaTiO3[J]. Ceramics International,2002,28(1):93-97
    [16]C. L. Huang, C. L. Pan, S. J. Shium. Liquid phase sintering of MgTiO3-CaTiO3 microwave dielectric ceramics[J]. Materials Chemistry and Physics,2003,78(1):11 1-115
    [17]H. Jantunen, R. Rautioaho, A. Uusimaki et al. Compositions of MgTiO3-CaTiO3 ceramic with two borosilicate glasses for LTCC technology[J]. Journal of the European Ceramic Society,200920(14-15):2331-2336
    [18]S. Webb, I. Jackson, J. Fitz Gerald.Viscoelasticity of the titanate perovskites CaTiO3 and SrTiO3 at high temperature[J]. Physics of The Earth and Planetary Interiors,1999,115(3-4):259-291
    [19]H. Zheng, G. D. C. Csete de Gyorgyfalva. Raman spectroscopy of B-site order-disorder in CaTiO3-based microwave ceramics [J]. Journal of the European Ceramic Society, 2003,23(14):2653-2659
    [20]B. Jancar, D. Suvorov, M. Valant et al. Characterization of CaTiO3-NdAlO3 dielectric ceramics[J]. Journal of the European Ceramic Society,2003,23(9):1391-1400
    [21]凌栋.BT4/BST高频介电陶瓷的掺杂研究[D].[硕士学位论文].南京:南京航空航天大学.2006,3
    [22]王零森.特种陶瓷[M].中南工业大学出版社,1994.215-222
    [23]虞钢,虞和济.集成化激光智能加工工程[M].冶金工业出版社.2002.60-66
    [24]徐庆仁.国外激光加工技术的发展和应用(上)[J].国际航空.1998,(3):59-60
    [25]季凌飞,蒋毅坚.激光烧结氧化钽基功能陶瓷[M].化学工业出版社,2006.3
    [26]付宗义.激光烧结BaZrxTi1-xO3、PbZrxTi1-xO3压电陶瓷及性质研究[D].[硕士学位论文].北京:北京工业大学.2007.5
    [27]L. Hao, J. Lawrence. Examination of CO Laser-induce Rapid Solidification Structu-res on Magnesia Partially Stabilised Zirconia and the Effects There of on Wettabi lity Characteristics [J]. Optics and Lasers in Engineering.2004,(42):355-374
    [28]C. C. Homes, T. Vogt. Optical response of high-dielectric-constant perovskite-related oxide[J]. Science,2001,293(27):673-676
    [29]R. S. Silva, A. C. Hernandes. Laser sintering of BaTiO3 ceramics obtained from nanometric powders[J]. Materials Science Forum,2006,(514-516):1216-1220
    [30]E. Yu. Tarasova, G. V. Kryukova, A. L. Petrov, et al. Structure and properties of porous PZT ceramics synthesized by selective laser sintering method Proceedings of the SPIE [J]. The Internati nal Society for Optical Engineering,2000,(3933):502-504
    [31]慈戬.铌酸锂晶体和陶瓷的改性研究[D].[硕士学位论文].北京:北京工业大学.2007,5
    [32]付宗义.激光烧结BaZrxTi1-xO3、PbZrxTi1-xO3压电陶瓷及性质研究[D].[硕士学位论文].北京:北京工业大学.2007,5
    [33]王宝军,季凌飞,蒋毅坚(Ta2O5)(1-x)(TiO2)x基陶瓷介电温度系数激光热补偿改性[J].中国激光,2009,36(9):2413-2416
    [34]于永明,赵艳,蒋毅坚.C02激光辐照对PZT4陶瓷压电性能的影响[J].光电子·激光,2010,21(7):1036-1039
    [35]D. M. Gureev, R. V. Ruzhechko, I. V. Shishkovskii. Selective laser sintering of PZT ceramics powders [J]. Technical Physics Letters,2000,3(26):262-264
    [36]Bourell, L. David, Marcus et al. Joseph.Selective laser sintering of metals and ceramics [J]. International Journal of Powder Metallurgy,1992,10(28):369-381
    [37]D. Guo,L.T. Li, K. Cai, et al. Rapid prototyping of piezoelectric ceramics via selective laser sintering and gelcasting[J]. Journal of the Amerian Ceramic Society,2004,(87):17-22
    [38]M. Swarnalatha, A. F. Stewart, et al. Laser-fused refractory oxides for optical coating[J]. Mater. Sci.Eng,1991:241-246
    [39]X. J. Li, F. Zheng, Q. G. Zheng, et al. Microstructure and properties of aluminiu-mtungsten oxide ceramics synthesized by a high power CW CO2 laser[J]. J.Mater. Sci,1993,(28):6040-6049
    [40]M. Okutumi, M. Kasamatsu, K. Tsukamoto, et al, F.Uchiyama.Sintering of newoxi-deceramics using a high power CW CO2 laser[J]. Applied Physics Letters,1984,6 (44):1132-1134
    [41]M. Okutomi. Sintering and coating of ceramics using carbon dioxide laser[J]. Materials an Manufacturing Processes,1991,(6):139-159
    [42]李家熔,郑启光,陶星芝等.CO2激光合成陶瓷的研究[J].中国激光,1991,18(10):770-774
    [43]S. Sunao. Sintering of piezoelectric ceramics with CO2 laser[J]. Japanese Journal of Applied Physics,1992,(31):3037-3040
    [44]蒋毅坚,R. Guo,A. S. Bhalla. PSKNN铁电单晶及其激光法生长[J].中国激光,2000,27(3):842-846
    [45]Z. E. Macedo, R.S.da Silva. Radiation Detectors Based on Laser Sintered Bi4Ge3O12 Ceramics[J]. NIMB Beam Interactions with Materials & Atoms,2004,(B218):153-157
    [46]Z. S. Macedo,A. C. Hernandes. A quantitative analysis of the laser sintering of bismuthtitanate ceramics. Materials Letters,2005,(59):3456-3461
    [47]L. F. Ji, Y. J Jiang, W. Wang, et al.Enhancement of the dielectric permittivity of Ta2O5 ceramics by CO2 laser irradiation[J]. Applied Physics Letters,2004,(85):1577-1579
    [48]陆建,倪晓武,贺安之.激光与材料相互作用物理学[M].机械工业出版社.1996:18-20
    [49]郑启光.激光先进制造技术[M].华中科技大学出版社.2002:34-36
    [50]慈戬,蒋毅坚.激光烧结制备铌酸锂陶瓷研究[J].(光电子·光),2008,19(5):644-646
    [51]常雷,蒋毅坚La(0.67)Ba(0.33)MnO3薄膜的激光辐照效应研究[J].物理学报,2009,58(3):1997-2001
    [52]孙程伟.激光辐照效应[M].国防工业出版社.2002:32-42
    [53]杜新宇,蒋毅坚.激光烧结Sr1.86Ca0.14 NaNb5O15无Pb压电陶瓷[J].光电子·激光,2009,20(8):1037-1040
    [54]蒋毅坚,季凌飞.激光烧结(Ta2O5)(1-x)(TiO2)x陶瓷的拉曼光谱研究[J].光散射学报,2006,18(6):101-105
    [55]王伟.激光烧结几种功能陶瓷的结构与物性研究[D].[硕士学位论文].北京:北京工业大学.2005,5
    [56]Farhir, Marssime, Simona. Araman and dielectric study of ferroelectric Ba(Ti1-xZrx)TO3 ceramics [J]. J.Eur.Phys.B,1999.9(24):599-604
    [57]黄雯雯,凌志远.低温烧结05CaTiO3-0.5CaTiSiO5高频介电陶瓷[J].电子元件与材料,2003,(22):14-16
    [58]Q. Chen, X. P. Lin. Low Temperature Sintered CaTiSiO5-CaTiO3 Dielectric Ceramics Doped by 2ZnO-B2O3[J]. Key Engineering Materials,2008,(368-372):748-750
    [59]曾江涛,李永祥,杨群保等.压电陶瓷晶粒定向技术.电子元件与材料[J],2004,23(11):66-70
    [60]李永祥,杨群保,曾江涛等.多层晶粒生长法制备织构化CaBi4Ti4O15压电陶瓷[J].四川大学学报,2005,42(2):230-235
    [61]侯东芳,周根树,郑茂盛.贝壳中文石晶体择优取向的XRD分析[J].三峡大学学报,2006,28(5):431-434
    [62]杜洪亮,张孟,苏晓磊等.压电陶瓷晶粒取向生长技术的研究进展[J].无机材料学报,2008,23(1):1-7
    [63]马天宇,严密,王庆伟等.(110)取向Tb—Dy—Fe—Co合金棒的磁致伸缩均匀性[J].金属学报,2007,43(7):688-692
    [64]王国勇,刘云飞,汤威等.织构化(Na1/2 Bi1/2)TiO3—BaTiO3无铅压电陶瓷晶粒定向生长机制[J].南京工业大学学报,2010,32(4):32-37
    [65]刘韩星,刘志坚,欧阳世翕.微波合成SrTiO3的工艺、结构与性能研究.物理化学学报[J],1998,14(7):624-629
    [66]季凌飞,蒋毅坚.激光辐照改变功能材料物理性质[J].激光杂志,2002,(23):1-4
    [67]颜海洋.高频高Q(Mg,Co)TiO3-CaTiO3系统陶瓷材料研究[D].[硕士学位论文].天津:天津大学.2003,12
    [68]尹艳红,刘维平.微波介电陶瓷及其发展趋势[J].冶金丛刊,2006,(3):41-50
    [69]杨昌辉,周小莉等.溶胶——凝胶法制备巨介电常数材料CaCu3Ti4O12[J]硅酸盐学报,2006,34(6):753-756
    [70]赵俊英,崔斌,畅柱国等.介电温度稳定型钛酸钡基陶瓷的研究进展[J].材料导报.2008,22(11):21-25
    [71]吕宇强,吴裕功.钛酸锆—铌酸镁系高频介质陶瓷的制备及介电性能的研究呢.电子元件与材料,2003,22(10):16-18
    [72]白花珍CaTiSiO5-TiO2系C组介质瓷料预合成工艺的研究[J].电子元件,1992年第2期,P17-20
    [73]孙萍Ba(Zn1/3Nb2/3)O3—CaTiO3系陶瓷结构和介电性能研究[D].[硕士学位论文].天津:天津大学.2004,12
    [74]刘兴元Li2O-Nb2O5-TiO2微波介质陶瓷及低温烧结研究[D].[硕十学位论文].杭州:浙江大学.2004,3
    [75]赵康健BaO—Nd2O3—TiO2系陶瓷结构和介电性能研究[D].[硕士学位论文].天津:天津大学.2005,12
    [76]刘超BNT—SrTiO3基陶瓷电容器材料的制备与介电性能的研究[D].[硕士学位论文].天津:天津大学.2005,11
    [77]白花珍,张之圣,胡明CaTiSiO5-TiO2系统高频电容器瓷料的研究[J].电子科技大学学报,1998,27(6):609-612
    [78]张永刚,周彩楼,李计元等.滤波连接器用CaTiSiO5-CaTiO3-TiO2系陶瓷接触体烧成工艺研究[J].天津城市建设学院学报,2008,14(4):299-302