聚合猪血红蛋白在大鼠离体小肠保存与大鼠失血性休克复苏中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景
     血红蛋白(Hemoglobin, Hb)是脊椎动物血红细胞中重要的氧载体,其含量可达到血红细胞干重的90%以上。长期以来,血红蛋白类氧载体(Hemoglobin-Based Oxygen Carriers, HBOCs)由于其良好的载氧特性受到了广泛的关注。之前的应用研究主要集中在将HBOCs应用于红细胞代用品,将其用作携氧治疗剂的研究尚处于起步阶段。小肠移植是短肠综合征和不可逆肠功能衰竭的最理想治疗方法,但是小肠离体保存难度大,从而极大地限制了小肠移植的临床应用。小肠离体保存困难的重要原因之一是小肠上皮细胞对于缺血非常敏感,因此将具有良好携氧能力的pPolyHb应用于小肠的离体保存或可优化其保存效果。失血性休克是一种由于机体失血造成的有效循环血容量减少、组织灌注不足,细胞代谢紊乱和多器官功能受损的病理过程。液体复苏是休克早期治疗的重要手段之一,临床常用的复苏液包括晶体液、胶体液和血液制品等。HBOCs已经开始作为失血性休克的携氧复苏液进行研究,研究结果显示HBOCs有望成为临床中复苏失血性休克患者的重要工具。
     研究目的
     本研究首次选用猪血作为原料并成功研发了戊二醛聚合猪血红蛋白分子(Polymerized Porcine Hemoglobin, pPolyHb),该制品氧亲和力高,循环时间长,具有稳定四聚体结构。本研究以该pPolyHb作为携氧治疗剂(Oxygen therapeutic agent),探索其在大鼠移植小肠保存和失血性休克复苏中的应用。
     研究方法
     制备戊二醛聚合猪血红蛋白氧载体(Polymerized porcine hemoglobin, pPolyHb),并测量其分子量及理化性质指标。以pPolyHb作为高渗柠檬酸腺嘌呤溶液(Hypertonic Citrate Adenine Solution, HCA)的携氧治疗剂,为大鼠小肠的离体保存供氧,优化其保存条件。大鼠小肠分别保存于2g/dl pPolyHb+HCA液、4g/dl pPolyHb+HCA液和对照组HCA液、威斯康辛大学保存液(University of Wisconsin Solution, UW)中,以12h、24h和36h梯度时间保存,然后进行组织病理学分析、组织ATP含量检测、血气分析等,分析pPolyHb对于提高离体小肠保存的效果。为了检测pPolyHb在失血性休克复苏的作用,本研究建立了大鼠抗失血性休克模型,失血时间为90min,失血量为60±5%。将SD大鼠随机分为五组,每组8只,应用不同浓度的pPoIyHb(2.0g/kg、1.5g/kg、1.2g/kg、1.0g/kg、0.5g/kg)联合两倍生理盐水对失血性休克大鼠进行复苏实验,同时监测各组大鼠血压、心率、呼吸和心电图等基本生命体征和动脉的血气指标,最终筛选出最低有效剂量的pPolyHb浓度。然后随机分为六组,每组8只SD大鼠,采用pPolyHb联合两倍生理盐水、自体血(AB)联合两倍生理盐水、红细胞(RBC)联合两倍生理盐水、羟乙基淀粉(HES)联合两倍生理盐水、三倍乳酸钠林格液(LR)和三倍生理盐水(SPSS)分别对失血性休克大鼠进行复苏实验,同时监测各组大鼠血压、心率、呼吸和心电图等基本生命体征和动静脉的血气指标,并对大鼠重要内脏器官进行病理学分析。
     研究结果
     pPolyHb的分子量及理化性质指标结果显示其平均分子量在550~800kD,浓度在11g/dl左右,其中MetHb的含量小于5%;pH值(7.4±0.3)接近生理状态;胶体渗透压也在生理范围内;小分子含量小于3%;从Hemox血氧分析仪测定产品的P50和Hill系数可以看出,经化学修饰后,血红蛋白的载氧能力受到影响,亚基的协同性也有一定下降。
     在离体小肠保存实验中,病理学分析结果显示小肠在pPolyHb+HCA液中短期保存效果(12和24h)与UW液相近,无明显差异,但其长期保存效果(36h)则优于UW液,且无论长期与短期保存效果均优于单纯的HCA溶液(P<0.05)。组织ATP含量检测表明pPolyHb+HCA组中小肠组织的三磷酸腺苷(ATP)含量显著高于对照组UW组与HCA组(P<0.05)。血气分析显示pPolyHb+HCA保存液中的pH值始终维持在正常水平、HCO3-的变化值(ΔHCO3-)显著高于对照组,而Lac含量显著低于对照组(P<0.05)。这些研究结果表明pPolyHb能够改善离体小肠的保存效果,同时也提示提高离体小肠组织氧供应能够优化其离体保存。
     在大鼠失血性休克复苏实验中,生理监测指标显示:五组pPolyHb联合两倍生理盐水组复苏后大鼠的血压、心率、呼吸率等恢复平稳,较高浓度pPolyHb (2.0g/kg和1.5g/kg)联合两倍生理盐水对血流动力学的影响效果均优于其他三个较低浓度组(1.2g/kg、1.0g/kg、0.5g/kg)。血气指标显示:携氧能力方面,2.0g/kg pPolyHb与1.5g/kg pPolyHb组有更好的携氧能力,但是随着pPolyHb浓度的提高,高铁血红蛋白(MetHb)的含量有所增加;酸碱平衡方面,随着pPolyHb浓度的提高,可纠正休克期的代谢性酸中毒,但呼吸性酸中毒随着pPolyHb浓度的提高呈现下降的趋势;电解质平衡方面,五个浓度的pPolyHb均可有效平衡血液中的电解质;代谢物乳酸的生成量在不同浓度pPolyHb复苏后均有下降;存活率统计情况显示,1.5g/kg pPolyHb组的存活率和2.0g/kg pPolyHb组的存活率均为100%,故在接下来的不同溶液比较实验中选择1.5g/kg作为pPolyHb的最低有效剂量。
     生理监测指标显示:不同溶液复苏过程中,1.5g/kg pPolyHb+两倍生理盐水组复苏后血压恢复均优于红细胞+两倍生理盐水组、HES+两倍生理盐水组和三倍生理盐水组,心率和呼吸恢复平稳,说明有更好的扩容效果。血气指标分析结果显示:血氧方面,pPolyHb+两倍生理盐水组的携氧能力明显优于HES+两倍生理盐水组、乳酸钠林格液组和三倍生理盐水组(P<0.05);酸碱平衡方面,pPolyHhH+两倍生理盐水组对于机体休克末的代谢性酸中毒缓解效果优于乳酸钠林格液组,与HES+两倍生理盐水组相似;无氧代谢方面:pPolyHb+两倍生理盐水组复苏后的乳酸含量明显低于HES+两倍生理盐水组、乳酸钠林格液组和三倍生理盐水组(P<0.05)。存活情况显示,pPolyHb+两倍生理盐水组大鼠存活时间与存活率均优于红细胞+两倍生理盐水组、HES+两倍生理盐水组和三倍生理盐水组,与自体血+两倍生理盐水无显著差异。失血性休克复苏大鼠病理检查结果显示,pPolyHb+两倍生理盐水组大鼠的心脏、肝脏、脾脏、肺脏和肾脏的病理性变化均优于对照组HES+两倍生理盐水组。结论
     (一)在12h和24h的短期保存中,pPolyHb+HCA组中的离体小肠保存效果与现行的临床标准UW液相近,但在36h长期保存中,其保存效果要优于UW溶液,pPolyHb可维持组织的有氧呼吸,阻止组织的无氧代谢,是用小肠离体保存良好的携氧治疗剂;(二)血液动力学、血气分析、病理分析的各项指标显示,与现行的临床复苏液相比,pPolyHb作为携氧治疗剂能够更为安全有效的复苏失血性休克大鼠;(三)pPolyHb在大鼠离体小肠保存与大鼠失血性休克复苏中的应用研究结果为聚合猪血红蛋白临床适应症的选择提供依据。
The development of HBOCs (Hemoglobin-Based Oxygen Carriers) as blood substitutes has reached an impasse due to clinically adverse outcomes, such as vasoconstriction caused by NO (Nitric Oxide) scavenging, oxidative damage and so on. Currently, the HBOCs can't substitute for red blood cells completely in clinical blood transfusion, but its function as therapeutic agent can be applied in other clinical indications to carry oxygen. The FDA suggests for the categories of HBOCs indications:local perfusion, uncontrolled hemorrhagic shock, perioperative application. In this doctoral dissertation, a new type of HBOCs-pPolyHb (glutaraldehyde-polymerized porcine hemoglobin) was prepared and two types of clinical indications were chosen to test the effectiveness of pPolyHb as oxygen therapeutic agent.
     The SBTx (Small bowel transplantation) has became a standard clinical treatment for short bowel syndrome or irreversible intestinal function failure. The optimum preservation of the organ is essential for the success of transplantation. The aim of the present study is to investigate the time-related morphological changes and biochemical indicators of small bowel tissue in preservation solutions. Rat small bowels were preserved in HCA (hypertonic citrate adenine solution), HCA with pPolyHb or University of Wisconsin solution (UW), and light microscopy was used to evaluate the integrity of the small bowel. Small bowels were placed in different preservation solutions at4℃for12,24and36h. In the small intestine preservation experiment, pathology analysis results showed that the short-term (12and24h) preservation effect of pPolyHb+HCA solution approached the level of UW solution, there was no significant difference between these two groups. However, its long-term preservation effect (36h) was significantly better than the UW solution. Both long-term and short-term preservation effects were superior to the HCA solution. The ATP (Adenosine triphosphate) content test showed that the ATP content of pPolyHb+HCA group was significantly higher than the control group (UW group and HCA group). Blood gas analysis results indicated that the pH value of PolyHb+HCA solution maintained normal level all the time; the change of ΔHCO3-(HCO3-value) was significantly higher than the control groups; the content of Lac (Lactate) was significantly lower than the control groups. These results demonstrated that the pPolyHb could notably improve the preservation effects for small intestine, and also prompted to improve the oxygen supply of small intestine tissue as to optimize its preservation in vitro.
     Hemorrhagic shock is a pathologic state in which intravascular volume and tissue oxygen delivery are impaired, leading to circulatory collapse and cellular ischemia. Resuscitation by the HBOCs is appealing in both restore intravascular volume and tissue oxygenation, without the limitations in the supply and immunomodulatory effects of packed red blood cells. In this study, we established a rat model of uncontrolled hemorrhagic shock resuscitation to verify the effectiveness of pPolyHb. Firstly, we have chosen five gradient concentrations to determine the minimum effective dose of pPolyHb, and then used it as the final concentration of experimental group to compare with other five resuscitation solutions for the effects on changes of hemodynamic values and blood gas results to verify the validity of pPolyHb.
     Physiological indicators showed that the blood pressure, heart rate, respiratory rate were restored to the base value after resuscitation by2.0g/kg pPolyHb or1.5g/kg pPolyHb with twice saline. The results indicated that the hemodynamics effects of these two groups were better than the lower concentration groups. The blood gas results indicated that the oxygen-carrying capacity of2g/kg pPolyHb group and1.5g/kg pPolyHb group were better than that of low concentration group, and acid-base balance were also slightly better than the lower concentration groups. Meanwhile, the indicators of electrolyte balance and anaerobic metabolism had no significant difference among the five concentration groups. The survival rates of2.0g/kg and1.5g/kg pPolyHb group within72hours were100%, much higher than those of low concentration groups. Therefore,1.5g/kg pPolyHb was chosen as the minimum effective dose.
     Next, the1.5g/kg pPolyHb was compared with other five resuscitation fluids to verify the effectiveness. The physiological datum showed that the1.5g/kg pPolyHb and autologous blood group had better recovery effect than the other resuscitation fluids. The blood gas results notified that the1.5g/kg pPolyHb and autologous blood group showed a better capacity to carry oxygen and balance acid-base. Many of the blood gas indicators in1.5g/kg pPolyHb were significantly better than the negative control. The electrolyte balance datum were similar among each group, while the anaerobic metabolism index of the pPolyHb group, the AB (Autologous Blood) group and RBC (Red Blood Cell) group had shown obvious superiority.
     The survival rates of1.5g/kg pPolyHb and AB group were100%, higher than other liquid recovery groups. Rat pathological anatomic analysis results showed that the oxygen-carrying resuscitation liquid (1.5g/kg pPolyHb group, the AB group and RBC group) provided better tissue integrity than other three groups in heart, lung and liver.
     Conclusion:(1) The pPolyHb could maintain the aerobic respiration of organization and prevent anaerobic metabolism, which could be considered as an effective oxygen therapeutic agent in the small intestine preservation solution in vitro;(2) The pPolyHb, as an oxygen therapeutic agent could resuscitate the hemorrhagic shock rats effectively, which implies its possible clinical application in hemorrhagic shocktherapy.(3) The results of this study provided evidence for new selection of clinical indication for the pPolyHb.
引文
[1]Perutz MF. Stereochemical mechanism of oxygen transport by haemoglobin[J]. Proc R Soc Lond B Biol Sci.1980,208 (1171):135-62.
    [2]Perutz MF. Myoglobin and haemoglobin:role of distal residues in reactions with haem ligands[J]. Trends Biochem Sci.1989,14 (2):42-4.
    [3]Chang TM, Hemoglobin-based red blood cell substitutes[J]. Artif Organs.2004.28 (9):789-94.
    [4]张浩,毛秉智,王全立.提高血红蛋白四聚体稳定性的研究进展[J].中国输血杂志.2000.13(1):48-50.
    [5]Kenneth S, Kroeger, Xrai E, et al. Structures of a hemoglobin-based blood substitute: insights into the function of allosteric proteins[J]. Structure.1997,5:227-237.
    [6]Mark T, Gladwin, Patel R, et al. Serial Review:Biomedical Implications for Hemoglobin Interactions with Nitric Oxide[J]. Free Radical Biology & Medicine.2004. 36 (6):707-17.
    [7]Natio YK. An improved perflourodecalin emulision. In:GA Jamieson, TJ Greenwalt,eds. Blood Substitutes and Plasma Expanders [W],New York:Alan R Liss Inc.1978:p 81.
    [8]Clark LC, Gollan F. Survival of mammals breathing organic liquids equilibrated with oxygen at atmospheric pressure[J]. Science.1966,152 (3730):1755-6.
    [9]Sloviter HA, Kamimoto T. Erythrocyte substitute for perfusion of brain[J]. Nature.1967. 216 (5114):458-60.
    [10]Spence RK, McCoy S, Costabile J. Fluosol DA-20 in the treatment of severe anemia: randomized controlled study of 46 patients[J]. Crit Care Med.1990,18:1227-1230.
    [11]Millo KD. Role of the perfluorocarbon Fluosol-DA20 in coronary angioplasty[J]. Am J Med Sci.1994,307:218-21.
    [12]Lattes A, Rico-Lattes. LMicro-emulsions of fluorocarbon-based products for use in medicine and biology [J]. Artifical Cells Blood Substitute Immobil Biotechnol.1994,22 (4):1007-11.
    [13]Rachild JG. Oxygen carriers (blood substitutes) Raison deter chemistry, and some physiology[J]. Chem. Rev.2001,101:2797-920.
    [14]Papadimitriou DK, Pitoulias GA, Kotakidou RE, Prolongation of the intestinal viability using oxygenated perfluorocarbon in an experimental model of acute intestinal ischemia[J]. Eur J Vase Endovasc Surg.2004,28 (6):636-41.
    [15]James ES. Artificial Blood[J]. Science.2002,295:1002-1005.
    [16]Sun TM. Chang, Blood Substitutes:Principles, Methods, Products and Clinical Trials[J]. Basel:Karger.1997,24 (1):68-71.
    [17]Hess JR, Update on alternative oxygen carriers[J]. Vox Sang.2004,87 Suppl 2:132-5.
    [18]Meisner FG, Kemming GI, Habler OP, et al. Diaspirin crosslinked hemoglobin enables extreme hemodilution beyond the critical hematocrit[J] Crit Care Med.2001,29 (4):829-38.
    [19]Cole DJ, Schell RM, Drummond JC. Focal cerebral ischemia in rats. Effect of hypervolemic hemodilution with diaspirin cross-linked hemoglobin versus albumin on brain injury and edema[J]. Anesthesiology.1993,78 (2):335-42.
    [20]Sloan EP, Koenigsberg M, Gens D, et al. Diaspirin cross-linked hemoglobin (DCLHb) in the treatment of severe traumatic hemorrhagic shock:a randomized controlled efficacy trial[J]. Jama.1999.282 (19):1857-64.
    [21]Saxena R, Wijnhoud AD, Carton H, et al. Controlled safety study of a hemoglobin-based oxygen carrier, DCLHb, in acute ischemic stroke[J]. Stroke.1999,30 (5):993-6.
    [22]Schubert A, Przybelski RJ, Eidt JF, et al. Diaspirin-crosslinked hemoglobin reduces blood transfusion in noncardiac surgery:a multicenter, randomized, controlled, double-blinded trial[J]. Anesth Analg,2003,97 (2):323-32.
    [23]Lamy ML, Daily EK, Brichant JF, et al. Randomized trial of diaspirin cross-linked hemoglobin solution as an alternative to blood transfusion after cardiac surgery. The DCLHb Cardiac Surgery Trial Collaborative Group[J]. Anesthesiology.2000,92 (3):646-56.
    [24]LaMuraglia GM, O'Hara PJ. Vandermeersch, The reduction of the allogenic transfusion requirement in aortic surgery with a hemoglobin-based solution [J]. J Vasc Surg.2000, 31 (2):299-308.
    [25]Sprung J, Kindscher JD, Wahr JA, et al. The use of bovine hemoglobin glutamer-250 (Hemopure) in surgical patients:results of a multicenter, randomized, single-blinded trial[J].Anesth Analg.2002,94 (4):799-808.
    [26]Levy JH, Goodnough LT, Greilich PE, et al. Polymerized bovine hemoglobin solution as a replacement for allogeneic red blood cell transfusion after cardiac surgery:results of a randomized, double-blind trial[J]. J Thorac Cardiovasc Surg.2002,124 (1):35-42.
    [27]Jahr JS, Mackenzie C. HBOC-201 as an alternative to blood transfusion:efficacy and safety evaluation in a multicenter phase Ⅲ trial in elective orthopedic surgery [J]. J Trauma.2008,64 (6):1484-97.
    [28]Jahr, JS, Moallempour M, et al. HBOC-201, hemoglobin glutamer-250 (bovine), Hemopure (Biopure Corporation) [J]. Expert Opin Biol Ther.2008,8(9):1425-33.
    [29]Gould SA, Moore EE. The first randomized trial of human polymerized hemoglobin as a blood substitute in acute trauma and emergent surgery[J]. J Am Coll Surg,1998.187(2): 113-20.
    [30]Gould SA, Moore EE, Moss. The life-sustaining capacity of human polymerized hemoglobin when red cells might be unavailable [J]. J Am Coll Surg,2002.195 (4):445-52.
    [31]Gould SA, Moore EE, et al. Clinical utility of human polymerized hemoglobin as a blood substitute after acute trauma and urgent surgery [J]. J Trauma,1997.43 (2):325-31.
    [32]Johnson JL, Moore EE, Gonzalez RJ, et al. Alteration of the postinjury hyperinflammatory response by means of resuscitation with a red cell substitute [J]. J Trauma,2003.54 (1):133-9.
    [33]Moore EE, Moore FA, Fabian TC, et al. Human polymerized hemoglobin for the treatment of hemorrhagic shock when blood is unavailable:the USA multicenter trial[J]. J Am Coll Surg,2009.208 (1):1-13.
    [34]Vandegriff KD, Malavalli A, Wooldridge J, et al. MP4, a new nonvasoactive PEG-Hb conjugate[J]. Transfusion,2003.43 (4):509-16.
    [35]Cabrales P, Tsai AG, Intaglietta M. Balance between vasoconstriction and enhanced oxygen delivery[J]. Transfusion,2008.48 (10):2087-95.
    [36]Winslow RM, Targeted 02 delivery by Iow-p50 hemoglobin:a new basis for hemoglobin-based oxygen carriers[J]. Artif Cells Blood Substit Immobil Biotechnol, 2005.33 (1):1-12.
    [37]Young MA, Riddez L, Kjellstrom BT, et al. MalPEG-hemoglobin (MP4) improves hemodynamics, acid-base status, and survival after uncontrolled hemorrhage in anesthetized swine[J]. Crit Care Med,2005.33 (8):1794-804.
    [38]Olofsson C, Ahl T, Johansson T, et al. A multicenter clinical study of the safety and activity of maleimide-polyethylene glycol-modified Hemoglobin (Hemospan) in patients undergoing major orthopedic surgery[J]. Anesthesiology,2006.105 (6):1153-63.
    [39]Olofsson CI, Gorecki AZ. Evaluation of MP4OX for prevention of perioperative hypotension in patients undergoing primary hip arthroplasty with spinal anesthesia:a randomized, double-blind, multicenter study[J]. Anesthesiology,2011.114(5):1048-63.
    [40]van der Linden P, Gazdzik TS, Jahoda RJ, et al. A double-blind, randomized, multicenter study of MP4OX for treatment of perioperative hypotension in patients undergoing primary hip arthroplasty under spinal anesthesia[J]. Anesth Analg,2011.112(4):759-73.
    [41]Rother RP, Bell L, Hillmen P, et al. The clinical sequelae of intravascular hemolysis and extracellular plasma hemoglobin:a novel mechanism of human disease[J]. J Am Med Assoc 2005,293:1653-62.
    [42]Amberson WR, Mulder AG, Steggerda FR, et al. Mammalian life without red blood corpuscles[J]. Science 1933,78:106-7.
    [43]Urbaitis BK, Razynska A, Corteza Q, et al. Intravascular retention and renal handling of puri?ed natural and intramolecularly cross-linked hemoglobins[J]. J Lab Clin Med 1991, 117:115-21.
    [44]Wallis JP. Nitric oxide and blood:a review[J]. Transfus Med 2005,15:1-11.
    [45]Buehler PW, Alayash Al. All hemoglobin-based oxygen carriers are not created equally[J]. Biochim Biophys Acta 2008,1784:1378-81.
    [46]Doherty DH, Doyle MP, Curry SR, et al. Rate of reaction with nitric oxide determines the hypertensive effect of cell-free hemoglobin[J]. Nat Biotechnol 1998,16:672-6.
    [47]Olson JS, Foley EW, Rogge C, et al. No scavenging and the hypertensive effect of hemoglobin-based blood substitutes[J]. Free Radic Biol Med 2004,36:685-97.
    [48]Winslow RM. Cell-free oxygen carriers:scientific foundations, clinical development, and new directions[J]. Biochim Biophys Acta 2008,1784:1382-6.
    [49]Rohlfs RJ, Bruner E, Chiu A, et al. Arterial blood pressure responses to cell-free hemoglobin solutions and the reaction with nitric oxide[J]. J Biol Chem.1998, 273:12128-34.
    [50]Lindbom L, Tuma RF, Arfors KE. Influence of oxygen on perfused capillary density and capillary red cell velocity in rabbit skeletal muscle[J]. Microvasc Res 1980,19:197-208.
    [51]McCarthy MR, Vandegriff KD, Winslow RM. The role of facilitated diffusion in oxygen transport by cell-free hemoglobins:implications for the design of hemoglobin-based oxygen carriers[J]. Biophys Chem 2001,92:103-17.
    [52]Gaucher-Di Stasio C, Paternotte E, Prin-Mathieu C, et al. The importance of the effect of shear stress on endothelial cells in determining the performance of hemoglobin based oxygen carriers[J]. Biomaterials 2009,30:445-51.
    [53]Wettstein R, Tsai AG, Erni D. Intaglietta M. Resuscitation with polyethylene glycol-modified human hemoglobin improves microcirculatory blood flow and tissue oxygenation after hemorrhagic shock in awake hamsters[J]. Crit Care Med 2003, 31:1824-30.
    [54]Creteur J, Vincent JL. Potential uses of hemoglobin-based oxygen carriers in critical care medicine[J]. Crit Care Clin 2009,25:311-24.
    [55]Gomez-Jimenez J, Salgado A, Mourelle M, et al.1-Arginine:nitric oxide pathway in endotoxemia and human septic shock[J]. Crit Care Med 1995,23:253-8.
    [56]Schafer A, Wiesmann F, Neubauer S, et al. Rapid regulation of platelet activation in vivo by nitric oxide[J]. Circulation.2004,109:1819-22.
    [57]Natanson C, Kern SJ, Lurie P, et al. Cell-free hemoglobin-based blood substitutes and risk of myocardial infarction and death:a meta-analysis[J]. J Am Med Assoc 2008, 299:2304-12.
    [58]Silverman TA, Weiskopf RB. Hemoglobin-based oxygen carriers:current status and future directions[J]. Anesthesiology 2009,111:946-63.
    [59]Napolitano LM. Hemoglobin-based oxygen carriers:Mrst, second or third generation? Human or bovine? Where are we now[J]? Crit Care Clin 2009,25:279-301.
    [60]Griffiths E, Cortes A, Gilbert N, et al.. Haemoglobin-based blood substitutes and sepsis[J]. Lancet 1995,345:158-60.
    [61]Polysol M. Bessems BM, Doorschodt S, et al. Machine Perfusion Preservation of the Pig Liver Using a New Preservation Solution[J] Transplantation Proceedings.2006,38, 1238-1242.
    [62]Schreinemachers BM. Doorschodt S. Florquin, et al. Improved Renal Function of Warm Ischemically Damaged Kidneys Using Polysol MCJM.[J] Transplantation Proceedings, 2009,41,32-35.
    [63]Shintaro Y, Benedict MD, Mamdouh A, et al. Improved Preservation and Microcirculation with POLYSOL After Partial Liver Transplantation in Rats[J]. Journal of Surgical Research.2011,167:e375-e383.
    [64]Schreinemachers FJ. Bemelman MM. Idu, et al. First Clinical Experience with Polysol Solution:Pilot Study in Living Kidney Transplantation MCJM[J]. Transplantation Proceedings.2013,45:38-45.
    [65]Zhu Y, Zhang S, Nomoto M. Vascularversus luminal flushing forpreservation of canine small bowel[J]. Transplant Proc,1994,26 (3):1721-1722.
    [66]Luther B, Wolff H, Lehman Cl. Results of the perfusion and preservation of canine and human small bowel transplanted[J]. Transplant Proc,1991,22 (1):435-436.
    [67]Gundlach M, Pohland C, Toennies S. Small bowel preservation:evaluation of different solutions[J]. Transplant Proc.1996,28 (5):2622-23.
    [68]Mueller HR, Nolesnik M, Platz KP. Evaluation of preservation and various solution for small bowel preservation[J]. Transplantation,1994.57 (5):649-655.
    [69]Mueller AR, Platz KP, Langreha JM. The effect of adminstration of nitric oxide inhibitors during small bowel preservation and reperfusion[J]. Transplantation,1994.58 (12):1309-1316.
    [70]Coats TJ. A Goode. Towards improving prehospital trauma care[J]. Lancet,2001.357 (9274):2070.
    [71]Mock C, Quansah R, Krishnan R, et al. Strengthening the prevention and care of injuries worldwide[J]. Lancet,2004.363 (9427):2172-9.
    [72]Murray CJ, Lopez AD. Alternative projections of mortality and disability by cause 1990-2020:Global Burden of Disease Study [J]. Lancet,1997.349 (9064):1498-504.
    [73]Harlak A, Can MF, Mentes O, et al. Does the type of resuscitative fluid affect healing of colonic anastomosis in experimentally induced hemorrhagic shock in rats[J]? Med Princ Pract,2009.18 (4):255-60.
    [74]Cabrales P, Tsai AG, Intaglietta M. Increased plasma viscosity prolongs microhemodynamic conditions during small volume resuscitation from hemorrhagic shock[J]. Resuscitation,2008.77 (3):379-86.
    [75]Alam HB, Rhee P. New developments in fluid resuscitation[J]. Surg Clin North Am, 2007.87 (1):55-72.
    [76]单闯.失血性休克的病理生理及治疗[J].现代实用医学,2002,14(11):620-622.
    [77]Carrico CJ, Holcomb JB, Chaudry IH. Scientific priorities and strategic planning for resuscitation research and life saving therapy following traumatic injury:report of the PULSE Trauma Work Group. Post Resuscitative and Initial Utility of Life Saving Efforts[J]. Shock,2002.17 (3):165-8.
    [78]Kane SK, MacCallum MJ, Friedrich AD. Resuscitation of the trauma patient[J]. Int Anesthesiol Clin,2007.45 (3):61-81.
    [79]Haas T, Fries D, Holz P. Less impairment of hemostasis and reduced blood loss in pigs after resuscitation from hemorrhagic shock using the small-volume concept with hypertonic saline/hydroxyethyl starch as compared to administration of 4% gelatin or 6 % hydroxyethyl starch solution[J]. Anesth Analg,2008.106 (4) 1078-86.
    [80]Rocha e Silva M, IT Velasco, et al. Hyperosmotic sodium salts reverse severe hemorrhagic shock:other solutes do not[J]. Am J Physiol,1987.253 (4 Pt 2):H751-62.
    [81]Koustova E, Stanton K, Gushchin V, et al. Effects of lactated Ringer's solutions on human leukocytes[J]. J Trauma,2002.52 (5):872-8.
    [82]中华医学会重症医学分会,低血容量休克复苏指南[M].中国实用外科杂志,2007.27(8):581-587.
    [83]Bunn FD. Trivedi. Colloid solutions for fluid resuscitation[J]. Cochrane Database Syst Rev,2012.7:CD001319.
    [84]卫生部合理用药专家委员会,中国医师药师临床用药指南[M].重庆出版社,2009:p.866-867.
    [85]庄心良,曾因明,陈伯銮.现代麻醉学.第3版[W].北京:人民卫生出版社,2003.311.
    [86]Tsujimura T, Salehi P, Walker J, et al. Ameliorating small bowel injury using a cavitary two-layer preservation method with perfluorocarbon and a nutrient-rich solution[J]. Am J Transplant,2004.4 (9):1421-8.
    [87]Ghanekar A, Grant D. Small bowel transplantation[J]. Curr Opin Crit Care,2001.7 (2):133-7.
    [88]Selvaggi G, Tzakis AG Small bowel transplantation:technical advances/updates[J]. Curr Opin Organ Transplant,2009.14 (3):262-6.
    [89]Wei L, Hata K. Experimental small bowel preservation using Polysol:a new alternative to University of Wisconsin solution, Celsior and histidine-tryptophan-ketoglutarate solution[J]? World J Gastroenterol,2007.13 (27):3684-91.
    [90]Yoshikawa T, Suzuki Y, Fujino Y, et al. Detailed analysis of mucosal restoration of the small intestine after the cavitary two-layer cold storage method[J]. Am J Transplant, 2005,5 (9):2135-42.
    [91]Li S, Suzuki Y, Fujino Y, et al. Successful 40-hour preservation of the canine small intestine with the cavitary 2-layer method with glutamine supplementation[J]. Surgery, 2006.139 (5):646-52.
    [92]Guimaraes FA, MO Taha, et al. Use of hyperbaric oxygenation in small bowel preservation for transplant[J]. Transplant Proc,2006.38 (6):1796-9.
    [93]Zhu H, K Yan, X Dang, et al. Immune safety evaluation of polymerized porcine hemoglobin (pPolyHb):a potential red blood cell substitute[J]. Artif Cells Blood Substit Immobil Biotechnol,2011.39 (6):398-405.
    [94]Zhu H, Dang X, Yan K, et al. Pharmacodynamic study of polymerized porcine hemoglobin (pPolyHb) in a rat model of exchange transfusion[J]. Artif Cells Blood Substit Immobil Biotechnol,2011.39 (3):119-26.
    [95]Chen HJ, Chen YC. Reactive nitrogen oxide species-induced post-translational modifications in human hemoglobin and the association with cigarette smoking[J]. Anal Chem.2004.84 (18):7881-90.
    [96]Kim H, Tanaka S, Une S, et al. A comparative study of the effects of glycerol and hydroxyethyl starch in canine red blood cell cryopreservation[J]. J Vet Med Sci.2004,66 (12):1543-7.
    [97]Fox AJ, Lalloo UG, Belvisi MG, et al. Bradykinin-evoked sensitization of airway sensory nerves:a mechanism for ACE-inhibitor cough[J]. Nat Med.1999.2 (7):814-7.
    [98]Fincher RK, Osgard EM, Jackson JL, et al. A comparison of bowel preparations for flexible sigmoidoscopy:oral magnesium citrate combined with oral bisacodyl, one hypertonic phosphate enema, or two hypertonic phosphate enemas[J]. Am J Gastroenterol.1999.94 (8):2122-7.
    [99]Fox AJ, Barnes PJ, Venkatesan P, et al. Activation of large conductance potassium channels inhibits the afferent and efferent function of airway sensory nerves in the guinea pig[J].J Clin Invest.1999.99 (3):513-9.
    [100]Testa G, Panaro F, Schena S, et al. Living related small bowel transplantation:donor surgical technique[J]. Ann Surg,2004.240 (5):779-84.
    [101]De Roover A, L de Leval, J Gilmaire, et al. A new model for human intestinal preservation:comparison of University of Wisconsin and Celsior preservation solutions[J]. Transplant Proc,2004,36 (2):270-2.
    [102]Abrahao M, Montero EF. Biochemical and morphological evaluation of ischemia-reperfusion injury in rat small bowel modulated by ischemic preconditioning[J]. Transplant Proc,2004.36 (4):860-2.
    [103]Tolba RH, Akbar S, Muller A, et al. Experimental liver preservation with Celsior:a novel alternative to University of Wisconsin and histidine-tryptophan-alpha-ketoglutarate solutions[J]? Eur Surg Res,2000.32 (3) 142-7.
    [104]Jacome DT, Abrahao MS, Morello RJ, et al. Different intervals of ischemic preconditioning on small bowel ischemia-reperfusion injury in rats[J]. Transplant Proc. 2009.41 (3):827-9.
    [105]Leuvenink HG, A van Dijk. Luminal preservation of rat small intestine with University of Wisconsin or Celsior solution. Transplant Proc[J],2005.37 (1):445-7.
    [106]Park PO, Haglund U, Bulkley GB, et al. The sequence of development of intestinal tissue injury after strangulation ischemia and reperfusion[J]. Surgery,1990.107 (5):574-80.
    [107]Woodrow P. Essential principles:blood gas analysis[J]. Nurs Crit Care,2010.15 (3) 152-6.
    [108]Varga J, Toth S, Stasko P, et al. Different ischemic preconditioning regimens affecting preservation injury of intestines[J]. Eur Surg Res.2011,46 (4):207-13.
    [109]Chien S, Zhang F, Niu W, et al. Comparison of university of Wisconsin, euro-collins, low-potassium dextran, and krebs-henseleit solutions for hypothermic lung preservation[J]. J Thorac Cardiovasc Surg,2000.119 (5):921-30.
    [110]O'Donnell KA, Caty MG. Oxygenated intraluminal perfluorocarbon protects intestinal muscosa from ischemia/reperfusion injury[J]. J Pediatr Surg,1997.32 (2):361-5.
    [111]St Peter SD, Imber CJ. Liver and kidney preservation by perfusion[J]. Lancet,2002.359 (9306):604-13.
    [112]Fujimoto K, Imamura I, Granger DN, et al. Histamine and histidine decarboxylase are correlated with mucosal repair in rat small intestine after ischemia-reperfusion[J]. J Clin Invest,1992.89 (1):126-33.
    [113]Nakamura Y, Yasumoto SK, Mitsuda H. Effect of excess L-histidine diet on active transport of L-histidine by isolated rat small intestine[J]. J Nutr,1972.102 (3):359-63.
    [114]Furuya S, Yugari Y. Daily rhythmic change of L-histidine and glucose absorptions in rat small intestine in vivo[J]. Biochim Biophys Acta,1974.343 (3):558-64.
    [115]Beattie GM, Crowe JH. Trehalose:a cryoprotectant that enhances recovery and preserves function of human pancreatic islets after long-term storage[J]. Diabetes,1997. 46 (3):519-23.
    [116]Cooper CA, Whittamore JM, Wilson RW. Ca2+-driven intestinal HCO (3) (-) secretion and CaCO3 precipitation in the European flounder in vivo:influences on acid-base regulation and blood gas transport [J]. Am J Physiol Regul Integr Comp Physiol,2010.298 (4):R870-6.
    [117]Isselhard W, Berger M, Denecke H, et al. Metabolism of canine kidneys in anaerobic ischemia and in aerobic ischemia by persufflation with gaseous oxygen[J]. Pflugers Arch,1972.337 (2):87-106.
    [118]Criteria for Safety and Efficacy Evaluation of Oxygen Therapeutics as Red Blood Cell Substitutes U.S. Department of Health and Human Services Food and Drug Administration Center for Biologics Evaluation and Research.October,2004.
    [119]Weiskopf RB, Silverman TA. Balancing potential risks and benefits of hemoglobin-based oxygen carriers[J]. Transfusion.2013,53 (10):2327-33.
    [120]Sakai H, Ng K, Li B, et al. Swine hemoglobin as a potential source of artificial oxygen carriers, hemoglobin-vesicles[J]. Artif Cells Nanomed Biotechnol.2013 41 (1):37-41.
    [121]Gao W, Sha B, Zou W, et al. Cationic amylose-encapsulated bovine hemoglobin as a nanosized oxygen carrier[J]. Biomaterials.2011 32 (35):9425-33.
    [122]Martin L.(著),辛建保(译).动脉血气分析:快速解读[M].中国医药科技出版社,2006.
    [123]Neumann M. Modern points on crvstalloid solution or colloid solution during resuscitation [J].Intens Crit Care Diges,1990.9 (1):p.3.