复杂背景下的红外弱小目标检测与跟踪技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
红外成像目标检测与跟踪系统是一种基于被动探测技术的光机电一体化系统,它具有隐蔽性好、抗干扰能力强等优点,被广泛地应用于红外告警和精确制导等武器装备系统中。在实际应用中,为了尽可能多地增加火控系统的预警时间、提高己方的安全系数,要求红外探测系统能够在尽可能远的距离捕捉到目标并获取目标的相关信息。然而,当目标距离较远时,目标在视场中是以小目标的形态出现的,并且信号微弱,以至被淹没在复杂的背景之中,导致目标检测跟踪非常困难。因此,如何在复杂背景条件下对红外弱小目标实施稳定的检测与跟踪成为当今一项高难的前沿研究技术。另一方面,随着目标机动性能的不断提高,在系统性能指标中,对弱小目标检测跟踪的实时实现也提出了更高的要求。可见,研究复杂背景条件下红外弱小目标检测跟踪算法及其实时实现技术,不仅具有重要的理论意义,而且具有重大的工程实用价值。
     作者在深入分析国内外红外弱小目标检测跟踪研究现状和研究进展的基础上,结合在研国防科研项目要求,提出了一套复杂背景条件下实时高效的红外弱小目标检测跟踪系统实现方案。由于复杂背景是影响弱小目标检测跟踪性能的重要因素,因此,若要稳定而可靠地对目标进行检测和跟踪,就必须首先对红外弱小目标图像进行有效的预处理。为此,本文以国防科研项目中可能遇到的几种复杂背景的图像预处理技术为切入点,同时对复杂背景下的弱小目标检测、机动目标跟踪以及系统的软硬件实现等关键技术进行了深入的研究,并提出了相应的技术方案,理论分析和实验结果均验证了其合理性和有效性。
     论文的研究工作及成果主要有:
     首先,针对不同类型的复杂背景,研究了几种相应的背景抑制算法。对于视场中存在灰度远大于目标的大面积云层背景的情况,提出了基于马尔可夫随机场模型的正则化背景抑制算法;为了有效抑制纹理结构复杂且强起伏的云层背景,提出了一种基于Facet小面图像模型双向扩散滤波的背景抑制算法;此外,为了提高系统的实时性能,设计了基于自适应差分量化理论的背景抑制方法,实现了在采集图像的同时,完成了背景抑制。实验结果表明,上述算法能够有效抑制多种情况的复杂背景,并且结构简单,实时性好,均可作为工程应用的备选方案。
     其次,经过背景抑制后,虽然图像的信噪比得到显著的提高,但仍有可能残留较强的背景,传统的目标检测算法难以快速而准确地从图像中检测出弱小目标。为此,本文设计了基于图像等高线图特征匹配的弱小目标检测算法。实验结果表明,该算法具有检测概率高、适用范围广、实时性好的优点。
     再次,由于实战中被探测的目标通常具有较高的机动性能,其运动模型具有很强的非线性,为了对该类目标实施快速而准确的跟踪,本文提出了一种多速率的交互式多模型卡尔曼粒子滤波快速跟踪算法。实验结果表明,该算法显著地改善了算法的运算量,并在一定程度上提高了跟踪精度,是一种具有工程实用价值的跟踪算法。
     最后,针对科研项目的具体性能指标要求,设计了一套基于FPGA与多DSP的高速并行图像处理硬件平台,实时地实现了上述红外弱小目标检测与跟踪算法。同时,为了便于扩展该硬件平台的功能,还为其设计了并行图像处理实时操作系统(Parallel Image Process Real Time Operation System, PIPRTOS),用于实现系统算法软件的分布式处理。原理样机的外场实验表明,该系统不仅可实时地运行上述红外弱小目标检测与跟踪算法,而且具有良好的稳定性和可扩展性。
     所研究的算法和硬件平台已组装成了“复杂背景下红外弱小目标检测与跟踪技术”原理样机,并在某机场进行了多次外场实验,其功能和性能均达到了设计要求,验证了我们所研究的软硬件方案的正确性和有效性。
Infrared imaging targets detection and tracking system is an optical mechanical and electronic integration system based on passive detection technology, which has the advantage of self-hiding, and strong capacity of resisting disturbance. It’s widely applied in infrared warning and precision-guided weapons systems. In the actual application, in order to increase the early warning time of the fire control system (FCS) and enhance the safety factor of our own side, infrared detection system is required to capture the targets and obtain relevant information at far range from the detector as much as possible. However, the longer the distance of targets, the less the imaging area of targets and weaker the targets' signal will be. Therefore, the targets may be submerged into background. So, the question that how weak small targets can be steadily detected and tracked under complex background has become the forefront and highly difficult techniques. On the other hand, as the mobility of targets grow, the further development of the real-time implementation of weak small targets detection and tracking is necessary. Therefore, researches on infrared weak small targets detection, tracking technology and its real-time implementation technology under complex backgrounds have great significance both theoretically and practically.
     Based on thorough study on the present state and the latest progress of weak small targets detection, combining with our research projects, an implementation scheme of weak small targets detection and tracking system under complex background is designed. The key technologies in target detection, maneuvering targets, implementation of hardware and software are studied deeply to the point of developing effective weak small targets detection and tracking project under complex background. As a result, a series of suitable technologies whose feasibility and effectiveness have been verified by practice have been put forward.
     The main contributions of this dissertation are as follows:
     Firstly, aiming at different types of complex background, several kinds of background suppression algorithms are proposed. For the case that the field of view contains highlighted and large area background, a novel markov random field (MRF) based adaptive regularizing filtering algorithm is proposed. To effectively suppress strong undulant background with complex texture, a new filtering method based on cubic fact image model and bidirectional diffusion is introduced. Besides, to improve the real-time capability of the system, a new background suppression method which is based on adaptive differencing quantization and can accomplish image acquisition and background suppression simultaneouly is proposed. Experiment results indicate that the image pre-processing algorithms can efficiently suppress the complex background with the advantage of its logical structure simple to be implemented in real-time system.
     Secondly, benefit from background suppression process, is that the signal-to-noise ratio (SNR) of the images is improved to some degree. However some residual background still exits, as a consequence, traditional targets detection algorithms have some difficulties in detecting accurately and fast. So, a fast detection algorithm for small targets based on iso-elevation contour map (IECM) feature matching is designed. Theoretical analysis and experiment results show that this method can provide good detection performance and promote the real time capacity.
     Thirdly, since the actual targets usually have high maneuverability, which have strong non-linear motion equation, a fast tracking method focusing on the purpose of tracking this type of targets fast and accurately, which is based on multi-rate interacting multiple model (IMM) algorithm, is proposed. Experiment results show that the algorithm significantly reduces the computational complexity and improves tracking accuracy to some extent, which has practical value in engineering.
     Lastly, aiming at the performance indicators of research project, a high-speed and parallel image signal processing system based on FPGA and multi DSP is presented, which can detect and track small targets in real-time. Meanwhile, to facilitate expanding the functions of system, parallel image process real time operation system (PIPRTOS) is designed for this hardware platform to accomplish the distributed processing of the software. Experiment results show that the system can not only detect and track small targets in real-time, but also have good stability and scalability.
     The proposed algorithms and hardware platform have been assembled into“infrared small targets detection and tracking technology”principle prototype, and several prototype field experiments has been done in certain airports. Experiment results show that the function and performance of the system have met the design requirement, which verifies the accuracy and effectiveness of proposed hardware and software programs.
引文
[1] Liviu I V, Ron P, Harley R M. Detection Performance Prediction on IR Images Assisted by Evolutionary Learning[J]. SPIE, 1999, 3699: 282-292.
    [2] ChaPPle P B,Bertilone D C,Caprari R S,et al. Target Detection in Infrared and SAR Terrain Images Using a Non-Gaussian Stochastic Model[J]. SPIE, 1999, 3699: 122-132.
    [3] Wang J, Cohen P, Herniou M. Camera Calibration with Distortion Models and Accuracy Evaluation[J]. IEEE Trans On PAMI, 1992, 14(10): 965-980.
    [4] Wang D, Wang L. Global Motion Parameters Estimation Using a Fast and Robust Algorithm[J]. IEEE Trans On Circuits and Systems for Videl Technology, 1997, 7(5): 823-826.
    [5] Hilliard C I. Selection of a Clutter Rejuection Algorithm for Real-Time Target Detection from an Airborne Platform[J]. SPIE, 2000, 4048: 74-84.
    [6]武斌,姬红兵,李鹏.基于三阶累积量的红外弱小运动目标检测新方法[J].红外与毫米波学报, 2006, 25(5): 364-367.
    [7] Wu Bin, Ji Hong-bing. A novle Algorithm for Point-Target Detection Based on Third-Order Cumulant in Infrared Image[C]. ICSP Proceedings, 2006, 16-20.
    [8] Xiong Yan, Peng Jiaxiong. An Effective Method for Trajectory Detection of Moving Pixel-sized Target[C]. Proceed of IEEE Inter Confer on Systems, Man and Cybernetics, Vancouver, Canada, 1995, 3:2570-2575.
    [9]陈颖.序列图像中微弱点状运动目标检测及跟踪技术研究[D].成都:电子科技大学博士学位论文. 2003.
    [10] Pohlig S C, Spatial-Temporal Deteetion of Electro-Optic Moving Targets[J]. IEEE Trans on Aerospace and Electronic System, 1995, 31(2): 608-616.
    [11]艾斯卡尔.红外搜寻与跟踪系统关键技术研究[D].成都:电子科技大学博士学位论文. 2003.
    [12] Boaz Porat, Benjamin Friedlander. A Frequency Domain Algorithm for Multi-Frame Detection and Estimation of Dim Targets[J]. IEEE Trans On Pattern Analysis and Machine Intelliqence, 1990, 12(4): 398-401.
    [13] L Yang, J Yang, K Yang. Adaptive detection for infrared small target under sea-sky complex background [J]. Electronics letters, 2004, 40(17): 1083-1085.
    [14] Thayaparan T, Kennedy S. Detection of a Maneuvering Air Target in Sea-ClutterUsing Joint Time-Frequency Analysis Techniques[J]. IEE Processings, Radar, Sonar and Navigation, 2004, 151(1):19-30.
    [15] Chapa J Q, Rao R M. Algorithms for Designing Wavelets to mathc a specified signal[J]. IEEE Trans On Signal Processing, 2000, 48(12): 3395-3406.
    [16] Daubechies I. The Wavelet Transform, Time-Frequency Localization and Signal Analysis[J]. IEEE Trans On Information Theory, 1990, 36(5): 961-1005.
    [17] D P Cassent, J S Smokelin, A Ye. Wavelet and Gabor Tranforms for Detection and Recovery[J]. Optical Engineering, 1992, 31: 1893-1898.
    [18] R N Strickland, H I Hahn. Wavelet Transform Methods for Object Detection and Recovery[J]. IEEE Trans On Image Processing, 1997, 6(5): 724:735.
    [19] D Daviesy, P Palmery, M Mirmehdiz. Detection and Tracking of Very Small Low Contrast Objects[C]. British Machine Vision Conference, 2001, 599-608.
    [20] Sun Yuqiu, Tian Jinwen, Liu Jian. Background Suppression Based-on Wavelet Transformation to Detect Infrared Target[C]. Prceedings of 4th Conference on Machine Learning and Cybernetics, 2005, Guangzhou, 18-21.
    [21]刘瑞明,刘尔琦,杨杰,等.核Fukunage-Koontz变换检测红外弱小目标[J].红外与毫米波学报, 2008, 27(1): 47-51.
    [22] Yong Yang, Yang Xinfang, Wang Bingxun, et al. A Small Target Detection Method Based on Generalized S-Transform[C]. International Conference on Apperceiving Computing and Intelliqence Analysis, 2008: 189-192.
    [23] Ffrench P A, Zeidler J H, Ku W H. Enhanced detectability of small objects in correlated clutter using an improved 2-D adaptive lattice algorithm[J]. IEEE Transactions on Image Processing, 1997, 6(3): 383-397.
    [24] ZHANG Bi-yin, ZHANG Tian-xu, CAO Zhi-guo, et al. Fast new small-target detection algorithm based on a modified partial differential equation in infrared clutter [J]. Optical Engineering, 2007, 46(10): 106401-1.
    [25] Barnett J. Statistical analysis of median subtraction filtering with application to point target detection in inrfared background[J]. Proc. SPIE. 1989, 1050: 10-18.
    [26]杨卫平,沈振康.红外图像序列小目标检测预处理技术[J].红外与激光工程, 1998, 27(l): 23-28.
    [27]杨卫平,沈振康.红外图像序列小目标检测预处理技术[J].红外与激光工程, 1998, 27(1): 23-28.
    [28] Gonzalez R C, Woods R E. Ditical Image Processing, 2nd Edition[M]. USA: Prentice Hall, 2003.
    [29] Ffrench P A, Zeidler J H, Ku W H. Enhanced detectability of small objects incorrelated clutter using an improved 2-D adaptive lattice algorithm[J]. IEEE Transactions on Image Processing, 1997, 6(3):383-397.
    [30] Fan H, Wen C. Two-dimensional adaptive filtering based on projection algorithm[J]. IEEE Trans on Signal Proeessing, 2004, 52(3): 832-838.
    [31] P Wang, J W Tian, Ch Q Gao. Infrared Small Target Detection Using Directional Highpass Filters based on LS-SVM[J]. Electronics Letters, 2009, 45(3): 156-158.
    [32] French P A. Enhanced Detect Ability of Small Objects in Correlated Clutter Using an Improved 2-D Adaptive Lattice Algorithm[J]. IEEE Trans on Image Processing, 1997,6(3): 383-397.
    [33] Youlal H, Janati M, Najim M. Two-Dimensional Joint Process Lattices for Adaptive Restoration of Images[J]. IEEE Trans on Image Processing, 1992, 1(3): 366-378.
    [34] Azimi Sadjadi M R. Estimation and Identification for 2-D block Kalman Filtering[J]. IEEE Trans On Signal Processing, 1991, 39(8): 1885-1889.
    [35] Sang Hongshi, Shen Xubang, Chen Chaoyang. Architecture of a Configurable 2-D Adaptive Filter Used of Small Object Detection and Digital Image Processing[J]. Optical Eng, 2003, 43(8): 2182-2198.
    [36]聂洪山,沈振康.一种基于Winer滤波的红外背景抑制方法[J].国防科技大学学报, 2003, 25(3): 51-54.
    [37]宗思光,王江安,陈启水.海空复杂背景下红外弱点目标检测新算法[J].光电工程, 2005, 32(4): 9-12.
    [38]马治国,王江安,宗思光.海天线附近红外弱点目标检测算法研究[J].激光与红外, 2004, 34(5): 389-394.
    [39]张必银,张天序,桑农,等.红外弱小运动目标实时检测的规整化滤波方法[J].红外与毫米波学报, 2008, 27(2): 95-100.
    [40] ZHANG Binyin, ZHANG Tianxu, CAO Zhiguo. Fast New Small-Target Detection Algorithm based on a Modified Partial Differential Equation in Infrared Clutter[J]. Optical Engineering, 2007, 46(10): 106401 1-6.
    [41] WANG Yanhua, LIU Weining. Dim Target Enhancement Algorithm for Low-Constrast Image based on Anisotropic Diffusion[J]. Opto-Electronic Engineering, 2008, 35(6): 15-19.
    [42] Ostu N. A Threshold Selection Method from Gray-Level Histogram[J]. IEEE Trans. On Systems, Man And Cybernetics, 1979, 9(1): 62-66.
    [43] Beghdadi A, Negrate AL, Lesegno P V. Entropic Thresholding Using a Block Soure Model[J]. Computer Model Image Process, 1995, 57: 197-205.
    [44] Chang C I, Chen K, Wang J, et al. A Relative Entropy-Based Approach to Image Thresholding[J]. Pattern Recognition, 1993, 120: 215-227.
    [45] Stanley Osher, Leonid I Rudin. Feature-oriented image enhancement using shockfilters[J]. SIAM Journal on Numerical Analysis, 1990, 27(4): 919-940.
    [46] Pietro Perona, Jitendra Malik. Scale-space and edge detection using anisotropic diffusion[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,1990, 12(7): 629-639.
    [47] Zhu Fengyun, Qin Shiyin. A Detection Alogrithm for Maneuvering IR Point Target and Its Performance Evaluation[C]. International Coference on Machatronic and Embedded System and Application, 2006: 1-5.
    [48] Wang G D, Chen C Y, Shen X B. Facet-Based Infrared Small Target Detection Method[J]. 2005, 41(22): 1244-1246.
    [49] Zheng Shen, Xiong Chengyi, Tian Jinwen, et al. One Efficient Facet-based Small Target Detection Technigue[J]. 2004, International Conference On Signal Processing, 2004, 1: 885-888.
    [50]刘松涛,杨绍清.基于元胞自动机的红外弱小目标图像分割[J].红外与毫米波学报, 2008, 27(1): 42-46.
    [51] Cao Lanying. An Unsupervised Target Detection Algorithm in SAR Images[J]. Conference on Synthetic Aperture Radar, 2007: 529-532.
    [52] Leung H, Dubash N, Xie N. Detection of Small Objects in Clutter Using a Ga-RBF Neural Network[J]. IEEE Trans. On Aerospace and Electronic Systems, 2002, 38(1): 98-118.
    [53]王广君,田金文,柳健.基于局部熵的红外图像小目标检测[J].红外与激光工程, 2000, 29(4): 26-29.
    [54] Diani M, Corsini G, Baldacci A. Space-Time Processing for the Detection of ariborne Targets in IR Image Squences[J]. IEE Processing on Vision, Image Signal Processing, 2001, 148(3): 151-157.
    [55] Wang Shaolin, Zheng Xiaosong. Hough Transform: It’s Application to the Linearly Moving Point Targets Detection[C], International Cofference on Speech, Image Processing and Nerual Networks, 1994: 795-797.
    [56] Chu P L. Optimal Projection for Multidimensional Signal Detection[J]. IEEE Transactions on Acoustics, 1988, 88(9): 2797-2800.
    [57] Cheung J F Y, Wicks M C, Genello G J, et al. Statistical Theory for Optimal Detection of Moving Objects in Variable Corruptive Noise[J]. IEEE Trans. On Image Processing, 1999, 8(12): 1772-1787.
    [58] Choi J, Jang J, Lee Sl, et al. Multiple Moving Object Estimation in Image Sequences of Natural Scene[J]. Optical Engineering, 1997, 36(8): 2176-2183.
    [59] Roth M W. Neural Networks for Exaction of Weak Targets in High Clutter Environments[J]. IEEE Trans. On Systems, Man and Cybernetics, 1989, 19: 763-782.
    [60] Thompson W B, Mutch K M, Berzins Z A. Detecting Moving Objects Using the Rigidity Constraint[J]. IEEE Trans. on Pattern Analysis and Machine Intelligence, 1993, 15: 162-166.
    [61] Nichols S A, Naylor R B. Reliable Motion Detection of Small Targets in Video with Low Signal-to-Clutter Ratios[J]. SPIE, 1995, 2561: 168-177.
    [62] Reed I S, Gagliardi R M, Stotts L. Optical Moving Target Detection with 3-D Match Filtering[J]. IEEE Trans. on Aeros. Electron. Sys., 1998, 24(4): 327-336.
    [63] Blostein S D, Huang T S. Detecting Small Moving Objects in Image Sequences Using Sequential Hypothesis Testing[J]. IEEE Trans on Signal Processing, 1991, 39(7): 1611-1629.
    [64] Blostein S D, Richardson H S. A Sequential Detection Approach to Target Tracking[J]. IEEE Trans on AES, 1994, 30(1): 197-211.
    [65] Barniv Y. Dynamic Programming Solution for Detecting Dim Moving Targets[J]. IEEE Trans on AES, 1985, 21(1): 144-156.
    [66] Liou R, Azimi Sadjadi M R. Detection of Dim Target in High Cluttered Background Using High Order Correlation Method[J]. IEEE Trans on Aerospace and Electronic System, 1993, 28(3): 841-856.
    [67] Liou R, Azimi Sadjadi M R. Dim Target Detection Using High Order Correlation Method[J]. IEEE Trans on Aerospace and Electronic System , 1994, 29(1): 197-212.
    [68] D J C Andrew, et al. Inexact Graph Matching Using Genetic Search[J]. Pattern Recognition, 1997, 30(7): 953-970.
    [69] Roth M W. Neural Network for Extraction of Weak Target in High Clutter Environments[J]. IEEE Trans. on Sys. Man. Cyber., 1989, 19(5): 1210-1217.
    [70] Bronskill J F, et al. A Knowledge-Based Approach to the Detection, Tracking and Classification of Target Formations in Infrared Image Sequences[C]. IEEE Conference on CVPR, 1989: 153-158.
    [71] Irani M, Anandan P. A Unified Approach to Moving Object Detection in 2D and 3D Scences[J]. IEEE Trans on Pattern Analysis and Machine Intelligence, 1998, 20(6): 577-589.
    [72]艾斯卡尔.红外搜索与跟踪系统关键技术研究[D].成都:电子科技大学博士学位论文, 2002.
    [73]杨磊.复杂背景条件下的红外弱小目标检测与跟踪算法研究[D].武汉:华中科技大学博士论文, 2006.
    [74]徐军.红外图像中弱小目标检测技术研究[D].西安:西安电子科技大学博士学位论文. 2001.
    [75] Salmond D. Target Tracking: Introduction and Kalman Tracking Filters[C]. Target Tracking: Algorithms and Applications, IEE, 2001, 2: 1/1-1/6.
    [76] PachterM, Chandler P R. Universal Linearization Concept for Extended Kalman Filters[J]. IEEE Trans on Aerospace and Electronic Systems, 1993, 29(3): 946-961.
    [77] Song T L, Speyer J L. A Stochastic Analysis of a Modified Gain Extended Kalman Filter with Application to Estimation with Bearing-Only Measurements[J]. IEEE Trans. on Automatic Control, 1985, 30(10): 940-949.
    [78]康健,司锡才.被动定位跟踪中的非线性滤波技术[J].系统工程与电子技术, 2004, 26(2): 160-162.
    [79] Almasi A. Gravity measurement from moving platform by second order Kalman Filter and position and velocity corrections[C]. IEEE International Conference on Mechatronics, 2009: 1-6.
    [80] Boers Y, Driessen J N. Interacting Multiple Model Particle Filter[J]. IEE Proc. Radar Sonar Navig., 2003, 150(5): 344-349.
    [81] Blom H A P, Bloem E A. Particle Filtering for Stochastic Hybrid Systems[C]. 43rd IEEE Conference on Decision and Control, 2004, 3: 3221-3226.
    [82] Morelande M R, Challa S. Maneuvering Target Tracking in Clutter Using Particle Filters[J]. IEEE Trans. on Aerospace and Electronic Systems, 2005, 41(1): 252-270.
    [83] Gordon N, Salmond D, Smith A. Novel Approach to Non-Linear Non-Gaussian Bayesian State Estimation[J]. IEE Proceedings F, 1993, 140(2): 107-113.
    [84] A Rulampalam S, Maskell S. A Tutorial on Particle Filters for Nnline Non-Linear / Non-Gaussian Bayesian Tracking[J]. IEEE Trans. of Signal Processing, 2002, 50(2): 174-188.
    [85] Blom H A P, Bar-Shalom Y. The Interacting Multiple Model Algorithm for Systems with Markovian Switching Coefficients[J]. IEEE Trans on Automatic Control, 1988, 33(8): 780-783.
    [86] Mazor E, Averbuch A, Bar-shalom Y, et al. Interacting Multiple Model Methods inTarget Tracking: A survey[J]. IEEE Trans. on Aerospace and Electronic Systems, 1998, 34(1): 103-122.
    [87] Hong L, Cui N, Bakich M, et al. Multirate Interacting Multiple Model Particle Filter for Terrain-Based Ground Target Tracking[J]. IEE Proceedings on Control Theory and Applications, 2006, 153(6): 721-731.
    [88] Hong L, Cong S, Wicker D. Multirate Interacting Multiple Model (MRIMM) Filtering with Out-of-Sequence GMTI Data[J]. IEE Proceedings on Radar Sonar Navig., 2003, 150(5): 333-343.第二章参考文献
    [89] Taratakovsky A, Blazek R. Effective Adaptive Spatial-Temporal Technique for Clutter Rejection in IRST[J]. SPIE Proceedings on Signal and Data Processing of Small Target, 2000, 4048: 1-11.
    [90] Comaniciu D. An algorithm for data-driven bandwidth selection, IEEE Trans. Patt. Analy. Mach. Intell., 25(2):603-619, 2003.
    [91]汪国有,陈振学,李乔亮.复杂背景下红外弱小目标检测的算法研究总数[J].红外技术, 2006, 28(5): 287-292.
    [92]孙立辉.基于局部统计特征的自适应红外背景抑制算法[J].红外与激光工程, 2008, 27(1): 177-180.
    [93] Besag, J. Spatial interaction and the statistical analysis of lattice systems[J]. Journal of the Royal Statistical Society, 36:192-236, 1974.
    [94] Geman S, Geman D. Stochastic Relaxation, Gibbs Distribution, and Bayesian Restoration of Images[J]. IEEE Trans. On Pattern Analysis, 1984, 6: 721-741.
    [95]邹谋炎.反卷积和信号复原[M].长沙:国防工业出版社, 2001.
    [96] Hanbury A G, Serra J. Morphological operators on the unit circle [J]. IEEE Transactions Image Processing, 2001, 12(10): 1842—1850.
    [97] Ffrench P A, Zeidler J H, Ku W H. Enhanced detectability of small objects in correlated clutter using an improved 2-D adaptive lattice algorithm [J]. IEEE Transactions on Image Processing, 1997, 6(3): 383—397.
    [98] Tartakovsky A, Blazek R. Effective adaptive spatial-temporal technique for clutter rejection in IRST [C]. SPIE, 2000, 4048: 85—95.
    [99] P Perona, J Malik. Scale-space and edge detection using anisotropic diffusion [J]. IEEE Trans. Pattern Anal., 1990, 12(7): 629–639.
    [100] Haralick R M. Digital Step Edges from Zero Crossing of Second Directional Derivatives[J]. IEEE Trans. on Pattern Analysis and Machine Intelligence, 1984,26(2): 211-229.
    [101] P Perona, J Malik. Scale-Space and Edge Detection Using Anisotropic Diffusion[J]. IEEE Trans. Pattern Analysis, 1990, 12: 629-639.
    [102] R H Walden. Performance trends for analog-to-digital converters[J]. IEEE Communications Magazine, 1999, 37(2): 96-101.
    [103]胡谋法,陈曾平.基于Zernike-Facet模型和总体最小二乘的弱小目标检测[J].电子与信息学报, 2008, 30(1): 194-197.
    [104] Pun T. A new method for gray-level picture thresholding using the entropy of histogram[J]. Signal Processing, 1980,2: 223-237.
    [105] Kapur J N, Sahoo P K, Wong A K C. A new method for gray-level picture thresholding using the entropy of the histogram[J]. Computer Vision, Graphics and Image Processing, 1985, 29: 273-285.
    [106] Bradski G R. Computer Vision Face Tracking for Use in a Perceptual User Interface[C]. IEEE Workshop Application Compution Vision, 1998, 214-219.
    [107] Kal Viainen H, Xu L, Oja E. Motion detection using randomized Hough Transform[C]. Proceedings of the 7th Scandinavian Conference on Image Analysis, Aalborg: SCIA, 1991, 72-79.
    [108] Wang G, Rafact I M, Me Vey E S. A Pipeline Algorithm for Detection and Tracking of Pixel-Sized Target Trajectories[J]. SPIE, 1990, 12(05): 167-176.
    [109]刘靳,姬红兵.基于移动式加权管道滤波的红外弱小目标检测[J].西安电子科技大学学报, 2007, 34(5): 743-747.
    [110]王凯,孙德宝,彭嘉雄.红外图像序列运动小目标的图像流检测法[J].华中理工大学学报, 1998, 26(9): 1-4.
    [111] Reed I S, Gagliardi R M, Shao H M. Application of Three-Dimensional Filtering to Moving Target Detection[J]. IEEE Trans. on Aeros. Electron. Sys., 1983, 19(6): 898-905.
    [112] Chu P L. Optimal Projection for Multidimensional Signal Detection[J]. IEEE Trans. on ASSP, 1988, 36(5): 775-786.
    [113] Barniv Y. Dynamic Programming Solution for Detection Dim Moving Targets[J]. IEEE Trans. on Aeros. Electron. Sys., 1985, 21(1): 144-156.
    [114] Tonissen S M, Evans R J. Performance of Dynamic Programming Techniques for Track-before-Detect[J]. IEEE Trans. on Aerospace and Electronic Systems, 1996, 32: 1440-1451.
    [115] Clementini E, Di Felice P, Oosterom P. A Small Set of Formal Topological Relationships Suitable for End-User Interaction[C]. Advances in Spatial Databases, 1993, New York: 277-295.
    [116]乔朝飞,陈军,李志林,等.基于图论的等高线空间关系表达[J].中国矿业大学学报, 2003, 32(3): 279-283.
    [117] Hong L,Cui N,Bakich M,et al. Multirate interacting multiple model particle filter for terrain-based ground target tracking[J]. Control Theory and Applications,IEE Proceedings(S1350-2379),2006,153(6):721-731.
    [118]李在铭.数字图像处理压缩与识别技术[M].成都:电子科技大学出版社, 2000.
    [119] Kalman R E. A New Approach to Linear Filtering and Prediction Problems[J]. Trans. on ASME, J. Basic Eng., 1960, 82: 35-45.
    [120] Julier S J, Uhlmann J K. A New Extension of the Kalman Filter to Non-linear Systems[C]. Proc. of AeroSense: 11th Int. Symp. On Aerospace/Defence Sensing, Simulation and Controls, 1997, 3068: 182-193.
    [121] T K Irubarajan, Y Bar-Shalom. Kalman Filter Versus IMM Estimerator: When do We Need the Latter[J]. IEEE Trans. on Aerospace and Electronic Systems, 2003, 39(4): 1452-1456.
    [122]徐卫明,刘雁春.水下目标的多速率交互式多模型跟踪算法[J].电子与信息学报, 2008, 30(3): 581-584.
    [123]田宏伟,敬忠良,胡士强,等.基于小波变换的双站纯角度机动目标融合跟踪[J].系统仿真学报, 2005, 17(2): 300-303.
    [124] LIU Gui-xi, GAO En-ke, FAN Chun-yu. Multirate interacting multiple model algorithm combined with particle filter for nonlinear/non-gaussian target tracking[C]. International Conference on Artificial Reality and Telexistence Workshops, 2006. 298:301.
    [125] LANG H, MICHAEL B, JEFFERY T L. Efficient multirate interacting multiple model particle filter(MRIMM-PF) for target[J]. SPIE, 2006, 6229(62290S): 62290S-1-62290S-8.
    [126]刘贵喜,高恩克,范春雨.改进的交互式多模型粒子滤波跟踪算法[J].电子与信息学报, 2007, 29(12): 2810-2813.
    [127]周宏仁,敬忠良,王培德.机动目标跟踪[M].北京:国防工业出版社, 1991: 134-176.
    [128]刘建书,李人厚,刘云龙.基于“当前”统计模型的交互式多模型算法[J].系统工程与电子技术, 2008, 30(7): 1351-1354.
    [129] Samuel Blackman,Robert Popoli. Design and Analysis of Modern Tracking Systems:1st Edition[M]. London:Artech house,1999:221-223.
    [130]曹治国,王岳环,左峥嵘,等.多总线多DSP实时图像处理操作系统的设计与实现[J].计算机学报, 2002, 25(7): 708-715.
    [131]石岩,毛海岑,张天序,等.面向并行图像处理的实时分布式操作系统的设计与实现[J].小型卫星计算机系统, 2005, 26(10): 1821-1827.
    [132] Michael J Flynn, Kevin W Rudd. Parallel Architectures[J]. ACM Computing Surveys, 1996, 28(1): 67-70.
    [133] TI TMS320C64X DSP Video Port/VCXO Interpolated Control(VIC) Port Reference Guide[Z]. 2003-04.
    [134] TI TMS320DM64X DSP Video Port to Video Port Communication [Z]. 2006-09.
    [135]刘微,朱明,李向荣.四DSP实现运动模糊图像的实时恢复[J].电子与信息学报, 2006, 28(11): 2023-2025.
    [136]刘鹏,姚庆栋.实时图像处理并行操作系统的微内核设计与实践[J].电子学报, 1999, 27(7): 42-46.
    [137] M Cvihovic, M Kune. An Approach to The Design of Distributed Real-Time Operating Systems[J]. Microprocessors and Microsystems, 1992, 16: 81-90.
    [138] Reference Frameworks for eXpressDSP software: RF5, An Extensive, High-Density System[Z]. TI Inc, 2003.
    [139] Texas Instruments. TMS320 DSP/BIOS User’s Guide[M]. Dallas: Texas Instruments Incorporated, 2002.
    [140]陈国良.并行计算[M].北京:高等教育出版社, 2003.