PVA/SA/ST复合凝胶微球的制备及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文用滴制法制备PVA/SA/ST复合水凝胶微球,优化PVA、SA、ST的配比及交联剂CaCl_2浓度,确定其胶凝时间、干燥时间、粒径大小及分布;用SEM表征其形貌特点;用PVA/SA/ST复合水凝胶装载牛血清白蛋白、盐酸四环素类药物载药复合水凝胶微球,测定了其包封率和载药量,并对其释药性能作了研究。所得结果如下。
     1.在凝胶微球的制备过程中,用4~4正交分析法得出制备凝胶微球的PVA、SA、ST、CaCl_2的最优浓度分别为14wt%、3.5wt%、8wt%、0.1M。凝胶微球最佳胶凝时间是20~25min,最佳干燥时间为90min,微球最佳分布区间在0.94~1.06mm这个区间,微球的平均直径Dav为0.998mm。
     2.通过扫描电镜(SEM)的观察,发现在低放大倍数下,微球整体形态圆整,表面光滑,微球的粒径大约为1mm。
     3.凝胶在模拟胃液(pH=1.4盐酸缓冲液)中几乎不溶胀;与模拟结肠液(pH=7.4PBS缓冲液)相比,微球在模拟小肠液(pH=6.8的PBS缓冲液)中的溶胀性能要小。随着温度升高,凝胶微球的溶胀度增加,可见温度对凝胶微球的溶胀性能有着较大的影响。人体体温的37℃下凝胶微球的溶胀度是凝胶微球溶胀的最佳温度。
     4.微球在模拟胃液(pH=1.4盐酸缓冲液)中,在2h时微球的溶蚀达到14.5%;微球在模拟小肠液(pH=6.8PBS缓冲液)中的4个小时内微球的溶蚀达到25.6%,微球在模拟结肠液(pH=7.4PBS缓冲液)中的4个小时内微球的溶蚀达到100%,可以确定微球在经过胃、小肠到达结肠之后能够完全溶蚀。
     5.载牛血清白蛋白的微球的载药量随牛血清白蛋白浓度的增加而下降,10mg/ml的载药浓度下的微球的载药量最高,达到81.1%;包封率随牛血清白蛋白浓度的增加而增加,50mg/ml的载药浓度下的微球的包封率最高,达到37.9%。
     6.载盐酸四环素的微球的载药量随盐酸四环素浓度的增加而增加;载药浓度为5mg/ml的微球的载药量最高,最高为1.79%;包封率随盐酸四环素浓度的增加而减小,载药浓度为1mg/ml的微球的包封率最高,达到42%。
     7.通过比较两种药物的释放,发现载牛血清白蛋白凝胶微球表现出良好的药物缓释,而模拟小肠液(pH=6.8的PBS缓冲液)和模拟结肠液(pH=7.4的PBS缓冲液)对载盐酸四环素微球的药物释放没有多大影响,从而可以推断盐酸四环素药物水凝胶的释放机理主要是扩散。
     8.实验发现,在释药过程中,载药微球起到了逐步缓慢释药的效果,因而PVA/SA/ST复合水凝胶能用作口服药物的载体。
This paper has introduced the background,theory of the hydrogel,and the hydrogels PVA and SA.We have optimized the concentration of the PVA、SA、ST、CaCl_2 by the preparation ways of dropping method and detected the gelling time, drying time,particle size and distribution.We have characterized its morphological property by SEM.Then we use the blend hydrogels to load Albumin and Tetracycline,calculated the drug-loading rate and entrapment rate, and gave a study on the external-load-drug experiment.Main results were as follows:
     1.In the preparation process,we get the result of the concentration of the polyvinyl alcohol,sodium alginate,starch and calcium chloride solution through Orthogonal analysis is 14wt%、3.5wt%、8wt%、0.1M,the gelling time is 20-25min,the drying time is 90min,the distribution is 0.94mm-1.06mm,and the particle size is 0.998mm
     2.With the observation of SEM,the hydrogels like a round ball,has smooth surface,the size of the hydrogels is about 1mm.
     3.The hydrogels in a simulated gastric juice(pH1.4 HCl buffer solution) in almost no swelling;By comparison with simulating colon solution(pH7.4 PBS buffer solution),the hydrogels beads swelled the volume bigger in simulated intestinal juice(pH6.8 PBS buffer solution).With the temperature increasing,the hydrogels swelling bigger,so the temperature has an importance to the SR of hydrogels,but the body temperature of 37℃is the best temperature.
     4.We detected that,after in simulated gastric juice(2hr),the dissolution of the hydrogels reach to 14.5%.After in simulated intestinal solution(4hr),the dissolution reach to 25.6%.After in simulated colon solution(2hr),the dissolution of the hydrogels reach to 100%.By comparison with simulating gastric solution, the hydrogels bead swelled the volume bigger and released the drug faster in pH6.8 PBS and pH7.4 PBS.Through the stomach,small intestine and the colon, hydrogels can be identified completed dissolution.
     5.With the concentration of BSA increased,drug loading decreased.10mg/ml of the drug-loaded hydrogels have the highest drug loading to 81.1%.With the concentration of BSA increased,encapsulation efficiency increased,50mg/ml of the drug-loaded hydrogels have the highest encapsulation efficiency,reaching 37.9%.
     6.With the concentration of Tetracycline-HCl increased,drug loading increased.5mg/ml of the drug-loaded hydrogels have the highest drug loading to 1.79%.With the concentration of Tetracycline-HCl increased,encapsulation efficiency decreased,1mg/ml of the drug-loaded hydrogels have the highest encapsulation efficiency,reaching 42%.
     7.By comparing the release of the two drugs,we found that hydrogels containing BSA demonstrated good drug-control-release.The simulated small intestinal juice and simulated colonic fluid have much influence on drug release in hydrogels containing Tetracycline-HCl,which may be inferred that hydrogels containing Tetracycline-HCl drug release mechanism of hydrogel mainly proliferation.Obviously this can not be as microspheres and bovine serum albumin to control drug release so effective,but also requires further study.
     8.In the process,we found that the blend hydrogel have good release-control effect,so we can concludede the PVA/SA/ST blend hydrogel can be applied to the oral drug carrier.
引文
[1]Kim YI,Fluckiger L,Hoffman M,et al.The antihypertensive effect of orally administ ered nifedipine-loaded nanoparticles in spontaneously hypertensive rats.Br J Pharmacol.1997Feb;120(3)399-404.
    [2]Chiang CH,Tung SM,Lu DW,et al.In vitro and in vivo evaluation of an ocular delivery system of 5-fluorouracil microspheres.J Ocul Pharmacol Ther.2001 Dec;17(6):545-53.
    [3]瞿茂林,哈鸿飞.水凝胶的合成、性质及应用[J].大学化学,2001,16(5):22-27
    [4]Wichterle O,Lim D.Hydrophilic gels in biologic use[J].Nature,1960,185:117.
    [5]TANAKAT.A molecular of Polymer aels[J].Phys.Rev.Lett,1978,40:820.
    [6]Tanaka T,Fillmore D,Sun S,et al.Phase transitions in ionic gels.Physical Review Letters,1980,45(20):1636-1639.
    [7]Tanaka T,HirokawaY.Volume-phase transitions of ionized N-isopropylacrylamide gels[J].Chem Phys,1987,81(2):1392-1395.
    [8]王昌华,卢英先.阳离子型温敏水凝胶的合成与性质.高分子学报.1998,12:236-239.
    [9]金曼蓉,吴长发,张桂英,等.聚N-烷基丙烯酰胺类凝胶及其温敏特性[J].高分子学报.1995,3:321-325.
    [10]Hirotsu S,Hirokaw a Y,Tanaka T.Volume phase Transition of Ionized N-siopropylacrylamde Gel in Solution J,Chem Phys.1987,87:1392- 1395.
    [11]Kono K.pH-responsive permeability of poly(acrylicacid)-poly-(ethylenimine) complex capsule membrane.J Membr Sci.1993,76:233.
    [12]Tanaka T.Collapse of Gels in an Electric Field J Science.1982,218(29):467-469.
    [13]刘晓华,王晓工,刘德山.一种光响应性热敏聚合物的合成及性能表征.高分子学报.2001,6:773.
    [14]钟兴,王宇新,王世昌等.温敏凝胶体积相转变温度的压敏性[J].高分子学报.1994,1:113-116.
    [15]殷以华.pH敏感的疏水型凝胶在直流电场中的刺激响应.高分子学报.2002,4:414.
    [16]郑俊民,平其能,杨丽等.药用高分子材料学.北京:中国医药科技出版社,2000,58-62.
    [17]Graham NB.Controlled drug delivery systems.Chemistry & Industry.1990;15:482
    [18]张志斌,唐昌伟等,生物医用智能高分子材料刺激响应性研究[J].生物医学工程学杂志,2004,21(5):852-855
    [19]王守玉,赵菁,曹绪芝.智能型凝胶及应用[J].石家庄职业技术学院学报,2003,(6):18-20.
    [20]刘峰,卓仁禧.温度及PH敏感水凝胶的合成及其在生物大分子控制释放中的应用[J].高分子材料科学与工程,1998,(3):54-57.
    [21]何尚锦,贾启燕,石可瑜等.N-乙烯基-2-吡咯烷酮-丙烯酸共聚物/聚乙二醇半互穿网络水凝胶的合成及其药物缓释性能[J].应用化学,2002,19(8):742-745.
    [22]He Hongyan,Cao Xia,Lee L James.Design of a novel hydrogel-based intelligent system for controlled drug release[J].Journal of Controlled Release,2004,95(3):391-402.
    [23]贺艳丽,陈建英,刘杰,等.交联透明质酸衍生物制备的水凝胶膜体外药物释放研究[J].中国药学杂志,2006,(12):931-934
    [24]Hutmacher D W.Scaffolds in tissue engineering bone and cartilage[J].Biomaterials,2000,21:2539.
    [25]李伟,孙建中,周其云.适用于酶包埋的高分子载体材料研究进展[J].功能高分子学报,2001,(3):365-369.
    [26]张传梅,付建伟,庄银凤,毛陆原.温敏性水凝胶作为固定化酶载体的研究[J].河南科学,2006,(5):683-686.
    [27]布鲁德尔F K,海泽W,维尔曼R,等.聚酯碳酸酯及用其制作的数据载体:中国专利,01806863.4[P].2003.
    [28]Chen Li,Jian Pinggong,Osada Y.Novel thermosensitive IPN hydrogel having a phase transition without volume change[J].Moacromolecular Rapid Communications,2002, 23:171.
    [29]Monji N.Application of a thermally-reversible polymer-antibody conjugate in a novel membrane-based immunoassay[J].Biochem Biophys Bes Comm,1990;172(2):652.
    [30]金曼蓉,吴长发.聚 N-烷基丙烯酰胺类凝胶及其温敏特性[J].高分子通报,1995,(6):321-325.
    [31]吉田亮,高橘利和等.自律振动ケル[J].化学工業,1997,50(7):1014.
    [32]Koten J W,van Luyn M J,Cadee J A,et al.IL -2 loaded dextran microspheres with attractive histocompatibility properties for local IL -2 cancer therapy[J].Cytokine,2003,24(3):57-66.
    [33]Bos G W Jacobs J J,Koten J W,et al.In situ crosslinked biodegradable hydrogels loaded with IL -2 are effective tools for local IL -2 therapy[J].Eur J Pharm Sci,2004,21(4):561-567.
    [34]万洪安,水溶性高分子化合物-聚乙烯醇类型牌号及应用,造纸化学品,2003(3):45-46.
    [35]Prusse U,Morawsky V,Dierich A,Vaccaro A,Vorlop KD.Encapsulation of microscopic catalysts in polyvinyl alcohol hydrogel beads.PREPARATION OF CATALYSTS Ⅶ STUDIES lN SURFACE SCIENCE AND CATALYSIS 118:137-146,1998.
    [36]C.C.DeMerlis,D.R.Schoneker.Review of the oral toxicity of polyvinyl alcohol(PVA).Food and Chemical Toxicology 41(2003) 319-326.
    [37]Masters KS,Leibovich SJ,Belem P,et al.Effects of nitric oxide releasing poly(vinyl alcohol) hydrogel dressings on dermal wound healing in diabetic mice.Wound Repair Regen.2002 Sep-Oct;10(5):286-94.
    [38]Lai S,Casu M,Saba G,et al.Solid-state 13C NMR study of poly(vinylalcohol)gels.Solid State Nucl Magn Reson.2002 May-Jun;21(3-4.):187-96.
    [39]de Jong SJ,van Eerdenbrugh B,van Nostrum CF.Physically crosslinked dextran hydrogels by stereocomplex formation of lactic acid oligomers:degradation and protein releasebehavior.J.Control Release,2001,71(3):261.
    [40]Cavalieri F,Miano F,D'Antona P,et al.Study of gelling behavior of poly(vinyl alcohol)-methacrylate for potential utilizations in tissue replacement and drug delivery.Biomacromolecules.2004 Nov-Dec;5(6):2439-46.
    [41]Bourke SL,AI-Khalili M,Briggs T,et al.A photo-crosslinked poly(vinyl alcohol)hydrogel growth factor release vehicle for wound healin applications.AAPS PharmSci.2003 Dec 4;5(4):E33.
    [42]Cascone MG,Maltinti S.Hydrogels based on chitosan and dextran as potential drug delivery systems.J Mater Sci Mater Med.1999 May;10(5):301-7.
    [43]Orienti I,Trere R Luppi B,et al.Hydrogels formed by crosslinked poly(vinyl alcohol) as sustained drug delivery systems.Arch Pharm(Weinheim).2002 Mar;,335(2-3):89-93.
    [44]Paul D V,Bart D H,Reinout V S.[J].Biomaterials,1997,18:273-278.
    [45]Smidsrod O.[J].Carbohydr Res.,1973,27:107-118
    [46]van Hoogmoed C G,Busscher H J,de Vos P.,[J].J.Biomed.Mater.Res.,2003,67A:172-178.
    [47]李艳,牟德华,侯建革等.带肉果汁中稳定剂的研究与应用.河北省科学院学报1997(1):41-48
    [48]赵淑璋.海藻酸钠的制备及应用.武汉化工,1989(1):11-14.
    [49]左榘,安英丽,何炳林.动态光散法研究海藻酸钠凝胶松弛行为[J].高分子材料科学与工程.1998,14(2):74-78.
    [50]卓仁禧,张先正.温度及pH敏感聚(丙烯酸)/聚(N-异丙基丙烯酰胺)互穿聚合物网络水凝胶的合成及性能研究[J].高分子学报,1998,(1):39-42.
    [5l]Chen J P,Hong L,Wu S,et al.[J].Langmuir,2002;18:9413-9421.
    [52]杨志清.海藻酸钠在经纱上浆中的应用.现代纺织技术,2002,10(4):21-22.
    [53]谢平.海藻酸及其盐的食用和药用价值.开封医专学报,1997,16(4):28-31.
    [54]高晓玲,廖映粉.从海藻中提取海藻酸钠条件的研究.四川教育学院学报,1999,15(7):104-105
    [55]邝生鲁编.现代精细化工高新技术与产品的合成工艺:1997年版.北京:科学技术文献出版社,1997,574-575
    [515]Shapiro L(陈晓东摘).用于细胞培养和移植的新型海藻酸盐海绵体.国外医学生物医学工程册,1998,21(2):124
    [57]李良铸编.生化制药学:第一版.北京:中国医药科技出版社,1995,281-284
    [58]吴志谷.创伤修复材料.中国实用外科杂志,1997,17(11):687
    [59]Hasegawa T,Takahashi T,Insda Y,et al.Reparative effects of sodium alginate on radiation stomatitis.Nippo Igaku Hoshashi Zasshi,1989,49(8):1047
    [60]Kulkami A R,Soppimath K S,Aminabhavi T M.Controlled release of diclofenac sodium from sodium alginate beads crosslinked with glutaraldehyde.Pharmaceu- tica Acta Helvetiae,1999,74(1):29-36
    [61]章思规编.实用精细化学品手册:有机卷(上).北京:化学工业出版社1996,92-94
    [62]Lu R,Yoshida T,Nakashima H,etal.Specific biological activities of Chinese lacquer polysaccharides.Carbohydrate Polymers,2000,43(1):47-54
    [63]张燕萍.变性淀粉制造与应用.北京:化学工业出版社,2001
    [64]Swinkels J J M.Starch/Starke,1985,37:1
    [65]Fringant C,Desbrieres J,Rinaudo M.Polymer,1996,37:2663
    [66]李琳,李遂焰,徐柳等.生物技术大实验.西南交大.2004:78-79