改性酚醛树脂粘结SiC颗粒复合材料制备及其性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在各类的磨损形式中,冲蚀磨损是较为常见的磨损形式之一,广泛的存在于现代化工业生产中。随着工业生产设备的大型化,冲蚀磨损造成材料的磨损增大,设备的维修费用增加,所造成的经济损失相当严重。因此,开发新的材料以及研究材料的冲蚀磨损过程和机理,对于材料的选用,提高冲蚀磨损工况下工件的使用寿命具有重要的意义。
     本文通过聚氨酯(PU)改性酚醛树脂,制备了改性酚醛树脂粘结SiC颗粒复合材料,考察了改性酚醛树脂的剪切强度和拉伸强度,采用红外光谱分析了PU改性酚醛树脂的机理;测试了复合材料的硬度、弯曲强度及冲蚀磨损性能。通过对该复合材料冲蚀磨损形貌SEM的观察,分析并讨论了聚氨酯改性酚醛树脂粘结SiC颗粒复合材料的冲蚀磨损机理。研究结果表明:
     偶联剂的加入能提高酚醛树脂的剪切强度和拉伸强度。当偶联剂KH-550的加入量为5wt%时,酚醛树脂的剪切强度和拉伸强度都达到了最好值,剪切强度达到11.38 MPa,拉伸强度达到了6.78 MPa。
     一定量PU的加入,能够显著地提高酚醛树脂的剪切强度和拉伸强度。当苯磺酰氯加入量为11wt%,PU加入量为10wt%时,改性酚醛树脂的拉伸强度达到最大值11.1Mpa,剪切强度达到最大值15.8 MPa。同时,改性酚醛树脂粘结SiC颗粒复合材料的三点弯曲强度达到最大值44.9 MPa。
     改性酚醛树脂粘结SiC颗粒复合材料的磨损量在90°冲蚀角处最大,在30°和60°处较小;而Q235钢在45°时的冲蚀磨损量最大,在30。和90°时较小。改性酚醛树脂粘结SiC颗粒复合材料的相对耐磨性能在45°时最好,达到1.06,然后随着冲蚀角度的增加而降低。
     PU的加入显著提高了复合材料的冲蚀磨损性能,整体的冲蚀磨损率低于未改性酚醛树脂复合材料的冲蚀磨损率。在PU加入量为10wt%时,改性酚醛树脂复合材料的耐冲蚀磨损性能最好,冲蚀磨损率最低,达到0.2733mg/min。
     当改性酚醛树脂粘结SiC颗粒复合材料在SiC颗粒大小及浆料中石英砂粒子粒度相同的情况下,随复合材料中SiC颗粒加入量的增大,其冲蚀磨损量先减小后增大,在SiC颗粒加入量为61wt%时达到最小值。
     改性酚醛树脂粘结SiC颗粒复合材料冲蚀磨损率随着SiC颗粒尺寸的减小而增大。在SiC颗粒尺寸为30目时磨损率最小,相对耐磨性达到最大值1.75,在SiC颗粒尺寸为150目时冲蚀磨损率最大。
Erosion wear is a more common form in various forms of wear. It exists with a wide range in modern industrial production. With the industrialization of large-scale equipment, erosion caused increasing wear of materials, equipment maintenance costs and the economic losses very serious. Therefore, the development of new materials and research materials erosion process and mechanism for selection of materials and improve the life of the work pieces have a great significance.
     In this paper, toughness of Phenolic resin was modified by Polyurethane, and prepared a modified Phenolic resin adhesive SiC particles composites, inspected the modified resin of the shear strength and tensile strength, Infrared spectral analysis of PU modified phenolic resin Mechanism; tested the hardness of composites, bending strength and erosion wear performance, through SEM analysis of morphology erosion and discussed polyurethane modified phenolic resin adhesive SiC particle composites erosion wear mechanism. Research shows that:
     The addition of coupling agent can improve the mechanical properties of resin. When the coupling agent KH-550 for the addition of 5wt%, the phenolic resin of the shear strength and tensile strength have reached a good value, shear strength reached 11.38 MPa and the tensile strength reached 6.78 MPa.
     A certain amount of PU accession, can significantly increase in phenolic resin tensile strength and shear strength, when the amount of benzenesulfonyl chloride for 11wt%, PU addition of 10wt%, the modified phenolic resin tensile strength reached Max 11.1Mpa, maximum shear strength 15.8MPa. At the same time, modified phenolic resin adhesive SiC particle composites achieved the maximum bending strength 44.9 MPa.
     Wearing capacity of the modified phenolic resin adhesive SiC particles composite is biggest in 90°impact angle and small from 30°to 60°; but wearing capacities of the Q235 steel is biggest in 45°impact angle, in 30°and 90°is small. The relative wear resistance of the modified phenolic resin adhesive SiC particles composites in 45°impact angle is best, achieved 1.06, and then reduces along with the impact angle increasing.
     The erosion wear performance of the composites marked enhancement when PU joined in, the overall wear rates of the modified phenolics composite materials were lower than the phenolics composites that didn't put in PU. When the quantity of PU joined 10wt%, the modified phenolics composite materials relative wear resistance to be best, the erosion wear rate was lowest, achieved 0.2733mg/min.
     When the modified phenolic resin adhesive SiC particles composites materials in the SiC particles size and the particles size of sands in the slurry in same situation; As the SiC particles quantity joined in the composite enlargement, the wearing capacity reduced first and then increased; when the SiC particles joined the quantity was 61wt%, the wearing capacity achieved the minimum value.
     The wear rate of the modified phenolic resin adhesive SiC particles composites increased along with the SiC particle sizes reduced. The wear rate is smallest and the relative wear resistant reached maximuml.75 when the SiC particle size was 600μm, wear rate is biggest when the SiC particle size was 100μm.
引文
[1]张清.金属磨损和金属耐磨材料手册[M].北京:冶金工业出版社,1991
    [2]张剑锋,周志芳.摩擦磨损与抗磨技术[M].天津:天津科技翻泽出版公司,1993
    [3]陈茜,鲍崇高.液/固两相流冲蚀磨损机理及材料应用现状[J].铸造技术,2005,26(6):548-550
    [4]邵荷生.摩擦与磨损[M].北京:煤炭工业出版社,1992
    [5]周祖福.复合材料学[M].武汉:武汉工业大学出版社,1995
    [6]工程材料使用手册编辑委员会.工程材料实用手册:塑料透明材料复合材料胶粘剂[M].北京:中国标,1989
    [7]徐欣.改性环氧树脂基复合材料的研制及浆体冲蚀磨损特性研究[D].西安交通大学硕士学位论文,2000
    [8]竺玉书.涂料工业的现状与发展(二)[J].涂料工业,1992,3(2):30-35
    [9]战凤昌.专用涂料[M].北京:化学工业出版社,1988
    [10]张颂钊.不锈钢鳞片涂料的研究[J].涂料工业,1994,6(4):17-19
    [11]胡宁先.特种涂料[M].上海:上海特种科学技术文献出版社,1990
    [12]李淑燕,唐小真.有关酚醛树脂的最新研究进展[J].高分子材料,1997,4(1):29-32
    [13]高月静,李郁忠,郑宏军,寇晓康.玻璃纤维增强线性高分子复合增韧剂改性酚醛塑料的研究[J].塑料,1996,25(6):30-32
    [14]张明善,孙传义.酚醛树脂与CPE弹性体共混增韧的研究[J].中国塑料,1991,5(3):44-50
    [15]邹文俊.有机磨具制造[M].北京:中国标出版社,2000
    [16]陈孟恒.酚醛树脂的增韧化[J].国外塑料,1997,15(4):39-43
    [17]陆怡平,杜杨,车剑飞.酚醛树脂增韧改性及其在摩擦材料中的应用[J].非金属矿,1998,(3):54-57
    [18]范儆,梁国正.酚醛树脂的共聚改性[J].材料导报,1998,12(5):58-59
    [19]陈祥宝.高性能树脂基体[M].北京:化学工业出版社,1998:24-25
    [20]闫联生.高性能酚醛树脂研究进展[J].玻璃钢/复合材料,2000,11:47-50
    [21]齐暑华,曾昭智,李郁忠等.混杂纤维增强酚醛热固性注塑料的研究[J].工程塑料应用,1999,27(6):15-.17
    [22]刘震云,黄伯云,苏堤等.增强纤维含量对汽车摩擦材料性能的影响[J].纤维复合材料,1999,16(1):32-35
    [23]H. D. Wu, M.S. Lee, Y. D. Wu, Y. F. Su, C. C. Ma. Pultruded fiber-reinforced polyurethane-toughened phenolic resin:2. Mechanical properties, thermal properties, and flame resistance[J]. Journal of Applied Polymer Science,1996,62(1):227-234
    [24]P. Sasidharan Achary, R. Ramaswamy. Reactive compatibilization of a nitrile rubber/phenolic resin blend:Effect on adhesive and composite properties [J]. Journal of Applied Polymer Science,1998,69(6):1187-1201
    [25]蒋德堂,刘凡,张斌等.HF-Ⅰ新型改性酚醛树脂研制及性能评价[J].河南科学,2002,20(2):140-143
    [26]董瑞玲,齐暑华.高绝缘高韧性耐热型酚醛塑料的研制[D].西北工业大学硕十论文,2001
    [27]高月静,侯向辉,李郁忠.三元尼龙改性酚醛树脂的研究[J].机械科学与技术,1996,15(3):411-414
    [28]伊庭会.酚醛树脂高性能化改性研究进展[J].热固性树脂,2001,16(4):29-33
    [29]张垣,金保宏.磨擦材料基体-酚醛树脂改性研究[J].玻璃钢/复合材料,1999,5:24-26
    [30]范儆,梁国正.酚醛树脂的共聚改性[J].材料导报,1998,12(5):57-60
    [31]王文广.塑料改性实用技术[M].中国轻工业出版社,1990
    [32]万勇军,刘小平.聚氨酯/乙烯基酯树脂互穿聚合物网络结构与性能的研究[J].塑料工业,1998,26(6):19-21
    [33]H.D.Wu et al.Pultruded Fiber-Reinforced Polyurethane-Toughened Phenolic Resil Reactivity and Morphology. Dic.Angew.Makromol.Chem,1996,35:235-245
    [34]傅明源.聚氨酯弹性体及其应用[M].北京:化学工业出版社,1999
    [35]刘义红,刘胜平,张玉军.酚醛树脂/聚氨酯复合体系的研究[J].哈尔滨理工大学学报.2002,7(5):90-93
    [36]夏绍灵,邹文俊,彭进,张琳.聚氨酯改性酚醛树脂研究[J].金刚石与磨料磨具工程.2006,(3):62-64
    [37]刘义红.酚醛树脂/聚氨酯复合体系的研究[D].哈尔滨理工大学硕士论文,2003
    [38]赵玉庭,姚希曾.复合材料基体与界面[M].上海:华东华工学院出版社,1991
    [39]赵渠森.复合材料[M].北京:国防工业出版社,1979
    [40]寇建章.颗粒增强高分子聚合物耐磨涂层的优化设计模型[J].表面技术,2005,34(1):11-13
    [41]马向东,林福严,邵荷生.耐磨环氧胶粘层冲蚀磨损特性的研究[J].摩擦学学报,1993,13(2):36-40
    [42]刘玲,殷宁,亢茂青,王心葵.CaSO4晶须补强增韧聚氨酯弹性体机理的研究[J].高分子学报,2001,(2):245-249
    [43]陈大柱,梁谷岩,何平笙.颗粒填充复合材料的界面研究[J].功能高分子学报,2002,15(2):185-188
    [44]R.P谢尔登[英]著.陈义芳,顾文华,孙载坚,汪大绪译.聚合物复合材料[M].北京:轻工业出版社,1989
    [45]陈冠国,褚秀萍.关于冲蚀磨损问题[J].河北理工学院学报,1997,19(4):27-32
    [46]何奖爱,王玉玮.材料磨损与耐磨材料[M].沈阳:东北大学出版社,2002:94-95
    [47]Iain Finnie. Some reflections on the past and future of erosion [J]. Wear,1995(1-10):186-187
    [48]J.John Rajesh,J.Bijwe,B.Venkataraman,U.S.Tewari.Effect of impinging velocity on the erosive wear behaviour of Polyamides[J].Tribology International,2004(37):219-226
    [49]马颖,任峻,李元东,陈体军,李炳.冲蚀磨损研究的进展[J].兰州理工大学学报,2005,31(1):21-25
    [50]S.K.Li, J.A.C.Humphrey, A.V.Levy. Erosive wear of ductile metals by a particle-laden highvelocity liquid-jet [J]. Wear,1981,73:295-309
    [51]A.Neville, T.HodgKiess, J.T.Dallas. A study of the erosion-corrosion behavior of engineering steels for matine pumping application [J]. Wear,1995,186-187:497-507
    [52]A.VLevy. Liquid-solid Particle Slurry Erosion of Steels [J]. Wear,1987,117(2):347-358
    [53]林福严.磨损理论及抗磨技术[M].北京:科学出版社,1993
    [54]I.Hussainova. Some aspects of solid particle erosion of cerments[J].Tribogy International,2001,34: 89-93
    [55]P.J.Slikkerveer, M.H.A. van Dongen, F.J.Touwslager. Erosion of elastomeric Protective coatings [J]. Wear,1999,236:189-198
    [56]B.D.Penington, J.C.Grunlan, M. W. Urban. Crosslinking of epoxy-modified phenol novolac (EPN) powder coatings:Particle size and adhesion [J]. Journal of Coating Technology,1999,71(897): 135-142
    [57]R.J.K.Wood, Y. Puget, K.R.Trethwey, K.Stokes.The performance of marine coating sand pipe materials under fluid-borne sand erosion [J]. Wear,1998,219:46-59
    [58]李乃寒,张文学.耐冲蚀磨损防护修补剂在火电厂中应用[J].山西电力技术,1998,20(4):33-36
    [59]马海华,李志章,袁训.耐磨复合涂料研究与发展[J].材料科学与工程,1995,13(2):26-28
    [60]皇志富.氧化铝颗粒增强改性环氧树脂基复合材料的制备及其应用[D].昆明理工大学硕士学位论文,2001
    [61]官磊.环氧复合胶粘层的改性工艺及其浆体冲蚀磨损性能研究[D].长安大学硕士论文,2006
    [62]卢德宏,苏高申,管桂生,周荣.聚氨酯改性环氧树脂的浆体冲蚀磨损研究[J].昆明理工大学学报(理工版),2005,30(4):34-37
    [63]苏高申,卢德宏,周荣.粘土改性环氧树脂浆液冲蚀磨损研究[J].热固性树脂,2006,21(6):36-38
    [64]卢德宏,黎清宁,蒋业华,周荣.Al2O3颗粒增强聚氨酯基复合材料耐磨性研究[J].材料科学与工程学报,2004,22(3):351-354
    [65]唐路林,李乃宁,吴培熙.高性能酚醛树脂及其应用技术[M].北京:化学工业出版社,2007
    [66]李赫亮,刘敬福,李智超.KH-550对环氧树脂胶粘涂层机械性能的影响[J].表面技术,2002,31(6):53-61
    [67]张慧波.聚氨酯弹性体改性及其复合材料制备研究[D].南京理工大学博士论文,2008
    [68]曹莲亿.红外光谱研究酚醛树脂[J].合成树脂及塑料,1990,(1):48-51