化学交联葡萄糖基取代聚膦腈水凝胶制备和胰岛素释放研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
葡萄糖基聚膦腈不仅具有良好的生物相容性、生物可降解性及降解产物无毒副作用等特点,改变其疏水性侧基和亲水性侧基的比例,还可以调节聚合物的亲水亲油平衡,并且引入化学交联点的葡萄糖基聚膦腈水凝胶与植物凝集素ConA结合后,形成的水凝胶能够应用于对外界葡萄糖浓度变化作出响应的胰岛素控制释放体系,因此葡萄糖基聚膦腈水凝胶在胰岛素给药系统的研究中有很好的应用前景。
     本文以水溶性好的葡萄糖与甲氧乙氧基共取代聚膦腈为基础,通过与二甘醇胺的取代反应,在聚膦腈侧链进一步引入适量伯氨基,用戊二醛进行化学交联后,再加入Con A形成对葡萄糖具有响应性的水凝胶。测试比较所得水凝胶在不同葡萄糖浓度下的吸水率,并负载胰岛素在两种葡萄糖浓度(4 mg/mL和1 mg/mL)下进行了体外释放行为的测定。具体工作如下;
     1、通过α-D-葡萄糖与丙酮在氯化锌和磷酸催化剂作用下反应制备1,2:5,6-di-O-异亚丙基-α-D-葡萄糖。
     2、把二甘醇胺用二碳酸二叔丁酯(BOC_2O)和三乙胺在干燥的THF中进行氨基保护,制备出N-叔丁氧羰基保护二甘醇胺。其结构经~1H-NMR得到确认。
     3、用葡萄糖缩二丙酮的钠盐以及N-叔丁氧羰基保护二甘醇胺的钠盐依次与聚二氯磷腈进行取代反应,再用另一种大大过量的亲水亲核取代试剂(本文采用的是甲氧基乙醇)来取代剩余的P—Cl,最后用三氟乙酸脱除保护基获得葡萄糖基聚膦腈。用~1H-NMR和IR等手段表征了聚合物结构,并讨论了脱保护时间对聚合物结构的影响。
     4、把得到的聚合物用戊二醛进行化学交联得到含有化学交联点的水凝胶,再加入Con A形成对葡萄糖具有响应性的水凝胶。对已获得的水凝胶初步进行了性能表征、测试比较所得水凝胶在不同葡萄糖浓度下的吸水率。
     5、把得到的聚膦腈水凝胶负载胰岛素,在两种葡萄糖浓度(4 mg/mL和1 mg/mL)下进行了体外释放行为的测定。
     6、制备了pH响应型聚膦腈水凝胶,并对水凝胶的性能进行了初步的测试。
Glucosyl substituent polyphosphazene has excellent biocompatibility ability and biodegradability.Its degradation products are non-toxic.And the hydrophilicity/hydrophobicity balance of the polymer can be adjusted by changing the ratio of hydrophilic groups and hydrophobic groups.Hydrogel can be prepared by mixing glucosy substituent polyphosphazene and lectin (Con A),which can be used for glucose-sensitive insulin delivery.Because of these excellent properties,glucosy substituent polyphosphazenes has a bright future in the study of insulin release system.
     In this thesis,Biodegradable and well water-soluble glucose-sensitive polyphosphazene hydrogel has been prepared basing on the specific interaction between polymer-bound glucose and concanavalin A(Con A).A kind of poly(glucosyl-co-methoxyethoxyl-co-2-(2-aminoethoxy) ethoxyl) phosphazene was synthesized by subsequently nucleophilic substitution with 2-[2-((tert-butoxycarbonyl)amino)ethoxy]ethanol,diisopropylidene D-glucose and methoxyethanol,followed by deprotecting treatment with trifluoroacetic acid to restore glycosyl and free amino groups.A chemical crosslinked hydrogel was obtained by react the polymer with glutaraldehyde.After being combined with Con A,the water absorption of the obtained polyphosphazen hydrogel was measured in aqueous solution which with different free glucose concentration.The release rate of insulin from this polyphosphazene hydrogel was measured in different concentration of free glucose in medium from 1 to 4 mg/mL.Details were described as follows:
     1) 1,2:5,6-di-O-isopropylidene-α-D-glucofuranose was synthesized fromα-D-glucose and acetone using zinc chloride and phosphoric acid as catalysts.
     2) 2-[2-((tert-butoxycarbonyl)amino)ethoxy]ethanol was synthesized from 2-(2-aminoethoxy)ethanol and di-tert-butyl dicarbonate using triethylamine as acid binding agent.And the product was characterized by ~1H-NMR analysis.
     3) A kind of poly(glucosyl-co-methoxyethoxyl-co-2-(2-aminoethoxy) ethoxyl)phosphazene was synthesized by subsequently nucleophilic substitution with 2-[2-((tert-butoxycarbonyl)amino)ethoxy]ethanol, diisopropylidene D-glucose and methoxyethanol,followed by deprotecting treatment with trifluoroacetic acid to restore glycosyl and free amino groups. And the product was characterized by IR and ~1H-NMR analysis.The influence of deprotection time on the structure of the polymer was discussed.
     4) A chemical crosslinked hydrogel was obtained by react the polymer with glutaraldehyde.After being combined with Con A,The water absorption of the obtained polyphosphazen hydrogel was measured in aqueous solution with different free glucose concentration.
     5) Insulin solution was loaded into the obtained polyphosphazen hydrogel,and in vitro release behavior was determined at different free glucose concentration(4 mg/mL and 1 mg/mL respectively).
     6) Preparation of pH sensitive hydrogels by introduce the alkaline groups to polyphosphazenes side group,and the initial performance test of hydrogel was carried out.
引文
[1]Wang D G,Fan J B,Siao C J,et al.Large-scale identification,mapping,and genotyping of Single-Nucleotide Polymorphisms in the human genome[J].Science,1998,280:1077-1082
    [2]Kwok,P Y,Deng Q,Zakeri H,et al.Increasing the information content of STS-based genome maps:Identifying polymorphism in mapped STSs.Genomics,1996,31:123-126
    [3]周辰,冯岚.胰岛素制剂的研究进展[J].中国医药导刊,2006,8(5):336-339
    [4]杨亚楠,尹静波,刘芳.高分子材料在药物控制释放方面的应用[J].吉林工学院学报,2001,22(3):38-40
    [5]邓先模,李孝红.生物医用高分子在癌症药物治疗中的应用[J].高分子通报,1999,(3):94-98
    [6]郑巧东,高春燕.陈欢林.药物控制释放研究及应用[J].浙江化工,2003,34(5):26-29
    [7]朱颖,郑梁元.胰岛素自调式给药系统的研究进展[J].中国药学杂志,2005,40(5):331-334
    [8]Miyata T,Uragami T,Nakamae K.Biomolecule-sensitive hydrogels[J].Advanced Drug Delivery Reviews,2002,54:79-98
    [9]Ishihara K,Kobayshi M,Ishimaru N,et al.Glucose induced permeation control of insulin through a complex membrane consisting of immobilized glucose oxidase and a poly(amine)[J].Polymer J,1984,16(8):625-631
    [10]李亚娜,霍东霞,王红英,钱庆文.水凝胶作为胰岛素控释系统载体的研究进展[J].中国医药工业杂志,2005,36(7):438-441
    [11]Zhang K,Wu XY.Modulated insulin permeation across a glucose Sensitive polymeric composite membrane[J].J Control Release,2002,80:169-178
    [12]Traitel T,Cohen Y,Kost J.Characterization of glucose sensitive insulin release systems in simulated in vivo conditions[J].Biomaterials,2000,21:1679-1687
    [13]Shiino D,Murata Y,Okano T,et al.Amine containing phenylboronic acid gel for glucose-responsive insulin release under physiological pH[J].J Controlled Release,1995,37:269-276
    [14]Miyata T,Jikihara A,Nakamae K,Hoffman A S,Preparapolytion of poly(2-glucosyloxyethyl methacrylate)-concanavalin A complex hydrogel and its glucose-sensitivity[J].Macromol Chem Phys,1996,197:1135-1146
    [15]Seminoff L A,Olsen G B,Kim S W.A self-regulating insulin delivery system.Ⅱ.In vivo characteristics of a synthetic glycosylated insulin[J].Int J Pharm,1989,54:251-257
    [16]Sato S,Jeong S Y,Kirn S W.Self-regulating insulin delivery system Ⅱ.In vivo studies[J].J Controlled Release,1984,1:67-77
    [17]Makino K,Mack E J,Kim S W.A microcapsule self-regulating delivery system for insulin[J].J Controlled Release,1990,12:235-239
    [18]Kim S W,Pai C M,Makino K,et al.Self-regulated glycosylated insulin delivery[J].J Controlled Release,1990,11:193-201
    [19]Pai C M,Bae Y H,Mack E J,et al.Concanavalin A microsheres for a self-regulating insulin[J].Int J Pharm,1992,8(6):532-536
    [20]Obaidat A A,Park K.Characterization of glucose dependent gel-solphase transition of the polymeric glucose-concanavalin A hydrogel system[J].Pharm Res,1996,13(7):989-995
    [21]Kim J J,Park K.Glucose-binding property of pegylated concanaval A[J].Pharm Res,2001,18(6):794-799
    [22]Kim J J,Park K.Modulated insulin delivery from glucose-sensitive hdrogel dosage forms[J].J Controlled Release,2001,77:39-47
    [23]Zion T C,Tsang H H,Ying JY,et al.Glucose-sensitive nanoparticles for controlled insulin delivery[EB/OL].https://dspace.mit.edu/retrieve/3567/MEBCS014.pdf.,2003-1/2003-1
    [24]陈兆伟.新型刺激响应智能凝胶的合成、表征及应用研究[D].无锡:江南大学,2005
    [25]王国伟.快速响应性PNIPA智能水凝胶的合成、表征及应用研究[D].郑州:郑州大学,2004
    [26]厚美瑛.快速响应“智能型”水凝胶[M].物理,2003,37(1):52.
    [27]向远清,陈大俊.快速响应智能水凝胶的研究进展[J].化学世界,2006,47(5):308-310
    [28]卓仁禧,张先正.温度及PH敏感聚丙烯酸/聚异丙基丙烯酞胺互穿聚合物网络水凝胶的合成及性能研究[J].高分子学报,1998,1:39-42
    [29]Hassan C M,Doyle F J,Peppas NA.Dynamic behavior of glucose-responsive poly(methacrylic acid-g-ethylene glycol) hydrogels[J],Macrmolecules 1997,30:6166-6173
    [30]Parker R S,Doyle F J,Peppas N A.A model-based algorithm for blood glucose control in type Ⅰ diabetic patients[J],IEEE Trans Biomed Eng,1999,46:148-157
    [31]Dorski C M,Doyle F J,Peppas N A.Glucose-responsive complex ation hydrogels[J].Polym Preprints,1996,37(1):475
    [32]Podual K,Doyle F J,Peppas N A.Preparation and dynamic response of cationic copolymer hydrogels containing glucose oxidase[J].Polymer,2000,41(11):3975-3983
    [33]Podual K,Doyle F J,Peppas N A.Dynamic behavior of glucose oxidase-containing microparticles of poly(ethylene glycol)-grafted Cationic hydrogels in an environment of changing pH[J].Biomaterials,2000,21(14):1439-1450
    [34]Podual K,Doyle F J,Peppas N A.Glucose-sensitive of glucose oxidase-containing cationic copolymer hydrogels having poly(ethylene glycol) grafts[J].J Controlled Release,2000,67:9-17
    [35]Young J K,Suna C,Joon K.Controlled Release of Insulin from Injectable Biodegradable Triblock Copolymer[J].Pharmaceutical Research,2001,18(4):548-550
    [36]Allcock H R,Fuller T J,Mack D P,et al.Synthesis of poly(amino acide alkyl ester)phosphazene[J].macromolecules.1980,20:124-129
    [37]Jaeger R D,Gleria M,Poly(organophosphazene)s and related compounds:synthesis,properties and applications[J],Prog Polym Sci,1998,23(2):179-276
    [38]Allcock H R,Cross-Linking Reactions for the Conversion of Polyphosphazenes into Useful Materials,Chem.Mater.1994,6:1476-1491
    [39]李振,秦金贵.聚膦腈高分子[J].功脂高分子学报,2000,13(2):240-246
    [40]邱利焱,朱康杰.聚膦腈在药物控释系统中的应用[J].功能高分子学报,1999,12(1):115-120
    [41]Laurencin C T,Koh H J,Neenan T X,Allcock H R,Langer R.Controlled release using a new bioerodible polyphohphazene matrix system,J Biomed Mater Res,1987,21:1231-1246
    [42]Allcock H R,Pucher S R,Scepelianos A G.Poly[(amino acid ester)phosphazenes]as substrates for the controlled release of small molecules,Biomaterials 1994,15:563-569
    [43]Conforti A,Bertani S,Lussignoli S,Terzi M,Grigolini L,Lora S,Calceti P,Marsilio F,Veronese F M.Anti-inflammatory activity of polyphosphazene slow release systerms of naproxen[J].,J Pharm Pharmacol,1996,48:468-473
    [44]Veronese F M,Marsilio F,Caliceti P,Filippis P D,Giunchedi P,Lora S.Polyorganophosphazene microspheres for drug release:polymer synthesis,microsphere preparation,in vitro and in vivo naproxen release[J].J Control Release,1998,52:227-237
    [45]Ibim S M,EI-Amin S F,Goad M E P,Ambrosio A M A,Allcock H R,Laurencin C T.In vitro release of colchicines using polyphosphazenes:the development of delivery systems fro musculoskeletal use[J].Pharm Dev Technol.1998,3:55-62
    [46]Veronese F M,Marsilio F,Lora S,Caliceti P,Passi P,Orsolini P.Polyphosphazene membranes and microspheres in periodontal diseases and implant surgery[J].Biomaterials,1999,20:91-98
    [47]Schacht E H,Vandorpe J,Lemmouchi Y,Dejardin S,Seymour L.Degradable polyphosphazenes for biomedical applications,in:RM Ottenbrite(Ed.)[J].Frontiers in Biomedical Polymer Applications,Vol.1,Technomic,Lancaster,1998:27-42
    [48]Alexander K.Lendon A,Payne G.Protein release from polyphosphazene matrices[J]., Advanced Drug Delivery Reviews, 1998,31: 185-196
    [49] Ibim S M, Ambrosio A A, Larrier D, Allcock H R, Laurencin C T, Controlled macromolecule release from poly(phosphazene) matrices[J]., J. Control. Release, 1996,40:31-39.
    
    [50] Caliceti P, Francesco M, Veronese, Lora S. Polyphosphazene microspheres for insulin delivery[J]. International Journal of Pharmaceutics, 2000,211: 57-65
    
    [51] Langone F, Lora S, Francesco M. Caliceti V P, Parnigotto P P, Valenti F, Palma G. Peripheral nerve repair using a poly(organo)phosphazene tubular prosthesis[J]..Biomaterials, 1993, 16: 347-353
    
    [52] Laurencin C T, Norman M E, Elgendy H M, El-Amin S F, Allcock H R, Pucher S R, Ambrosio A A. Use of polyphosphazenes for skeletal tissue regeneration[J].J Biomed Mater Res, 1993, 27: 963-973.
    
    [53] Nair L S, Bhattcharyya S, Bender J D, Greish Y E, Brown P W, Allcock H R, Laurencin C T. Fabrication and optimization of methylphenoxy substituted polyphosphazene nanofibers for biomedical applications[J].Biomacromolecules, 2004, 5: 2212-2220.
    
    [54] Conconi M T, Lora S, Baiguera S, Boscolo E, Folin M, Scienza R, Rebufatt P, Parnigotto P P, Nussdorfer G G. In vitro culture of rat neuromicrovascular endothelial cells on polymeric scaf- folds[J].J Biomed Mater Res 2004, 71: 669-674
    
    [55] Chang Y, Lee S C, Kim K T, Kim C, Reeves S D, Allock H R. Synthesis and Micellar Characterization of an Amphiphilic Diblock Copolyphosphazene[J]..Macromolecules,2001,34 (2): 269-274
    
    [56] Laurencin C T,.Allcock H R, Nicholas R. Krogman L S, Mark D. Synthesis and Characterization of Polyphosphazene-block-polyester and Polyphosphazene-block-polycarbonate Macromolecules[J]. Macromolecules 2008,41,1126-1130
    
    [57] Chang Y, Eric S P, Allcock H R. Environmentally Responsive Micelles from Polystyrene-Poly- [bis(potassium carboxylatophenoxy)phosphazene] Block Copolymers[J].Polym Sci Part A: Polym Chem, 2005,43: 2912-2920
    
    [58] Chang Y, Prange R, Allcock H R, Lee S C, Kim C, Amphiphilic Poly[bis(trifluoroethoxy) phosphazene]-Poly(ethylene oxide) Block Copolymers: Synthesis and Micellar Characteristics[J]. Macromolecules 2002, 35: 8556-8559
    
    [59] Lee S J, Park K, Synthesis and characterization of sol-gel phase reversible hydrogels sensitive to glucose[J]. Mol. Recogn, 1996,9: 549-57
    
    [60] Kim J J, Park K. Modulated insulin delivery from glucose-sensitive hydrogel dosage forms.[J].J. Controlled Release, 2001,77: 39-47
    [61]Garcia-Oteiza M C,Sanchez-Chaves M,Arranz F.Poly(vinyl alcohol) having amino sugar as the pendant group:Synthesis,characterization and binding of concanavalin A.Macromolecular[J].Chemistry and Physics,1997,198(7):2237-2247
    [62]Obaidat A A,Park K.Characterization of glucose dependent gel-sol phase transition of the polymeric glucose-concanavalin A hydrogel system[J]..Pharm.Res.13:989-995.
    [63]Obaidat A A,Park K.Characterization of protein release through glucose-sensitive hydrogel membranes[J].Biomaterials,1997,18:801-806
    [64]You L C,Lu F Z,Li Z C,Zhang W,Li F M.Glucose-Sensitive Aggregates Formed by Poly(ethylene oxide)-block-poly(2-glucosyl-oxyethyl acrylate) with Concanavalin A in Dilute Aqueous Medium[J].Macromolecules,2003,36(1):1-4
    [65]Miyata T,Jikihara A,Nakamae K,Hoffman A S.Preparapolytion of poly(2-glucosyloxyethyl methacrylate)-concanavalin A complex hydrogel and its glucose-sensitivity[J].Macromolecular Chemistry and Physics,1996,197(3):1135-1146
    [66]朴秀玉,蔡晴,金日光.葡萄糖基聚膦腈水凝胶的制备[J].高分子学报,2006,(2):141-147
    [67]Allcock H R,Pucher S R,Scopelianos A G.Macromolecules,1994,27(1):1-4
    [68]Allcock H R,Maher A E,Ambler C M.Side Group Exchange in Poly(organophosphazenes)with Fluoroalkoxy Substituents[J].Macromolecules 2003,36:5566-5572
    [69]H R Allcock Hymer WC,Austin PE,Macromolecules,1983,16:1401-1406;HR Allcock,TX Neenan,WC Kossa[J].Macromolecules,1982,15:693-696
    [70]Kwon S K.Synthesis of Water-Soluble Methoxyethoxy-Aminoarlyoxy Cosubstituted Polyphosphazenes as Cartier Molecules for Bioactive Agents[J].Bull.Korean Chem.Soc.2000,21(10):969-972
    [71]Allcock H R,Morrissey C T,Way W K,Winograd N.Controlled Formation of Carboxylic Acid Groups at Polyphosphazene Surfaces:Oxidative and Hydrolytic Routes[J].Chem.Mater.1996,8:2730-2738
    [72]Schmidt O T,Whistler R L,Wolfrom M L,Eds.Methods in Carbohydrate Chemistry.New York:Academic Press,1963:318-325
    [73]Allcock H R.Phosphorus Nitrogen Compounds:Cyclic,Linear,and High Polymeric Systems.Academic Press.Inc.(London),1972.
    [74]卢锡立等.戊二醛不同程度交联明胶膜力学和热学性能.西部皮革,2009,31(3):54-57
    [75]Allcock H R,Pucher S R.Polyphosphazenes with Glucosyl and Methylamino,Trifluoroethoxy,Phenoxy,or(Methoxyethoxy)ethoxy Side Groups[J]..Macromolecules.1991,24:23-34
    [76]Gestwicki J E,Strong L E,Kissling L L.Calculation of Self-Diffusion and Tracer Diffusion Coefficients near the Critical Point of Carbon Dioxide Using Molecular Dynamics Simulation.Angewandte Chemie[J].International Edition in English,2000,39:4567-4570
    [77]Brownlee M,Cerami A.A Glucose-controlled insulin-delivery system:semisynthetic insulin bound to lectin[J].Science 1979;206:1190-1191
    [78]Seminoff L A,Olsen G B,Kim S W.A self-regulating insulin delivery system.Ⅰ.Characterization of a synthetic glycosylated insulin derivative[J].Int.J.Pharm,1989,54:241-249
    [79]Kim,S W,Pai C M,Makino K,Seminoff L A,Holmberg D L,Gleeson J M,Wilson D E,Mack E J.Self-regulated glycosylated insulin delivery[J].J.Controlled Release,1990,11:193-201
    [80]顾雪蓉,朱育平.凝胶化学[M].北京.化学工业出版社,2005:134
    [81]Luten J,Steenis J H,Someren R,et al.Water-soluble biodegradable cationic polyphosphazenes for gene delivery[J].Journal of Controlled Release.2003,89:483-497
    [82]Allcock H R,Mclntosh M B,Klingenberg E H,et al.Fuctionalized polyphosphazenes:polymers with pendent tertiary trialkylamino groups[J].Macromolecules,1998,31:5255-5263
    [83]Luten J,Steenis J H,Someren R,et al.Water-soluble biodegradable cationic polyphosphazenes for gene delivery[J].Journal of Controlled Release.2003,89:483-497
    [84]Smetana K J,Sulc J,Krcova Z,et al.Intraocular biocompatibility of hydroxyethyl methacrylate and methacrylic acid copolymer/partially hydrolyzed poly(2-hydroxyethyl methacrylate)[J].J Biomed Mater Res,1987,21:1247-53
    [85]Seifert L M,Green R T.Evaluation of in vivo adsorption of blood dements onto hydrogel-coated silicone rubber by scanning electron microscopy and fourier transform infrared spectroscopy[J].J.Biomed.Mater.Res.,1985,19:1043-1071
    [86]Okano T,Aoyagi T,Kataoka K.et al.Hydrophilic-hydrophobic microdomain surfaces having an ability to suppress platelet aggregation and their in vitro antithrombogenicity[J].J.Biomed.Mater.Res.,1986,20:919-927
    [87]Canal T,Peppas A.Correlation between mesh size and equilibrium degree of swelling of polymeric networks[J].J.Biomed.Mater.Res.1989,23:1183-1193
    [88]Mijajima M,Okano T,Kim S W.et al.Preformulation of an Ara-A transdermal delivery system:Membrane fabrication and characterization[J].J.Controlled Release,1987,5:179-186