分数微分型粘弹性体热动力学耦合问题研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
针对经典的本构模型不能确地描述粘弹性材料的力学性质,且考虑热量对粘弹性材料性质的影响,本文采用了分数微分型本构模型来描述粘弹性材料的本构关系,研究了分数微分型热粘弹性体的动力耦合问题。论文重点研究了用分数微分本构模型描述的热粘弹性杆的热动力学行为。主要分别研究了经典本构模型和分数微分本构模型描述的热粘弹性杆动力耦合作用下的热动力学行为,并将它们的热力学行为进行比较。此外,研究了分数微分型热粘弹性体热动力学耦合问题控制微分方程的差分格式。最后分析了三种不同初值条件下轴对称圆柱形粘弹性阻尼器热动力行为。主要成果及结论包括:
     热动力耦合情况下,耦合效应随着耦合系数、粘性系数和弹性模量的增大而减弱,耦合效应表现的热粘弹阻尼作用减弱,各物理量振动的衰减速度变缓慢。
     分数阶数越大,各物理量振动衰减得越慢,耦合效应越弱;与整数阶描述的热动力耦合问题相比,分数阶所描述的各物理量所受的耦合作用较大,产生的振幅峰值也较大。
     系统的阻尼作用对速度的影响最大;温差对位移、应变梯度和速度等力场的影响很大;与材料阻尼相比,由耦合效应产生的热粘弹阻尼在热动力耦合过程中起主导作用。
     用分数算子去描述热粘弹性体动力耦合问题的研究至少在国内还很少见,这是本文的创新之处,所以本文的工作为以后研究分数微分型热粘弹性体动力耦合问题奠定了坚实的基础。
Aiming at the mechanics properties of viscoelastic materials can't be described accurately by classical constitutive model,and considering the properties of viscoelastic materials are affected by heat,fractional derivative viscoelastic constitutive model is adopted to describe the constitutive relations of viscoelastic materials in this paper.The coupling problems of fractional derivative thermoviscoelastic objects are studied here.The thermodynamic behaviors of thermoviscoelastic pole,which is described by fractional constitutive model in the dynamic coupling effect,is mainly studied.The thermodynamic behaviors of thermo-viscoelastic poles, which are described by calssical constitutive model and fractional constitutive model separately, are studied mainly,and their thermodynamic behaviors are compared.Moreover,the difference format of governing differential equations of fractional derivative viscoelastic object is studied in the thermodynamic coupling effect.Finally,thermodynamic behaviors of axis-symmetry columniform viscoelastic damper are analyzed under three kinds of intial value conditions.The main results and conclusions are following:
     (1) Under the conditions of thermodynamic coupling,with the increase of coupling coefficient,viscosity coefficient and elasticity modul,the coupling effect become weaker.So the thermoviscoelastic damp effect become weaker,the speed of vibration decaying become slower.
     (2) The fractional rank is greater,the speed of vibration decaying become slower and the coupling effect become weaker.Comparing to the classical thermodynamic coupling problems, the physics quantities,decribed by fractional constitutive model,suffer geater coupling effect, the peak value of vibration produced are greater.
     (3) The velocity is effected the most by the damp effect of system.The difference in temperatuer is effect great to displacement,the gradient of stress and velocity.Comparing to matrials' damp,the thermoviscoelastic damp produced by coupling effect plays more important role in the course of thermodynamic coupling.
     The study about thermodynamic coupling problems of viscoelastic body described by fractional differential calculus in this dissertation is still very rare at least in the domestic.So the research has provided a solid foundation for further study to the fractional thermo-dynamic coupling problems.
引文
[1]王晏研,陈喜荣,黄光速.复合阻尼材料最新研究进展[J].材料导报,2004,18(10):54.
    [2]张忠明,刘宏昭,王锦程等.材料阻尼及阻尼材料的研究进展[J].功能材料,2001,32(3):227.
    [3]李强,黄光速.互穿聚合物网络阻尼材料研究进展[J].合成橡胶工业,2002,25(1):1.
    [4]王志远,杨留拴.泡沫金属基高阻尼复合材料的研究进展[J].材料开发与应用,2004,19(3):38.
    [5]周光泉,刘孝敏.粘弹性理论[M].合肥:中国科学技术大学出版社,1996.
    [6]何平笙.高聚物的力学性能.合肥:中国科技技术大学出版社.1997
    [7]Fujita,Takafumi,Mastsumoto,Yoichi,Masaki,et al.Transactions of Engineers,Part C,1990,56(523):634-639.
    [8]Lyon,Richard H.Journal of he Acoustical Society of America,1982,72(6):1989-1999.
    [9]Chang Seung Hwan.Polymer Engineering and Science,1999,39(9):1642-1650.
    [10]Fujita,Satoshi,etc.Transaction of the Japan Society of Mechanical Engineering,Partc,1993,2636-2642.
    [11]梁健,沈荣壕.振动阻尼讲座——第五讲:表面阻尼处理.噪声与振动控制.1990,5:45-47.
    [12]刘勇,王成国,孙希泰.层压减振复合钢板用高聚物夹层的减振特性.噪声与振动控制,1996,1:36-41.
    [13]陈端石,赵玖,周海亭.动力机械振动与噪声学.上海:上海交通大学出版社,1996.
    [14]张义同.热粘弹性理论[M].天津:天津大学出版社,2002.
    [15]刘林超.分数导数型粘弹性材料的力学行为.暨南大学硕士学位论文.2005:1-6.
    [16]唐麟.分数算子描述的热粘弹性杆耦合问题研究.暨南大学硕士学位论文.2006.
    [17]李根国.具有分数导数型本构关系的粘弹性结构的静动力学行为分析.上海大学博士学位论文.2001:2-3.
    [18]顾民.粘弹性材料本构关系研究[J].桂林电子工业学院学报,1991,Vol.11,No.16.
    [19]Drozdov A.Mechanics of Viscoelastic Solids,John Wiely & Sons Lid[M].England: Chichester,1998.
    [20]Shapery R A.A theory of nonlinear thermo-viscoelasticity based on irreversible thermodynamics[J].proc.sthU.S.Nut.Congress,Appl,Mech,ASNE,1996.
    [21]Schapery R A.on the characterization of nonlinear viscoelastic material[J].Polyming Sci,1969,9.
    [22]赵国荣,陈忠富.一个非线性粘弹性模型及其在聚合物材料中的应用[J].湘潭矿业学院学报,2003,Vol.25.No.6.
    [23]张义同,严宗达.变温粘弹性的一般理论[J].力学学报,1993,Vol.25.No.6.
    [24]范绪箕,夏良道,杭国平.热应力学科的最新发展,热应力(第二卷).中国力学学会.93.10,第一版.
    [25]魏培君,张双寅,吴永礼.粘弹性力学的对应性原理及其数值反演方法.力学进展,1999.29(3):317-330.
    [26]孙海忠.分数算子描述的粘弹性材料的本构关系研究.材料科学与工程学报.Vol.24,No.6,Dec,2006:926-930.
    [27]Christensen,R.M.,Theory of viscoelasticity:an introduction.2nd ed.1982,New York:Academic Press.ⅹⅱ,364.
    [28]Schapery,R.A.A theory of nonlinear thermoviscoelasticity based on irreversible thermodynamics.In Proc.5 th U.S.Natl.Cong.Appl.Mech.1966.1966:511-530.
    [29]Schapery,R.A.,Further development of a thermodynaic constituive theory stress formulation:Purdue University.1969.
    [30]Boit,M.A.,General solutions of eqations of elasticity and consolidation of a porous material.J.Appl.Mech.1956.23:91-96.
    [31]Lusting,S.R.,R.M.Shay,and J.M.Caruthers,Thermodynamic constitutive equations for materials with memory on a material time scale.Journal of Theology,1996.40(1):69-106.
    [32]Coleman,B.D.,Thermodynamics of matrerials with memory.Arch.Ration.Mech.Anal.,1964.17:1.
    [33]Coleman,B.D.and V.Mizel,A general theory of dissipation in materials with memory.Arch.Ration.Mech.Anal.,1967.27:255.
    [34]邓伟,杨挺青.基于内变量理论的一种广义粘弹性本构方程.固体力学学 报.1997.18(1):11-16.
    [35]陈建康,黄筑平,白树林.含量类就是的一种非线性粘弹性本构模型.扬州大学学报.1999.2(2):60-63.
    [36]王礼立等.ZWT非线性热粘弹性本构关系的研究与应用.宁波大学学报(理工版),2001,13(sup):141-149.
    [37]杨挺青.粘弹性力学引论.武汉:华中理工大学出版社,1992(重印).
    [38]袁龙蔚.流变力学.北京:科学出版社,1994.
    [39]黄筑平,陈建康,王文标.有限变形热粘弹性本构关系的内变量理论.中国科学(A 辑),1999年10月,第29卷,第5期.
    [40]张晓敏,彭向和.热力耦合问题的本构方程.重庆大学学报(自然科学版).2006,Vol.29.No.6.
    [41]张晓敏,彭向和,张培源.热力藕合问题的交替算法.爆炸与冲击.2006,Vol.26.No.4.
    [42]张淳源.粘弹性断裂力学[M].武昌:华中理工大学出版社,1994.
    [43]罗文波.高聚物形变热效应非线性粘弹性和银纹化研究.华中科技大学博士学位论文,2001.
    [44]危银涛.轮胎热—力学分析及耐久性评价:哈尔滨工业大学博士学位论文,1997,橡胶类材料有限弹性与非弹性理论及能耗计算方法.华中科技大学博士后研究报告,2000.
    [45]孙钧.岩土材料流变及其工程应用.北京:中国建筑工业出版社,1999.
    [46]徐平.工程岩体的流变性能及其应用.华中理工大学博士学位出版社,1999.
    [47]刚芹果.松质骨的固液二相理论及其应用,太原理工大学博士学位论文,2002.
    [48]冯元桢.生物力学.北京出版社,1983.
    [49]杨挺青.粘弹性理论与应用.北京:科学出版社,2004.
    [50]张为民等.考虑老化的混凝土粘弹性分数导数模型[J].应用力学学报,2004,2l(1):1-4.
    [51]Nutting P.G.A new generalized law deformation[J].Franklin Institue,1921,191:675-685.
    [52]GemantA.on fractional differences[J].Phil.Mag.1938,25:92-96.
    [53]Rabotonr YuN.Papernik Lkh and Zvonov EN.Tables of Fractional Function of Negative Parameters and its integarl[J].Moscow,Nauka,1969.
    [54]Gaputo M.Linear models of disspation whose Q is almost frequency indepedent [J].Annalidi Geofisica,1966,19:383-93.
    [55]Gaputo M,Mainardi F.A new dissipation model based on memory mechanism[J].Pure and Applied Geophysics,1971,91:134-47.
    [56]Gaputo M,Mainardi F.Linear models of dissipation in an elastic solids[J].Rivista del Nuoro Cimento,1971,1(2):161-198.
    [57]Bagley R.L,Torvik p.J.A theoretical basis for the application of fractional calculus to viscoelasticity[J].J.Rheol,1983,27(3).
    [58]Bagley R.L.Power law and fractional calculus model of viscoelasticity[J].AIAA,1989,27(10).
    [59]Bagley R.L,Torvik P.J.on the fractional calculus model of viscoelasticity behavior [J].Rheol,1986,30(1).
    [60]Shestopal V.O,Goss P C.J.The Elstimation of Column Creep Buckling Durability from the Initial Stages of Creep[J].Acta Mechanica,1984,52:269-275.
    [61]Koller R.C.Polynomial Operators,Stielties Convolvation and Fractional Calculus in Hereditary Mechanics[J].ACTA Mechanics,1986,Vol.58:251-258
    [62]Koller R.C.Application of Fractional calculus to the Theory of Viscoelasticity,Transaction of the ASME[J].Applied Mechanics,1984,Vol,51:229.
    [63]张卫等.分数导数及其在粘弹性理论中的应用.湖南大学学报(自然科学版,增刊),2001年8月第28卷,第4期:1-8.
    [64]Wei ZHANG and Nobuyuki SHIMIZU,Numerical Algorithm for Dynamic Problems Involving Fractional Operators,Int.J.ofJSME,Ser.C,41(1998),NO.3,pp.364-370.
    [65]Wei Zhang,Nobuyuki SHIMIZU.Damping properities of the viscoelastic material prescribed by fractional Kelvin-Voigt model[J].JSME Internationl Journal.Series C,1999,VOL.42,No.1.
    [66]Zhang W,Nobuyuki SHIMIZU.FE formulation for the viscoelastic body modeled by fractional constitution law.Aca Mechanica Sinica,2001,17(4):354-365.
    [67]Wei Zhang,Nobuyuki SHIMIZU and HuaXu,Thermal effects of the viscoelastic materials described by fractional calculus constructive law[J].The FIRST Asian conference on Multibody dynamics 2002.
    [68]张卫等.分数算子描述的粘弹性体力学问题数值方法.力学学报.Vol.36,No.5,Sept,2004:617-621.
    [69]Li J and Jiang T.Q.Constitutive equation for viscoelastic via fractional derivative in advancesin structure and heterogen continua[M].New york:Allerton press inc.1994,187-193.
    [70]朱正佑,李根国.具有分数导数本构关系的Timoshenko梁的静动力学行为分析[J].应用数学和力学,2002,Vol.23,No.1.
    [71]柴键.粘弹性阻尼器动态特性研究[J].甘肃工业大学学报,1995,21:1.
    [72]黄军旗,于群.双管流变仪中广义二阶流体运动分析[J].中国科学,1996,26:10.
    [73]丁丽娟,程杞元.数值计算方法.北京:北京理工大学出版社,2005.
    [74]R.D.RICHTMYER,K.W.ORTON.初值问题的差分方法(译本).中山大学出版社,1992.
    [75]张淳源,热粘弹性断裂力学的基本方程,湘潭大学自然科学学报,1990,Vol.13.No.3
    [76]张文生.科学计算中的偏微分方程有限差分法.高等教育出版社.2006.
    [77]Podlubny I.Fractional differential equations[M].San Diago:Academic Press,1999.
    [78]Keith B.Oldham,Ierome Spanier.The Fractional Calculus.San Diago:Academic Press,1974.
    [79]刘林超等.分数导数型粘弹性阻尼器的动力学有限元方程及数值解.橡胶工业.2006年第53卷第5期:271-275.
    [80]徐赵东,周洲,赵鸿铁等.粘弹性阻尼器的计算模型[J].工程力学.2001,18(6):88-92.