新型混凝土道面裂缝修补材料改性及其性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
混凝土道面经受长期自然环境及荷载作用,会出现大量宽度小于0.2mm的微细裂缝,如不及时修补,外部侵蚀介质易进入混凝土内部,加剧道面破坏,影响耐久性和安全性。本文针对混凝土道面微细裂缝的高强、固化快、低收缩及稳定性的修补要求,根据可灌性、固化时间、收缩变形、粘结强度及稳定性指标,对新型微细裂缝修补材料进行改性研究,同时对其性能和改性机理进行了探讨,研究结果表明:
     (1)根据固化时间、收缩变形、粘结强度、可灌性研究最佳改性材料种类和掺量。研究表明:使用有机材料Ya,82min时完成固化;使用有机材料Yb、Yc,固化时间较长,粘结强度大小关系是:Yc(D)     (2)通过对比修补材料改性前后的拉伸、弯曲强度和变形量,对其力学性能进行了研究。研究表明:添加25%Ya的修补材料强度基本不变,抗拉和抗弯曲变形能力提高了4.99倍和0.77倍;添加25%Ya和10%Wa的修补材料强度有所提高(拉伸2.29%,弯曲5.29%),同时抗拉和抗弯曲变形能力提高了4.85倍和0.90倍。
     (3)通过抗老化、抗冻性、抗腐蚀试验,研究其稳定性能。研究表明:修补材料改性后的拉伸和弯曲强度保持率均高于修补材料,保持率不小于95.10%,抗拉和抗弯曲变形能力提高了4.44倍和0.96倍,说明修补材料改性后具有较好稳定性能。
     (4)通过对修补材料改性机理简单探讨,发现修补材料加入Ya,形成Ya/修补材料IPN网络贯穿结构,这种结构增强修补材料聚合物分子链的活动性能,增强了键的联接,改善了界面结构,提高了修补材料的力学性能和耐久性能、增强了稳定性能。
Many micro-cracks, e.g. less than 0.2mm in width occurred on surface of concrete pavement after long term exposure to natural environment and load. These cracks, if not mended in time, would form passes for external corrosives to the concrete, which would accelerate the breakage, and threaten the durability and safety of concrete pavement.
     In this paper, a new modified repair material for micro-cracks of concrete pavement was studied to meet the requirements such as high strength, rapid cure, low shrinkage and good stability. The performance and modification mechanism of the material were discussed. The main findings are as follows:
     (1) The type and content of modifier for the repair material based on curing time, shrinkage, bond strength and pouring. The results showed that: when an organic material Ya was used as modifier, curing process was completed in 82 min, and for Ya or Yc, longer curing time were required. The bond strength order is Yc(D)     (2) The mechanical performance of the material by comparing tensile and bending strengths before and after modification. The results showed that: there is little variation in strength after the addition of 25% Ya, but 4.99 and 0.77 times more than the repair material in anti-deformation capacity. There is an increment of strength (tensile 2.29%- bending 5.29%)of the repair material with 25%Ya and 10%Wa, 4.85 and 0.90 times more than the repair material in anti-deformation capacity.
     (3) The stabilities of the repair material have been investigated by aging, freezing-thawing durability and corrosion resistance. The results showed that: the tensile and bending strength of the repair material with modifier are more than the repair material, retention percentage not less than 95.10%, anti-deformation capacity of the repair material with modifier keep more than 4.44 and 0.96 times. The repair material with modifier could make the good stability performance.
     (4) The modification mechanism of the repair material has been discussed simply. The results showed that: the repair material after the addition of Ya forms interpenetrating polymer networks structure which enhances activity for the polymer molecular chains and coupling of bond, improves interface structure, improving mechanical performance and durability of the repair material, to enhance stability performance.
引文
[1]胡曙光,管学茂,丁庆军.超细水泥基灌浆材料研究动向及发展方向[J].水泥, 2001, (1): 11-13.
    [2]陈明祥,陈义斌.超细水泥和细水泥灌浆材料的发展现状及应用[J].长江科学院院报, 1999, 16(5): 37-40.
    [3] Matsumoto N., Nakamura A.. Development of grouting material for cement powder grouting [J]. Grouting and deep mixing, 1996, (1): 59-64.
    [4] Jean Pera, Jean Ambroise. Fiber-reinforced magnesia-phosphate cement composites for rapid repair [J]. Cement and Concrete Composites, 1998, 20(1): 31-39.
    [5] Popovics. S., Rajendram. N.. Rapid hardening cements for repair of concrete [J]. ACI Journal and Aggregates, 1992, 37(1): 3-7.
    [6]申爱琴.水泥混凝土路面修补材料的研究[D].陕西:长安大学, 2005.
    [7] Camille A. Issa, Pauls Debs. Experimental study of epoxy repairing of cracks in concrete [J]. Construction and Building Materials, 2007, 21(1): 157–163.
    [8]甄匡.采用环氧树脂压浆法修补混凝土结构裂缝[J].广西交通科技, 1998, 23(4): 1-3.
    [9]郭玉花.岩石与混凝土灌浆译文集[M].北京:水利部科学技术司, 1995, (4): 41-44.
    [10]李晓,徐玲玲,邓敏. MMA基混凝土修补材料的制备与性能[J].南京工业大学学报, 2004, 26(1): 58-62.
    [11] G. S. Little John. Chemical Grouting [J]. Ground Engineering, 1995, (2): 31-34.
    [12] Masao Shimoda. Ultrafine Grouting Material [J]. Grouting in Geotechnical Engineering, 1991, (5): 76-91.
    [13]“现代灌浆技术译文集”编译组编译.现代灌浆技术译文集[M].北京:水利电力出版社, 1991, 8-26.
    [14]陈忠达,张登良.砼路面裂缝灌浆材料的试验研究[J].重庆交通学院学报, 1997, 16(4): 37-40.
    [15]黄月文,区晖.高分子灌浆材料应用研究进展[J].高分子通报, 2000, (4): 71-76.
    [16]陈长俊,吕少芬,王铁政等.几种常用灌浆材料的分析[J].黑龙江交通科技, 2001, (3): 9-12.
    [17]王彪,邵玉波,季景满.关于公路工程常用灌浆材料[J].黑龙江交通科技, 2003, (10): 12-14.
    [18]张雄.混凝土结构裂缝防治技术[M].北京:化学工业出版社, 2007.
    [19] K.J.Mun, N.W.Choi. Properties of poly methyl methacrylate mortars with unsaturated polyester resin as a crosslinking agent [J]. Construction and Building Materials, 2008, 22(10): 2147-2152.
    [20]台会文,潘明旺,张留成.聚氨酯改性有机玻璃热固性光学材料的研究[J].塑料科技, 1994, (1): 10-13.
    [21]侯仰圣.改性PMMA共聚树脂的研究[J].内蒙古石油化工, 2007, (6): 10-11.
    [22]刘萌戈,周持兴,黄海.纳米硅基氧化物改性有机玻璃的制备及表征[J].塑料工业, 2002, 4(30): 15-22.
    [23] Qu X W, Guan T Ha, Liu G D. Preparation, structural characterization, and properties of poly(methyl methacrylate) / montmorillonite nanocomposites by bulk polymerization [J]. J. Appl. Polym, 2005, 97: 348-357.
    [24]陈奎,杨瑞成,张天云.聚甲基丙烯酸甲酯/纳米有机改性蒙脱土复合材料的制备及其摩擦磨损性能研究[J].摩擦学学报, 2007, 27(2): 187-190.
    [25]雄传溪,闻狄江,王萍,黄可知.超微细AL2O3与PMMA溶液复合技术的研究[J].武汉工业大学学报, 1997, 19(1): 12-15.
    [26]李小燕.机场道面裂缝修补材料制备及其性能研究[D].江苏:南京航空航天大学, 2008.
    [27]李小燕,高培伟.机场道面开裂机理及控制技术的研究[J].江苏建材, 2006, 2: 46-48.
    [28] Gao Peiwei, Jin Shaochun. Using a new composite expansive material to decrease deformation and fracture of concrete [J]. Materials Letters, 2008, 62(1): 106-108.
    [29]陈卫峰.机场混凝土道面裂缝修补后性能评价[D].江苏:南京航空航天大学, 2008.
    [30]张金接,肖田元.混凝土细微裂缝灌浆[J].中国建筑防水, 1998, (5): 10-14.
    [31]谭日升.丙烯酸盐化学灌浆材料的研究及其应用[J].岩土工程学报, 1991, 13(6): 43-46.
    [32]《胶粘剂技术标与规范》编写组编.胶粘剂技术标与规范[M].北京:化学工业出版社, 2004.
    [33]周维祥.塑料测试技术[M].北京:化学工业出版社, 1997.
    [34]张兴英,李齐方.高分子科学实验[M].北京:化学工业出版社, 2004.
    [35]金士九.合成胶粘剂的性质和性能测试[M].北京:科学出版社, 1992.
    [36]交通部公路科学研究所编.公路工程水泥及水泥混凝土试验规程[M].北京:人民交通出版社, 2005.
    [37]濯海潮.实用胶粘剂配方及生产技术[M].北京:化学工业出版社, 2000.
    [38]苏张研.高渗透型灌浆材料的研制及其改性研究[D].广东:广东工业大学, 2008.
    [39]王致禄,陈道义.聚合物胶粘剂[M].上海科学技术出版社, 1988.
    [40]黄宝臣.影响有机玻璃老化因素的探讨及老化方法简介[J].飞机设计, 1995, (3): 46-52.
    [41]张磊,卢赟,谭惠民.聚氨酯/聚甲基丙烯酸酯IPN的合成及性能的改善[J].化工新型材料, 2006, 34(8): 49-52.
    [42]胡波,钟力生,马素德等.有机玻璃/全去偶极子极化现象研究[J].绝缘材料, 2006, (1): 17-18.
    [43]王宗明.实用红外光谱学[M].北京:石油工业出版社, 1990.
    [44]李玉玮.聚氨酯/聚甲基丙烯酸甲酯互穿聚合物网络的研究[J].高等学校化学学报, 1991, 4(6): 51-54.
    [45]高建宾,陶永杰,张宏元. GAP型PU/ PMMA聚合物互穿网络的力学性能研究[J].化学推进剂与高分子材料, 2003, 1(6): 31-34.
    [46]秦东奇,王静媛,李峰等,丁羥聚氨酯/聚甲基丙烯酸甲酯IPN的结构与性能[J].吉林大学自然科学学报, 2000, 2: 74-78.
    [47]付晏彬.聚氨酯IPN的研究—制备方法与性能的关系[J ].中国计量学院学报, 2002, 13(3) : 221-224.
    [48]王小萍,朱立新,贾德民.聚氨酯/聚(甲基丙烯酸甲酯-苯乙烯)-半互穿网络热塑性弹性体的结构与性能研究[J ]. 2004, 4: 23-25.
    [49]李绍雄,刘益军.聚氨酯胶粘剂[M].北京:化学工业出版社, 1998: 13-20.
    [50]张向宇.胶粘剂分析与测试技术[M].北京:化学工业出版社, 2004: 65-92
    [51] D. W. Fowler. Polymers in concrete: a vision for the 21st century [J]. Cement and Concrete Composites, 1999, 21(6): 449-452.
    [52] J.B. Yadav, R.K. Puri, Vijaya Puri. Improvement in mechanical and optical properties of vapour chopped vacuum evaporated PANI/PMMA composite thin film [J]. Applied Surface Science, 2007, 254(3): 1382-1388.
    [53]马丽婷,陈新文,苏彬.航空有机玻璃老化研究进展[J].材料工程, 2004, (8): 57-59.
    [54]左晓兵.改性有机玻璃的热性能研究[J].常熟高专学报, 1999, 13(2): 80-83.
    [55]阎利,黄承亚,王绍东.有机玻璃增韧改性的研究进展[J].中国塑料, 2001, 15(11): 10-13.
    [56]袁金颖,左光汉,左晓兵.共聚交联改性有机玻璃的研制与性能研究[J].高分子材料科学与工程, 1999, 15(5): 154-156.
    [57]杨瑞芹,陈尔凡,张瑞.提高有机玻璃耐热性的研究进展[J].塑料, 1999, 28: 14-18.
    [58] J Shen, Y Tian, G Wang. Modeling and kinetic study on radical polymerization of methyl methacrylate in bulk: 1. Propagation and termination rate coefficients and initiation dffciency [J]. Makromol. Chen. Ed, 1991, 192: 2669-2685.
    [59] D. Basak, S. Karan, B. Mallik. Significant modifications in the electrical properties of poly(methyl methacrylate) thin films upon dispersion of silver nanoparticles [J]. Solid State Communications, 2007, (141):483-487.
    [60] Yang-Wei Lin, Huan-Tsung Chang. Modification of poly(methyl methacrylate) microchannels for highly efficient and reproducible electrophoretic separations of double-stranded DNA [J]. Journal ofChromatography A, 2005, (1073): 191-199.
    [61] Takurou N. M., Yoshinori F., Yoshiaki H. Surface modification of polystyrene and poly(methyl methacrylate) by active oxygen treatment [J]. Colloids and Surfaces B, 2003, (29): 171-179.
    [62] K. Yamamoto, H. Otsuka, S. Wada. Preparation and properties of [poly(methyl methacrylate) /imogolite] hybrid via surface modification using phosphoric acid ester [J]. Polymer, 2005, (46): 12386-12392.
    [63]段明文.有机玻璃的改性[J].安徽化工, 2002, (5): 13-14.
    [64] P.L.B. Arau′jo, E.S. Arau′jo, R.F.S. Santosb. Synthesis and morphological characterization of PMMA /polyaniline nanofiber composites [J]. Microelectronics Journal, 2005, (36): 1055-1057.
    [65] Costas A. Anagnostopoulos. Cement–clay grouts modified with acrylic resin or methyl methacrylate ester: Physical and mechanical properties [J]. Construction and Building Materials, 2006, 21(2): 252-257.
    [66] Cheng-Hsin Chen, R. Huang, J.K. Wu. Influence of soaking and polymerization conditions on the properties of polymer concrete [J]. Construction and Building Materials, 2006, 20(9): 706-712.