钯催化的吡啶C-2选择性烯化和喹啉C-2选择性芳基化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
基于C-H键活化策略的化学合成可以简化原料、减少浪费,缩短反应路线,实现常规方法难以合成的目标产物,是最经济、简洁、高效的合成途径之一,尤其在天然产物合成及药物合成上具有重要价值,近年来受到人们的广泛关注,在众多C-H键的活化方法中,过渡金属催化的有机反应有着独特的优势:这类反应通常具有反应条件温和,产率较高及良好的选择性(包含立体、化学、区域选择性)。在众多过渡金属催化剂中,金属钯是目前研究最深入,最广泛的一个自上世纪七十年代以来,随着Kumada, Heck, Suzuki, Negishi等偶联反应的陆续发现,钯催化的偶联反应发展十分迅速,时至今日,钯催化的偶联反应作为形成C-C、C-X键最简洁有效的方法之一,已经得到了广泛应用。
     C-C键的偶联反应是构建碳骨架的最基本反应,而通过两个C-H键之间的直接交叉脱氢偶联反应,则最大程度地简化了C-H键的预先官能化,符合原子经济性要求和绿色化学的宗旨,是最理想的构建C-C键的方法之一。许多药物分子在结构上至少含有一个氮杂环,制药工业经常会涉及杂环C-H键的活化偶联,因此,发展构建杂环C-H键活化的新方法是值得有机合成工作者长期关注的重要课题。
     吡啶和喹啉是含有一个氮杂原子的环状有机化合物,它们广泛的存在于生物碱、核酸、抗生素等许多具有生物活性的分子当中,另外也是许多药物分子、功能材料的重要组成部分。钯催化的杂环化合物烯化或芳基化在有机合成中具有很重要的意义,也是发展C-H键活化的重要组成之一,它不仅可用于构建杂环化合物的骨架,而且能在杂环骨架上引入不同的基团生成一系列衍生物,本论文研究利用钯催化的氧化交叉偶联反应分别制备了一系列的2-烯化吡啶衍生物和2-芳基化喹啉衍生物。
     第一章简单介绍了C-H键活化偶联反应的背景、现状和展望,讨论了氧化交义偶联的定义及钯作为氧化交叉偶联反应催化剂的优势,同时也重点讨论了oxidant-Heky反应的机理。
     第二章首先简单介绍了钯催化的烯烃交叉偶联,然后详述了近年来有关Oxidant-Heky偶联反应的研究,介绍了分子间、分子内、不对称的Oxidant-Heky反应,以及Oxidant-Heky反应在天然产物全合成中的应用,研究了反应的适用范围及反应机理。同时,还介绍了钯催化的芳烃氧化交叉偶联反应,包括分子间、分子内的偶联以及反应类型和机理的研究进展。
     第三章,详细叙述了钯催化的吡啶C-2选择性C-H烯化偶联反应的发现,反应条件的优化,反应底物的拓展及反应机理的探讨。我们利用Pd(OAc)2作为催化剂、AgOAc作为氧化剂、PivOH作为添加剂、吡啶及其衍生物和丙烯酸酯类化合物作为反应底物,在latm O2条件下经过连续的sp2(吡啶)C-H键、sp2(烯烃)C-H键活化、分子间C-C键形成,合成了一系列C2烯化的吡啶化合物,发现该反应能与大量官能团兼容。烯化的吡啶产物可以广泛的作为药物、农药、功能材料等的合成前体。
     第四章,在吡啶烯化反应的基础上,我们发展一种以Pd(OAc)2作为催化剂,Ag2CO3作为氧化剂,PivOH作为添加剂,喹啉及基衍生物和二氯苯类芳烃作为反应底物,高选择性的合成C-2芳基喹啉化合物的偶联反应。反应经过两次的sp2(喹啉和芳烃)C-H键活化,形成了分子间C-C键。底物扩展结果显示含有吸电子基的喹啉比含有供电子基的效果好,对反应的机理我们也做了讨论。该方法相比之前的报道,原料(喹啉和芳烃)不需要进一步的官能化,缩短了反应路径,提高了合成效率。另外,芳基喹啉化合物经常作为新型抗癌药物的前体,具有良好的发展前景。
     总之,我们已经成功克服了常见的导向的过渡金属催化芳烃C-H键邻位定向官能化模式,实现了钯催化的吡啶C-2选择性烯化和喹啉C-2选择性芳基化偶联反应。产物也可以进一步应用于有机全合成,为含有吡啶环/喹啉环的生物分子合成提供了一条简单有效的途径。
Based on the C-H bond activation strategy, which can simplify raw materials, reduce waste, shorten the steps of the target molecule, and achieve the expected products easier than using traditional ways, is one of the most economical, simple and efficient synthetic pathway. Especially, there are some more application value on natural products and drugs synthesis. In recent years, building a carbon-carbon linkage directly from two simple carbon-hydrogen (C-H) bonds has emerged as an attractive and challenging goal, among of C-H bond activation method, transition metal-catalyzed organic reactions has a unique advantage:including mild reaction conditions、 higher yield and good selectivity (stereoselective, chemoselective and regioselective). Although many of the transition metals were employed for the C-H bond activation, so far, palladium was the most intensively studied and widely used. A survey of the literature reveals isolated reports dating back to the early1960s, along with Kumada, Heck, Suzuki, Negishi ect. coupling reactions have been discovered, the rapid development of Palladium-catalyzed coupling reaction, which was one of the most simple and effective method of formation of C-C, C-X bond, was proved to be more effective, even to recently.
     C-C bond coupling is the basic reaction of building the carbon skeleton, the directly dehy-drogenation coupling reaction, which would simplify immensely the C-H bond prefunction-alization process, was from two simple carbon-hydrogen (C-H) bonds activation. In accordance with the requirements of atom economy and the purpose of the green chemistry, and it is the best strategy of building C-C bond. As we all know, the structure of many drug molecules generally contain at least one nitrogen ring, and the pharmaceutical industry often involve heterocyclic C-H bond activation coupling. Therefore, the new development of constructing heterocyclic C-H bond activation is an important issue which is worthy of the organic synthetic chemists long-term concern.
     Pyridine and quinoline are a class of heterocyclic organic compounds containing a nitrogen atom, which not only exist widely in the alkaloids, nucleic acids, antibiotics and other biologically active molecules, but also play an important role in medical and organic materials. It is significance that palladium-catalyzed Heteroaromatic alkylene or arylation in organic synthesis. Also, it makes up for the type of C-H bond activation reaction. It is used to not only build the skeleton of the heterocyclic compound, but also introduced functional groups in the heterocyclic skeleton to generate a series of derivatives. This thesis studies on the preparation of derivatives of C-2-Olefination of Pyridines and arylation of Quinoline via palladium-catalyzed dehydrogenative cross-coupling reaction, respectively.
     Chapter1gives a brief introduction on the background, status and prospects of the C-H bond activation coupling reaction, and understanding on the definition of dehydrogenative cross-coupling reaction and the advantage of palladium-catalyzed dehydrogenative cross-coupling reaction. Additionally, focused on discussing the oxidant-Heky reaction mechanism.
     Chapter2gives a brief introduction on Palladium-catalyzed olefin cross-coupling, then, a thorough investigation on recent Oxidant-Heky coupling was described, including intermolecular, intramolecularly, asymmetric Oxidant-Heky reaction and application of Oxidant-Heky reaction in total synthesis of natural products. Furthermore, palladium-catalyzed arylation cross-coupling reactions were also recommended, including intermolecular and intramolecular coupling reaction and research progress of reaction mechanism.
     Chapter3gives an account of the investigation on palladium catalyzed C-2-alkylene of pyridine. Then, the reaction conditions were optimized, the reaction substrates were expanded, and the reaction mechanism was discussed. Used Pd(OAc)2as catalysis, AgOAc as oxidant, PivOH as additive, and pyridines and acrylates as reaction substrates in the reaction, under the condition of1atm O2, sp2C-H(pyridines) bond and sp2C-H(olefins) bond activation were supplied successively to form intermolecular C-C bond which generated the C-2olefinated pyridines. The results show that this method is compatible with a number of functional groups. Alkylene pyridine products can be widely used as drugs, pesticides, functional materials, synthetic precursor.
     Chapter4gives an account of the investigation on palladium-catalyzed C-2selective C-H arylation of Quinoline derivatives. Used Pd(OAc)2as catalysis, AgOAc as oxidant, PivOH as additive, and quinolines and aromatics as reaction substrates in the reaction. In our study, compared with electron-rich analogues, electron-deficient substituted quinolines exhibited better in the procedure. In addition, the reaction mechanism are also discussed. Compared to the method previously reported material (quinolines and aromatics) did not need be further functionalized which shorten the reaction path, and improve the synthesis efficiency. Generally, C-2arylated quinolines were used as an excellent precursor of the new anti-cancer drugs which displayed good prospects for development.
     In summary, transition metal catalyzed aromatic C-H bond functionalized mode by direct group was overcome. Then, we successfully achieve reaction of palladium-catalyzed C-2selective C-H olefination of Pyridines and arylation of Quinolines, which is further used to organic total synthesis and supplied a simple and effective way for the synthesis of biological molecules containing a pyridine ring.
引文
[1]For reviews on green chemistry, see:(a) Li, C.-J.; Trost, B. M. Proc. Natl. Acad. Sci. U.S.A. 2008,105,13197. (b) Anastas, P. T.; Warner, J. C. Green Chemistry:Theory and Practice; Oxford University Press:New York,1998.
    [2]Corey, E. J.; Cheng, X. M. The Logic of Chemical Synthesis; John Wiley & Sons:New York, 1989.
    [3]For reviews on the ideal chemical synthesis, see:(a) Newhouse, T.; Baran, P. S.; Hoffmann, R. W Chem. Soc. Rev.2009,38,3010. (b) Gaich, T.; Baran, P. S. J. Org. Chem.2010,75,4657. (c) Hendrickson, J. B. J. Am. Chem. Soc.1975,97,5784.
    [4]For reviews on Li's cross-dehydrogenative couplings, see:(a) Li, C.-J. Acc. Chem. Res.2009, 42,335. (b) Li, Z.; Bohle, D. S.; Li, C.-J. Proc. Natl. Acad. Sci. U.S.A.2006,103,8928. (c) Li, C.-J.; Li, Z. Pure Appl. Chem.2006,78,935. (d) Yoo, W.-J.; Li, C.-J. Top. Curr. Chem.2010, 292,281. For a review on other recent developments, see:(e) Scheuermann, C. J. Chem. Asian. J.2010,5,436.
    [5]The Glaser coupling is one example of oxidative homocoupling. For a review, see:Siemsen, P.; Livingston, R. C.; Diederich, F. Angew. Chem. Int. Ed.2000,39,2632.
    [6]For reviews on Heck alkenylations, see:(a) Handbook of Organopalladium Chemistry for Organic Synthesis; John Wiley & Sons, Inc.:New York,2002; Vol.1, Chapter Ⅳ.2. (b) Wu, X.-F.; Anbarasan, P.; Neumann, H.; Beller, M. Angew. Chem. Int. Ed.2010,49,9047. (c) Crisp, G. T. Chem. Soc. Rev.1998,27,427. (d) Beletskaya, I. P.; Cheprakov, A. V. Chem. Rev.2000, 100,3009. (e) de Vries, J. G. Can. J. Chem.2001,79,1086. (f) de Meijere, A.; Meyer, F. E. Angew. Chem. Int. Ed. Engl.1995,33,2379.
    [7]Moritani, I.; Fujiwara, Y. Synthesis 1973,524.
    [8]For reviews on Pd-catalyzed oxidative Heck-type alkenylations, see:(a) Beccalli, E. M.; Broggini, G.; Martinelli, M.; Sottocornola, S. Chem. Rev.2007,107,5318. (b) For a review on transition metal catalyzed addition to C=C bonds, see:Ritleng, V.; Sirlin, C.; Pfeffer, M. Chem. Rev.2002,102,1731
    [9]For a discussion on the mechanism of oxidation of Pd(0) to Pd(Ⅱ), see:(a) Piera, J.; Bckvall, J.-E. Angew. Chem., Int. Ed.2008,47,3506. (b) Gligorich, K. M.; Sigman, M. S. Angew. Chem., Int. Ed.2006,45,6612. (c) Muzart, J. Chem. Asian. J.2006,1,508
    [10]Beck, E. M.; Gaunt, M. J. Top. Curr. Chem.2010,292,85.
    [11]Boele, M. D. K.; van Strijdonck, G. P. F.; de Vries, A. H. M.; Kamer, P. C. J.; de Vries, J. G.; van Leeuwen, P. W. N. M. J. Am. Chem. Soc.2002,124,1586.
    [12]Houlden, C. E.; Bailey, C. D.; Ford, J. G.; Gagne, M. R.; Lloyd-Jones, G. C.; Booker-Milburn, K. I. J. Am. Chem. Soc.2008,130,10066
    [13]Li, J.-J.; Mei, T.-S.; Yu, J.-Q. Angew. Chem., Int. Ed.2008,47,6452
    [14]Wang, D.-H.; Engle, K. M.; Shi, B.-F.; Yu, J.-Q. Science 2010,327,315
    [15]Zhang, Y.-H.; Shi, B.-F.; Yu, J.-Q.J. Am. Chem. Soc.2009,131,5072.
    [16]Zhang, X.; Fan, S.; He, C.-Y.; Wan, X.; Min, Q.-Q.; Yang, J.; Jiang, Z.-X.J. Am. Chem. Soc. 2010,132,4506.
    [17]Cho, S. H.; Hwang, S. J.; Chang, S.J. Am. Chem. Soc.2008,130,9254.
    [18]Wu, J.; Cui, X.; Chen, L.; Jiang, G.; Wu, Y.J. Am. Chem. Soc.2009,131,13888.
    [19]Wasa, M.; Engle, K. M.; Yu, J.-Q.J. Am. Chem. Soc.2010,132,3680.
    [20]Baran, P. S.; Corey, E. J. J. Am. Chem. Soc.2002,124,7904.
    [21]Garg, N. K.; Caspi, D. D.; Stoltz, B. M. J. Am. Chem. Soc.2004,126,9552.
    [22]Hong, P.; Yamazaki, H. Chem. Lett.1979,1335.
    [23](a) Matsumoto, T.; Yoshida, H. Chem. Lett.2000,1064. (b) Matsumoto, T.; Periana, R. A.; Taube, D. J.; Yoshida, H. J. Catal.2002,206,272.
    [24]Sasaki, K.; Sakakura, T.; Tokunaga, Y.; Wada, K.; Tanaka, M. Chem. Lett.1988,685.
    [25]Ueura, K.; Satoh, T.; Miura, M. Org. Lett.2007,9,1407.
    [26]Umeda, N.; Hirano, K.; Satoh, T.; Miura, M.J. Org. Chem.2009,74,7094.
    [27]Weissman, H.; Song, X.; Milstein, D.J. Am. Chem. Soc.2001,123,337.
    [28]DeBoef, B.; Pastine, S. J.; Sames, D. J. Am. Chem. Soc.2004,126,6556.
    [29]Hatamoto, Y.; Sakaguchi, S.; Ishii, Y. Org. Lett.2004,6,4623.
    [30]Xu, Y.-H.; Lu, J.; Loh, T.-P.J. Am. Chem. Soc.2009,131,1372.
    [31]Yu, H.; Jin, W.; Sun, C.; Chen, J.; Du, W.; He, S.; Yu, Z. Angew. Chem.. Int. Ed.2010,49, 5792.
    [32]Bee, C.; Leclerc, E.; Tius, M. A. Org. Lett.2003,5,4927
    [33]Ronn, M.; Andersson, P. G.; Bckvall, J.-E. Tetrahedron Lett.1997,38,3603.
    [34]Pei, T.; Wang, X.; Widenhoefer, R. A. J. Am. Chem. Soc.2003,125,648.
    [35]Liu, C.; Wang, X.; Pei, T.; Widenhoefer, R. A. Chem. Eur. J.2004,10,6343.
    [36]Yip, K.-T.; Li, J.-H.; Lee, O.-Y.; Yang, D. Org. Lett.2005,7,5717.
    [37]Wang, X.; Widenhoefer, R. A. Chem. Commun.2004,660.
    [38]For reviews of transition metal-catalyzed cross-coupling reactions, see:(a) Corbet, J.-P.; Mignani, G. Chem. Rev.2006,106,2651. (b) Hassan, J.; Sevignon, M.; Gozzi, C.; Schulz, E. Lemaire, M. Chem. Rev.2002,102,1359.
    [39]Li, R.; Liang, L.; Lu, W. Organometallics 2006,25,5973
    [40]Stuart, D. R.; Fagnou, K. Science 2007,316,1172.
    [41]Stuart, D. R.; Villemure, E.; Fagnou, K. J. Am. Chem. Soc.2007,129,12072.
    [42]Dwight, T. A.; Rue, N. R.; Charyk, D.; Josselyn, R.; DeBoef, B. Org. Lett.2007,9,3137.
    [43]Xi, P.; Yang, F.; Qin, S.; Zhao, D.; Lan, J.; Gao, G.; Hu, C.; You, J.J. Am. Chem. Soc.2010, 132,1822.
    [44]Hull, K. L.; Sanford, M. S. J. Am. Chem. Soc.2007,129,11904.
    [45]Li, B.-J.; Tian, S.-L.; Fang, Z.; Shi, Z.-J. Angew. Chem., Int. Ed.2008,47,1115.
    [46]Brasche, G.; Garcia-Fortanet, J.; Buchwald, S. L. Org. Lett.2008,10,2207
    [47]Zhao, X.; Yeung, C. S.; Dong, V. M. J. Am. Chem. Soc.2010,132,5837.
    [48](a) Yeung, C. S.; Borduas, N.; Zhao, X.; Dong, V. M. Chem. Sci.2010,1,331. For a recent mechanistic study on intramolecular oxidative coupling with Na2S2O8, see:(b) Borduas, N.; Lough, A. J.; Dong, V. M. Inorg. Chim. Acta 2011, DOI:10.1016/j.ica.2011.01.059.
    [49]Wei, Y.; Su, W. J. Am. Chem. Soc.2010,132,16377.
    [50]a) Ye, M.-C.; Ga, G.-L.; Yu, J.-Q. J. Am. Chem. Soc.2011,133,6964; b) Ye, M.-C.; Gao, G.-L.; Edmunds, A. J. F.; Worthington, P. A.; Morris, J. A.; Yu, J.-Q.J. Am. Chem. Soc.2011, 133,19090.
    [51]Watanabe, T.; Oishi, S.; Fujii, N.; Ohno, H. J. Org. Chem.2009,74,4720.
    [52]Ackermann, L.; Jeyachandran, R.; Potukuchi, H. K.; Novak, P.; Bttner, L. Org. Lett.2010, 12,2056.
    [53]Liegault, B.; Fagnou, K. Organometallics 2008,27,4841.
    [54]Tang, D.-J.; Tang, B.-X.; Li, J.-H. J. Org. Chem.2009,74,6749.
    [55]Gandeepan, P.; Parthasarathy, K.; Cheng, C.-H. J. Am. Chem. Soc.2010,132,8569.
    [56]Murahashi, S. I. Angew. Chem. Int. Ed. Engl.1995,34,2443
    [57]Yoshida, J. i.; Suga, S.; Suzuki, S.; Kinomura, N.; Yamamoto, A.; Fujiwara, K. J. Am. Chem. Soc.1999,121,9546.
    [58](a) Andreades, S.; Zahnow, E. W. J. Am. Chem. Soc.1969,91,4181. (b) Chiba, T.; Takata, Y. J. Org. Chem.1977,42,2973.
    [59]Chen, C.-K.; Hortmann, A. G.; Marzabadi, M. R. J. Am. Chem. Soc.1988,110,4829.
    [60]Murahashi, S.-I.; Komiya, N.; Terai, H. Angew. Chem. Int. Ed.2005,44,6931.
    [61](a) Murahashi, S.-I.; Nakae, T.; Terai, H.; Komiya, N. J. Am. Chem. Soc.2008,130,11005. (b) Murahashi, S.-I.; Komiya, N.; Terai, H.; Nakae, T. J. Am. Chem. Soc.2003,125,15312. Yoshida, J.-i.; Suga, S. Chem. Eur. J.2002,8,2650.
    [62]Li, Z.; Li, C.-J. J. Am. Chem. Soc.2004,126,11810.
    [63](a) Li, Z.; Li, C.-J. Org. Lett.2004,6,4997. (b) Li, Z.; MacLeod, P. D.; Li, C.-J.Tetrahedron: Asymmetry 2006,17,590. Li, Z.; Li, C.-J. J. Am. Chem. Soc.2005,127,6968. Yang, F.; Li, J.; Xie, J.; Huang, Z.-Z. Org. Lett.2010,12,5214.
    [64]Niu,M.; Yin, Z.; Fu, H.; Jiang, Y.; Zhao, Y. J. Org. Chem.2008,73,3961.
    [65]Li, Z.; Li, C.-J. J. Am. Chem. Soc.2005,127,6968
    [66]Yang, F.; Li, J.; Xie, J.; Huang, Z.-Z. Org. Lett.2010,12,5214.
    [67]Li, Z.; Li, C.-J. J. Am. Chem. Soc.2005,127,3672.
    [68]For reviews on vicinal diamines, see:(a) Lucet, D.; Le Gall, T.; Mioskowski, C. Angew. Chem., Int. Ed.1998,37,2580. (b) Cardona, F.; Goti, A. Nature Chem.2009,1,269. (c) Kotti, S. R. S. S.; Timmons, C.; Li, C.Chem. Biol. Drug Design 2006,67,101. Basl e, O.; Li, C.-J. Green Chem.2007,9,1047.
    [69]For a review on allylic alkylation reactions with simple allyls, see:(a) Jensen, T.; Fristrup, P. Chem. Eur. J.2009,15,9632. (b) For a review on Pd-catalyzed Tsuji-Trost reactions, see: Handbook of Organopalladium Chemistry for Organic Synthesis; John Wiley & Sons, Inc. New York,2002; Vol.1, Chapter V.2.
    [70]Zhang, Y.; Li, C.-J. Angew. Chem. Int. Ed.2006,45,1949.
    [71]For a review on allylic alkylation reactions with simple allyls, see:(a) Jensen, T.; Fristrup, P. Chem. Eur. J.2009,15,9632. (b) For a review on Pd-catalyzed Tsuji-Trost reactions, see: Handbook of Organopalladium Chemistry for Organic Synthesis; John Wiley & Sons, Inc.: New York,2002; Vol.1, Chapter V.2.
    [72]Li, Z.; Li, C.-J.J. Am. Chem. Soc.2006,128,56(74) Young, A. J.; White, M. C.J. Am. Chem. Soc.2008,130,14090
    [73]Lin, S.; Song, C.-X.; Cai, G.-X.; Wang, W.-H.; Shi, Z.-J.J. Am.Chem. Soc.2008,130,12901.
    [74]Young, A. J.; White, M. C. J. Am. Chem. Soc.2008,130,14090.
    [75]Mo, H.; Bao, W. Adv. Synth. Catal.2009,351,2845.
    [76]Li, Y.-Z.; Li, B.-J.; Lu, X.-Y.; Lin, S.; Shi, Z.-J. Angew. Chem. Int. Ed.2009,48,3817.
    [77]Guo, C.; Song, J.; Luo, S.-W.; Gong, L.-Z. Angew. Chem. Int. Ed.2010,49,5558.
    [78]Song, C.-X.; Cai, G.-X.; Farrell, T. R.; Jiang, Z.-P.; Li, H.; Gan, L.-B.; Shi, Z.-J. Chem. Commun.2010,6002.
    [79]Kita, Y.; Morimoto, K.; Ito, M.; Ogawa, C.; Goto, A.; Dohi, T. J. Am. Chem. Soc.2009,131, 1668.
    [80]Jean, A.; Cantat, J.; Berard, D.; Bouchu, D.; Canesi, S. Org. Lett.2007,9,2553
    [81]For a review on BINOL ligands, see:(a) Brunei, J. M.Chem. Rev.2005,105,857. (b) Chen, Y.; Yekta, S.; Yudin, A. K. Chem. Rev.2003,103,3155.
    [82]For a review of natural products containing biphenols and binaphthols, see:Hubbard, B. K.; Walsh, C. T. Angew. Chem. Int. Ed.2003,42,730.
    [83](a) Hovorka, M; Gunterova, J.; Zavada, J. Tetrahedron Lett.1990,31,413. (b) Hovorka, M.; Scigel, R.; Gunterova, J.; Tichy, M.; Zavada, J. Tetrahedron 1992,48,9503. (c) Hovorka, M.; Z avada, J. Tetrahedron 1992,48,9517. Lipshutz, B. H.; Shin, Y.-J. Tetrahedron Lett.1998,39, 7017.
    [84]Li, X.; Hewgley, J. B.; Mulrooney, C. A.; Yang, J.; Kozlowski, M. C. J. Org. Chem.2003,68, 5500.
    [85]Nicolaou, K. C.; Reingruber, R.; Sarlah, D.; Brase, S. J. Am. Chem. Soc.2009,131,2086.
    [86]Conrad, J.C.; Kong, J.; Laforteza, B.N.;MacMillan,D.W. C. J. Am. Chem. Soc.2009,131, 11640.
    [87]For seminal work on organocatalytic SOMO catalysis, see:(a) Beeson, T. D.; Mastracchio, A.; Hong, J.-B.; Ashton, K.; MacMillan, D.W. C. Science 2007,316,582. (b) Rendler, S.; MacMillan, D.W. C. J. Am. Chem. Soc.2010,132,5027. (c) Jui, N. T.; Lee, E. C. Y.; MacMillan, D. W. C. J. Am. Chem. Soc.2010,132,10015. (d) Devery, J. J., Ⅲ; Conrad, C. J.;MacMillan, D.W. C.; Flowers, R. A., Ⅱ. Angew. Chem., Int. Ed.2010,49,6106. (e) Graham, T. H.; Jones, C. M.; Jui, N. T.; MacMillan, D.W. C. J. Am. Chem. Soc.2008,130,16494.
    [88](a) Smrcina, M.; Lorenc, M.; Hanus, V.; Kocovsky, P. Synlett 1991,231. (b) Smrcina, M.; Vyskocil, S.; Maca, B.; Polasek, M.; Claxton, T. A.; Abbott, A. P.; Kocovsky, P. J. Org. Chem. 1994,59,2156.
    [89]Smrcina, M.; Lorenc, M.; Hanus, V.; Sedmera, P.; Kocovsky, P. J. Org. Chem.1992,57, 1917.
    [90]Nicolaou, K. C.; Reingruber, R.; Sarlah, D.; Brase, S. J. Am. Chem. Soc.2009,131,2086.
    [91]Conrad, J. C.; Kong, J.; Laforteza, B. N.; MacMillan, D. W. C.J. Am. Chem. Soc.2009,131, 11640.
    [92]Um, J. M.; Guitierrez, O.; Schoenebeck, F.; Houk, K. N.; MacMillan, D. W. C. J. Am. Chem. Soc.2010,132,6001.
    [93]Rathke, M. W.; Lindhert, A. J. Am. Chem. Soc.1971,93,4605.
    [94](a) Ito, Y.; Konoike, T.; Saegusa, T. J. Am. Chem. Soc.1975,97,2912. (b) Ito, Y.; Konoike, T.; Harada, T.; Saegusa, T. J. Am. Chem. Soc.1977,99,1487.
    [95]Tokuda, M.; Shigei, T.; Itoh, M. Chem. Lett.1975,4,621.[96] Baran, P. S.; Hafensteiner, B. D.; Ambhaikar, N. B.; Guerrero, C. A.; Gallagher, J. D. J. Am. Chem. Soc.2006,128,8678.
    [96]Baran, P. S.; Guerrero, C. A.; Ambhaikar, N. B.; Hafensteiner, B. D. Angew. Chem. Int. Ed. 2005,44,606.
    [97]Baran, P. S.; Guerrero, C. A.; Hafensteiner, B. D.; Ambhaikar, N. B. Angew. Chem. Int. Ed. 2005,44,3892.
    [98]Baran, P. S.; Hafensteiner, B. D.; Ambhaikar, N. B.; Guerrero, C. A.; Gallagher, J. D.J. Am. Chem. Soc.2006,128,8678.
    [99]Martin, C. L.; Overman, L. E.; Rohde, J. M. J. Am. Chem. Soc.2010,132,4894.
    [100]Tobinaga, S.; Kotani, E. J. Am. Chem. Soc.1972,94,309.
    [101]DeMartino, M. P.; Chen, K.; Baran, P. S.J. Am. Chem. Soc.2008,130,11546.
    [102]Richter, J. M.; Ishihara, Y.; Masuda, T.; White field, B. W.; Llamas, T.; Pohjakallio, A.; Baran, P. S. J. Am. Chem. Soc.2008,130,17938.
    [105]Baran, P. S.; Richter, J. M. J. Am. Chem. Soc.2004,126,7450.
    [106]Richter, J. M.; White field, B. W.; Maimone, T. J.; Lin, D. W.; Castroviejo, M. P.; Baran, P. S. J. Am. Chem. Soc.2007,129,12857. Zuo, Z.; Xie, W.; Ma, D. J. Am. Chem. Soc.2010,132, 13226.
    [107]Borduas, N.; Powell, D. A. J. Org. Chem.2008,73,7822.
    [108]Zhang, Y.; Li, C.-J. Eur. J. Org. Chem.2008,4654.
    [109]Deng, G.; Zhao, L.; Li, C.-J. Angew. Chem. Int. Ed.2008,47,6278.
    [110]Jia, Y.-X.; K(?)undig, E. P. Angew. Chem. Int. Ed. 2009,48,1636.
    [111](a) Perry, A.; Taylor, R. J. K. Chem. Commun.2009,3249. (b) Pugh, D. S.; Klein, J. E. M. N.; Richard, A. P.; Taylor, J. K. Synlett 2010,934.
    [1]a) J. P. Michael, Nat. Prod. Rep.2005,22,627-646; b) G. D. Henry, Tetrahedron.2004,60, 6043-6061; c) M. C. Bagley, C. Glover, E. A. Merritt, Synlett.2007,2459-2462; d) C. G. Arena, G. Arico, Curr. Org. Chem.2010,14,546-580; e) Bianchini, C.; Giambastiani, G.; Luconi, L.;Meli, A. Coord. Chem. Rev.2010,254,431-455; f) B. J. Holliday, C. A. Mirkin, Angew. Chem. Int. Ed.2001,40,2022-2043; g) D. G. Kurth, M. Higuchi, Soft Matter.2006,2, 915-927; h) J. S. Carey, D. Laffan, C. Thomson, M. T. Williams, Org. Biomol. Chem.2006,4, 2337-2347; i) M. Schlosser, F. Mongin, Chem. Soc. Rev.2007,36,1161-1172.
    [2]R. F. Jordan, D. F. Taylor, J. Am. Chem. Soc.1989,111,778-779.
    [3]a) E. J. Moore, W. R. Pretzer, T. J. OConnell, J. Harris, L. LaBounty, L. Chou, S. S. Grimmer, J. Am. Chem. Soc.1992,114,5888-5890; b) S. Hori, M. Murakami, J. Am. Chem. Soc.2003, 125,4720-4721; c) K. Godula, B. Sezen, D. Sames, J. Am. Chem. Soc.2005,127,3648-3649; d) T. Kawashima, T. Takao, H. Suzuki, J. Am. Chem. Soc.2007,129,11006-11007; e) R. Grigg, V. Savic, Tetrahedron Lett.1997,38,5737-5740.
    [4]a) J. C. Lewis, R. G. Bergman, J. A. Ellman, J. Am. Chem. Soc.2007,129,5332-5333; b) A. M. Berman, J. C. Lewis, R. G. Bergman, J. A. Ellman, J. Am. Chem. Soc.2008,130,14926-14927; c) J.-Y. Cho, C. N. Iverson, M. R. I. Smith, J. Am. Chem. Soc.2000,122,12868-12869.
    [5]a) J. Takagi, K. Sato, J. F. Hartwig, T. Ishiyama, N. Miyaura, Tetrahedron Lett.2002,43, 5649-5651; b) I. A. I. Mkhalid, D. N. Coventry, D. Albesa-Jove, A. S. Batsanov, J. A. K. Howard, R. N. Perutz, T. B. Marder, Angew. Chem. Int. Ed.2006,45,489-491; c) J. M. Murphy, X. Liao, J. F. Hartwig, J. Am. Chem. Soc.2007,129,15434-15435; d) D. F. Fischer, R. Sarpong, J. Am. Chem. Soc.2010,132,5926-5927; e) T. E. Hurst, T. K. Macklin, M. Becker, E. Hartmann, W. Kugel, A. S. Batsanov, T. B. Marder, V. Snieckus, Chem. Eur. J.2010, 16,8155-8161; f) B.-J. Li, Z.-J. Shi, Chem. Sci.2011,2,488-493.
    [6]I. B. Seiple, S. Su, R. A. Rodriguez, R. Gianatassio, Y. Fujiwara, A. L. Sobel, P. S. Baran, J. Am. Chem. Soc.2010,132,13194-13196.
    [7]a) Y. Nakao, K. S. Kanyiva, T. Hiyama, J. Am. Chem. Soc.2008,130,2448-2449; b) M. Tobisu, I. Hyodo, N. Chatani, J. Am. Chem. Soc.2009,131,12070-12071; c) C. C. Tsai, W. C. Shih, C. H. Fang, C. Y. Li, T. G. Ong, G. P. A. Yap, J. Am. Chem. Soc.2010,132,11887-11889; d) Y. Nakao, Y. Yamada, N. Kashihara, T. Hiyama, J. Am. Chem. Soc.2010,132,13666-13668.
    [8]C.-C. Tsai, W.-C. Shih, C.-H. Fang, C.-Y. Li, T.-G. Ong, G. P. A. Yap, J. Am. Chem. Soc.,2010, 132,11887-11889.
    [9]B.-T. Guan, Z.-M. Hou, J. Am. Chem. Soc.2011,133,18086-18089.
    [10]a) M.-C. Ye, G.-L. Ga, J.-Q. Yu, J. Am. Chem. Soc.2011,133,6964-6967; b) M.-C. Ye, G.-L. Gao, A. J. F. Edmunds, P. A. Worthington, J. A. Morris, J.-Q. Yu, J. Am. Chem. Soc.2011,133, 19090-19093.
    [11]a) M.-C. Ye, G.-L. Ga, J.-Q. Yu, J. Am. Chem. Soc.2011,133,6964-6967; b) M.-C. Ye, G.-L. Gao, A. J. F. Edmunds, P. A. Worthington, J. A. Morris, J.-Q. Yu,J. Am. Chem. Soc.2011,133, 19090-19093.
    [12]For comprehensive discussions on trans-effects, see:a) J. V. Quagliano, L. Schubert, Chem. Rev.1952,50,201-260; b) B. J. Coe, S. J. Glenwright, Coord. Chem. Rev.2000,203,5-80.
    [13]a) K. M. Engle, D.-H. Wang, J.-Q. Yu, J. Am. Chem. Soc.2010,132,14137-14151; b) K. M. Engle, P. S. T. Boun, M. Dang, J.-Q. Yu,J. Am. Chem. Soc.2011,133,18183-18193; c) J. C. Lewis, R. G. Bergman, J. A. Ellman, J. Am. Chem. Soc.2007,129,5332-5333.
    [14]For an early report of Ag(Ⅰ)'s efficacy in promoting transmetallation, see:a) J. Uenishi, J. M. Beau, R. W. Armstrong, Y. Kishi, J. Am. Chem. Soc.1987,109,4756-4758; b) X. Chen, C. E. Goodhue, J.-Q. Yu, J. Am. Chem. Soc.2006,128,12634-12635; c) R. Giri, N. Maugel, J.-J. Li, D.-H. Wang, S. P. Breazzano, L. B. Saunders, J.-Q. Yu,J. Am. Chem. Soc.2007,129,3510-3511; d) B. D. Dangel, K. Godula, S. W. Youn, B. Sezen, D. Sames,J. Am. Chem. Soc.2002,124, 11856-11857.
    [1]Michael, J. P. Quinoline, quinazoline and acridone alkaloids[J]. Nat. Prod. Rep.1997,14(6): 605-618.
    [2]津田恭介,吉茂田.医药品化学[M].南江堂出版社,1958:840.
    [3]Wall, W.; Wani, M.; Cook, C.; et al. The isolation and structure of camptothecin, a novel alkaloidal leukemia and tumor[J]. J. Am. Soc.1996,88(16):3888.
    [4]Saito, I.; Sando, S.; Nakatani, K. Improved selectivity for the binding of naphthyridine dimer to guanine-guanine mismatch[J]. Bio. Org. Med. Chem.2001,9(9):2381-2385.
    [5]刘莹,顺尔宁.中国新药杂志.2001,10(2):136-137.
    [6]花文廷.杂环化学[M].北京大学出版社.1990,335-336.
    [12]Larsen, R. D.; Corleye, G.; King, A. O. Practical Route To A New Class of LTD4 receptor antagonists[J]. J. Org Chem.1996,61(10):3398-3405.
    [7]Roma, G.; Dim, M.; Grossi, G. 1,8-Naphthyridines Ⅳ.9-Substituted N,N-Dialkyl-5-(Alkylamino or Cycloalkylamino) (1,2,4) Triazolo(4,3-a) (1,8) Naphthyridine-6-Carboxamides, New Compounds With Anti-Aggressive and Potent Anti-Inflammatory Activities [J]. Eur. J. Med. Chem.2000,35(11):1021-1035.
    [8]Nohara, A.; Ishiguro, T.; Ukawa, K.; et al. Synthesis of antiallergic 5-oxo-5H-[1] benzopyrano [2,3-b] pyridines[J]. J. Med. Chem.1985,28(5):559-568.
    [19]Sernyak, M. J.; Leslie, D. L.; Alareon, R. D.; et al.Assoeiation of diabetes mellitus with use of atypical neuroleptics in the treatment of sehizophrenia [J]. J. Am. Psyehiatry.2002,159,561-566
    [10]Chen, Y. L.; Fang, K. C.; She, J. Y.; Synthesis and Antibacterial Evaluation of Certain Quinolone Derivatives [J]. J. Med. Chem.2001,44 (14):2374-2377.
    [11]汪洪武,汤敏燕,孙凌峰.具有抗肿瘤活性的生物碱类化合物[J].江西师范大学学报,1996,8,233-237
    [13]Sriram, D.; Bal, T. R.; Yogeeswari, P. Design, synthesis and biological evaluation of novel non-nucleosi-de HIV-1 reverse transcriptase inhibitors with broad-spectrum chemotherapeutic properties[J]. Bioorg. Med. Chem.2004,12(22):5865-5873.
    [14]Sarah, C.; Rayond, H.; Jean-Pierre, H. An Efficient Synthesis of the New Benzo[c]-pyrido[2,3,4-kl] acridine Skeleton[J]. J. Org. Chem.2002,67(10):3502-3505.
    [15]Wall, M. E.; Wani, M. C.; Cook, C. E., et al. Plant Antitumor Agents. I. The Isolation and Structure of Camptothecin, a Novel Alkaloidal Leukemia and Tumor Inhibitor from Camptotheca acuminate[J]. J. Am. Chem. Soc.1966,88(16):3888-3890.
    [16]杜鼎,方建新.具有生物活性的喹啉类化合物的最新进展[J].有机化学.2007,27(11):1318-1336.
    [17]a) Lee, D. H.; Jung, J. Y.; Jin, M.-J. Green Chem.2010,12,2024-2029; b) Jung, J. Y.; Althammer, A.; Hossain, S.; Jin, M.-J. Bull. Korean. Chem. Soc.2010,31,3010-3012; c) Tagata, T.; Nishida, M. J. Org. Chem.2003,68,9412-9415; d) Ackermann, L.; Potukuchi, H. K.; Althammer, A.; Born, R.; Mayer, P. Org. Lett.2010,12,5-7.
    [18]Seganish, W. M.; DeShong, P. J. Org. Chem.2004,69,1137-1143
    [19]Lee, D. H.; Althammer, A.; Ahn, W. S.; Jin, M. J. Chem. Commun.2010,46,478-480
    [20]a)Chen, G. J.; Han, F. S. Eur. J. Org. Chem.2012,125,3575-3579; b) Quasdorf, K. W.; Finch, A. A.; Liu, P.; Silberstein, A. L.; Komaromi, A.; Blackburn, T.; Ramgren, S. D.; Houk. K. N.; Snieckus V.; Garg, N. K. J. Am. Chem. Soc.2011,133,6352-6363; c) Finch, A. A.; Blackburn, T.; Snieckus, V. J. Am. Chem. Soc.2009,131,17750-17752
    [21]Tobisu, M.; Hyodo, I.; Chatani, N.; J. Am. Chem. Soc.2009,131,12070-12071
    [22]Strotman, N. A.; Chobanian, H. R.; Guo, Y.; He, J. F.; Wilson, J. E. Org. Lett.2010,12,16-19
    [23]a) Iglesias, M.; Prieto, A.; M. Nicasio, C. Org. Lett.2012,14,17-21; b) Kuzmina, O. M.; Steib, A. K.; Flubacher, D.; Knochel, P. Org. Lett.2012,14,3125-3129.
    [24]Berman, A. M.; Bergman, R. G.; Ellman, J. A. J. Org. Chem.2010,75,7863-7868.
    [25]Kwak, J.; Kim, Min.; Chang, S. J. Am. Chem. Soc.2011,133,3780-3783.
    [26]Ye, M. C.; Gao, G. L.; Edmunds, A. J. F.; Worthington, P. A.; Morris, J. A.; Yu, J. Q.J. Am. Chem. Soc.2011,133,19090-19093