非调质N80钢表面热浸镀及其复合处理层的制备与性能
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着我国各主要油、气田已逐渐进入了开采的中后期阶段,开采出的石油、天然气中,水、二氧化碳及硫化氢等腐蚀介质的含量都逐渐增加,使得石油管的腐蚀程度日益严重。而目前应用较多的防腐技术存在成本较高或耐蚀性较差等缺点,因此,寻求新的防腐技术仍然迫在眉睫。
     由于热浸镀铝及铝锌合金镀层具有良好的耐蚀性且成本较低,因此本文系统研究了热浸镀铝及铝锌合金对石油管常用材质非调质N80钢防腐性能、力学性能的影响及机理,并就如何进一步改善热浸镀后N80钢的防腐、力学性能进行了研究和探讨。
     首先详细研究了一浴法、二浴法及钝化法三种热浸镀铝工艺对镀层质量和性能的影响,从镀层厚度、连续性、耐蚀性和显微组织形貌几个方面进行分析比较。通过对三种工艺的研究来确定非调质N80钢热浸镀铝的工艺方法。三种工艺方法得到的镀铝层均由表面纯铝层和中间合金层组成,但在相同的参数下,镀层的厚度、致密性及耐蚀性不同。对于镀层总厚度,钝化法的最厚,二浴法的次之,一浴法的最薄;而对于镀层致密性及耐蚀性,二浴法的最佳,一浴法的次之,钝化法的最差。与其他两种工艺方法相比,二浴法工艺稳定,得到的镀铝层质量更好,因此本文确定非调质N80钢的热浸镀铝工艺为二浴法。
     研究了激光重熔工艺参数对扩散型热浸镀铝层裂纹和空洞的影响,采用JHM-1GY-400型YAG(晶体)激光器对扩散型热浸镀铝Q235钢的表面进行激光重熔处理,优选出最佳工艺参数,借助于扫描电镜、电子探针、金相显微镜、X射线衍射仪、显微硬度计等设备对激光处理后镀铝层的显微形貌、组织结构及性能进行了分析。通过测定在3.5%NaCl水溶液中阳极极化曲线,讨论了激光重熔处理对镀铝层耐蚀性的影响。适当的激光重熔处理可消除镀铝层中的裂纹及空洞,镀层变得更加致密,从而使其在3.5%NaCl水溶液中的耐蚀性高于未激光处理的镀层。并且其显微组织发生了高铝ξ相(FeAl2)向低铝β2相(FeAl)的转变,导致镀层显微硬度和脆性降低,镀层综合性能得到改善。
     通过比较镀铝前后非调质N80钢的显微组织和力学性能,研究了热浸镀铝过程对其力学性能的影响。为了提高镀铝后N80钢的力学性能,采用正交实验法对镀铝后的N80钢进行调质和亚温淬火处理。热浸镀铝后N80钢组织中V、Ti等合金元素的析出相长大、珠光体部分球化,使其强度、塑性有所下降,其中抗拉强度下降了13%,不能满足API SPEC 5CT标准的要求。通过适当的调质处理或亚温淬火、回火处理,可使镀铝后N80钢的抗拉强度由663MPa提高至810~845MPa,塑性和冲击韧性等力学性能也有所改善,但增加了生产成本且镀铝层会发生扩散反应而使镀层耐蚀性有所下降。通过试验研究,本文提出采用高温热浸镀铝→水淬→高温回火的方法来对非调质N80钢进行处理,此方法在获得质量良好的镀铝层的同时,得到了与亚温淬火、回火处理后相同的力学性能,且工艺简单,成本较低。
     采用静态浸泡试验和电化学试验研究了热浸镀铝对非调质N80钢防腐性能的影响,并且,为了进一步提高热浸镀铝层的耐蚀及耐结垢性能,在热浸镀铝层上分别化学镀Ni-P合金和涂敷纳米环氧涂层,研究两种复合镀层的耐蚀及耐结垢性能。热浸镀铝层因其表面生成了一层致密的Al2O3保护膜而使N80钢的防腐性能显著提高。而化学镀镍层和环氧树脂涂层因具有表面光滑、与铝镀层结合力强,可使铝镀层与环境隔离等特点,而使热浸镀铝加化学镀Ni-P合金复合镀层和热浸镀铝加环氧树脂复合涂层均可以进一步提高N80钢的耐蚀及耐结垢性能。其中热浸镀铝加环氧树脂复合涂层施工方便,成本较低,具有广阔的应用前景。
     通过对非调质N80钢热浸镀55%Al-Zn合金的水溶液助镀法和电解活化助镀法的研究和比较,提出了一种新的助镀方法,即电解活化加浸4%K2ZrF6水溶液助镀法。此方法可克服水溶液助镀法和电解活化助镀法各自的不足而得到质量良好的镀层。在此基础上,通过静态浸泡试验、电化学试验研究了热浸镀55%Al-Zn合金后N80钢在不同腐蚀介质中的耐蚀性;通过拉伸和冲击试验研究了热浸镀Al-Zn合金过程对N80钢力学性能的影响。非调质N80钢热浸镀55%Al-Zn后,在3%NaCl水溶液及人工配制的腐蚀介质中的耐蚀性均显著提高,接近于热浸镀铝后的耐蚀性。同时,热浸镀过程使N80钢基体的组织变得更加均匀细小,析出相数量增加且尺寸无明显变化,从而导致N80钢的强度、塑性及冲击韧性等力学性能显著提高,并且其工艺简单,生产成本较低,通用性强,说明采用此技术来提高石油管的防腐性能是可行的。
In our country, the most of oil and gas mining have come into the middle and later stage. In many oil and gas fields, highly water, carbon dioxide, hydrogen sulfide and element sulfur have been found. The corrosion problems of petroleum pipe become more and more harsh. At the present time, the preservation technologies of petroleum pipe have many disadvantages, such as highly cost and lowly corrosion resistance. So, research of new preservation technologies of petroleum pipe is very important.
     Because hot dipped Al and Al-Zn alloy coating have excellent corrosion resistance and lowly cost, the effect of hot dipped Al and Al-Zn alloy coating on properties of non-quenched and tempered N80 steel was studied systematically. And the improvement of properties of hot dipped coated N80 steel also was studied.
     Firstly, the effects of one bath flux method, two bath flux method and passivating method on quantities and properties of hot dipped aluminum coatings were studied. Meanwhile, the thickness, continuity, corrosion resistance and microstructure of hot dipped aluminum coatings were analyzed and compared. The optimal technology of petroleum pipe was determined by comparing coating quality. The results indicated that the microstructure of hot dipped coatings by 3-kind methods have the same structure, which were composed of aluminum overlay and intermetallic compound layer. But, under the same parameters, the thickness, continuity and corrosion resistance of coatings were different. In terms of thickness, the coating by passivating method was the biggest, the coating by two bath flux method was the second place and coating by one bath flux method was the smallest; In terms of continuity and corrosion resistance, the coating by two bath flux method was the best, coating by one bath flux method was the second place and coating by passivating method was the worst. So, the optimal hot dipped Al technology of petroleum pipe was two bath flux method.
     The effects of laser technical parameters on cracks and defects of hot dipped Al coating were studied. The optimal laser technical parameters were determined. And the microstructure and properties of laser remelted coating also were studied by means of SEM, EPMA, X-ray diffraction and micro-hardness measure. The results showed that the laser remelted coating treated by reasonable parameters has a compact microscopic structure, it was free from cracks and defects. The phase in the coating was changed from Al-rich phase to Al-poor phase. By laser treating, corrosion resistance of hot dipped Al coating could be improved, and microhardness and brittleness could be reduced.
     The effects of hot dipped Al process on mechanical properties of non-quenched and tempered N80 steel were studied, and the improvement of mechanical properties of hot dipped Al coated N80 steel was also studied through orthogonal method. The results showed that the strength and plasticity of the N80 steel were reduced by hot dipped Al process, which could not meet requirements of API SPEC 5CT seven edition. The decrease of mechanical properties was due to coarsening of precipitated phase and spheroidization of pearlite. And the ultimate tensile of aluminum coated steel could be rised from 663 MPa to 810~845 MPa by reasonable quenching and tempering or subcritical quenching and tempering treatment, the plasticity and impact toughness could also be improved. But the cost could be increased and coating quality could be reduced. Base on the above experiments, a new hot dipped Al process contained of hot dipped Al in high temperature, water quenching and tempering was put forward. The mechanical properties and coating quality could be greatly improved by the new process, which was of low cost and simple technology.
     The effects of hot dipped Al coating on corrosion resistance of non-quenched and tempered N80 steel were studied by using of static coupon testing and electrochemical testing, and the further improvement of corrosion and scaling resistance of hot dipped coated N80 steel were also studied. The results showed that hot dipped Al coating could improve the corrosion resistance of non-quenched and tempered N80 steel obviously, which was attributed to the formation of stable Al2O3 covering layer. The corrosion and scaling resistance of N80 steel could be further improved through electroless Ni-P plating or painting epoxy resin on Al coating because the two coatings have smooth surface, good adhesion and high barrier property. And composite coating contained hot dipped Al coating and epoxy resin layer appeared wide application prospect.
     Hot dipped 55%Al-Zn fluxes for non-quenched and tempered N80 steel were studied. In comparison with other flux methods, authors found out a kind of new flux method that has two steps:electrolytic active flux and 4% K2ZrF6 flux. And better properties of the coatings were obtained with the new flux method. On this base, the application feasibility of hot dip55%Al-Zn technology in petroleum pipe corrosion protection was studied. The results showed that hot dipped55%Al-Zn coating could improve the corrosion resistance of non-quenched and tempered N80 steel obviously. After hot dipped55%Al-Zn alloy, the strength and plasticity of the alloy-coated steels could also be greatly improved. So, using 55%Al-Zn alloy coating to protect petroleum pipe is feasible.
引文
1. 魏明宝.金属腐蚀理论及应用[M],北京:化学工业出版社,1984,1-5.
    2. 何业东,齐慧滨.材料腐蚀与防护概论[M],北京:机械工业出版社,2005,1-4.
    3. 陈鸿海.金属腐蚀学[M],北京:北京理工大学出版社,1996,2-11.
    4. 卢启霞.石油工业中的腐蚀与防护[M],石油工业出版社,2001,24-51.
    5. 卢会霞,屈撑囤,卜绍峰.中原油田注入水腐蚀因素及控制研究[J],腐蚀与防护,2004,25(6):263-266.
    6. 纪云岭,张敬武,张丽.油田腐蚀与防护技术[M],北京:石油工业出版社,2006,1-2.
    7. Wang Chaur-Jeng, Chen Shik-Ming. The high-temperature oxidation of hot-dipping Al-Si coating on low carbon steel[J], Surface&Coatings Technology,2006, 200(22-23):6601~6605.
    8. Wang Deqing, Shi Ziyuan, Zou Longjiang. A liquid aluminum corrosion resistance surface on steel substrate [J], Applied Surface Science,2003,214(1-4):304-311.
    9. 吴笛,刘炳,易大伟.热浸镀铝技术的研究进展及应用[J],电镀与精饰,2008,179:7-10.
    10. 路民旭,白真权,赵新伟,赵国仙,罗金恒,陈长风.油气采集储运中的腐蚀现状及典型案例[J],腐蚀与防护,2002,23(3):105-113.
    11. 崔斌,臧国军,赵锐.油气集输管道内腐蚀及内防腐技术[J],石油化工设计,2007,24(1):51-54.
    12. 涂小华,王修杰.石油工业中管道的腐蚀与防护[J],江西化工,2006,(4):266-267.
    13. 张学文,张永兴,李丹岩.油田注水除氧技术与真空旋流水除氧装置[J],石油钻采工艺,2001,23(5):74-77.
    14. 王博,马红竹,黄国莲,孙润泉,贾琏壁.油田注水腐蚀问题研究[J],西安石油学院学报,2001,16(2):39-40.
    15. 张绍举.石油管道硫化氢腐蚀与防护对策分析[J],石油化工设备技术,2007,28(6):35-38.
    16. Cole LS, Andenna C. Assessment of a micro-mechanic model of hydrogen-induced stress corrosion cracking, based on a study of an X65 line pipe steel[J], Fatigue and Fracture of Engineering Materials & Structures,1994, (3):265-275.
    17. Burk J.D. Hydrogen-induced cracking in surface-production systems mechanism, in section, repair and prevention [J], SPE Production & Facilities,1996, (1):49-53.
    18. Warrd C de, Lotz U. Prediction of CO2 corrosion of carbon steel [R], A Work Party Report on predicting CO2 corrosion in Oil and Gas Industry,1994,30-58.
    19. 周波,崔润炯.浅谈CO2对油井管的腐蚀及抗蚀套管的开发现状[J],钢管,2003,32(1):21-24.
    20. Burke P A, Synopsis. Recent progress in the understanding of CO2 corrosion[C], Corrosion 1985, Paper No.1 (Houston, NACE International).
    21. Videm K, Dugstad A. Effect of flow velocity, pH, Fe2+ concentration and quality on the CO2[C], Corrosion 1990, Paper No.42 (Houston, NACE International).
    22. 张政,程学文,郑玉贵,柯伟,姚治铭.突扩圆管内液固两相流冲刷腐蚀过程的数值模拟[J],腐蚀科学与防护技术,2001,13(2):89-95.
    23. 柯伟,杨武.腐蚀科学技术的应用和失效案例[M],北京:化学工业出版社,2006,74-97.
    24. Kang C, vancho J R. The effect of drag reducing agents in multiphase flow[J], Journal of Energy Resources Technology,1998, (120):15-19.
    25. 王德国,何仁洋,董山英.长距离油、气、水混输管道内壁流动腐蚀的研究进展[J],天然气与石油,2002,20(4):24-29.
    26. 孙成,李洪锡,张淑泉.土壤宏电池腐蚀研究概述[[J],油气田地面工程,1999,18(2):44-45.
    27. 托马晓夫著,华保定等译.金属腐蚀及其保护的理论[M],北京:中国工业出版社,1964.
    28. 司新生,安浩,高荣升.原油及油品体系微生物损害的研究[J],应用化工,36(9):916-917.
    29. 林建,朱国文,孙成,韩恩厚,高立群,张淑泉.金属的微生物腐蚀[J],腐蚀科学与防护技术,2001,13(5):279-284.
    30. Lee W, Characklis W G. Corrosion of mild steel under anaerobic biofilm[J],corrosion, 1993,49(3):187-196.
    31. ISO 15589-1:2003(E):Petroleum and natural gas industries-Cathodic protection of pipeline transportation systems-part 1:On-land pipelines[s].
    32. 张智,吴优,付建红,林元华,施太和,孙永鹏.井下套管外腐蚀机理与防护措施[J],石油地质与工程,2007,21(3):104-106.
    33. 张庆杰,李福军,孙国军,鲍春雷,陈月勋.油水井套管腐蚀及防护理论、实验与应用[J],大庆石油学院学报,2004,28(4):107-108.
    34. Carl E Jaske. Review and proposed improvement of a failure model for SCC of pipelines[R],1998 International Pipeline Conference-volume 1, ASME 1998:439-445.
    35. Parkius R N, Singh P M. Stress corrosion cracking coalescence[J], Corrosion,1990, 46(6):485-499.
    36. Burke Delanty. Major field study compares pipelines SCC with coatings[J], Oil & Gas Journal,1992, June 15:39-44.
    37. John A Beavers. Materials factors influencing the initiation of near-neutral pH SCC on underground pipelines[R],2000 International Pipeline Conference-volume 2, ASME 2000:979-988.
    38. Gu B, Yu W Z, Luo J L. Transgranular stress corrosion cracking of X-80 and X-52 pipeline steels in dilute aqueous solution with near-neutral pH[J], Corrosion,1999, 55(3):312-319.
    39. Parkius R N, Blanchard W K, Delanty B S. Transgranular stress corrosion cracking of high-pressure pipelines in contact with solution of near neutral pH[J], Corrosion,1994, 50(5):394-408.
    40. 张国良.管线钢在土壤环境中应力腐蚀破裂的研究[D],上海材料研究所,2007.
    41. 沙庆云.N80石油管的热处理工艺[J],鞍钢技术,2000,(7):19-21.
    42. 黄涛,崔润炯,李晓.用非调质钢开发N80级大口径石油套管[J],钢管,2002,31(5):24-26.
    43. Atanert S, King J E. Corrosion mechanisms of duplex stainless steels in the petrochemical industry [J], International Pipes and Pipelines,1995,40(2):29-37.
    44. 蒋鸣,李国喜,刘常升,郑毅然,李骏.非调质N80钢热镀55%Al-Zn合金助镀剂的研究[J],腐蚀科学与防护技术,2008,20(1):47-50.
    45. 沙庆云,任毅.石油专用管材生产技术的现状及进展[J],鞍钢技术,2006,6:13-17.
    46. Du T, Chen J. Inhibition of pure iron in sulphuric acid by N, N-dipropyloxy methylamine acetate and its synergism with chloride [J], British Corrosion Journal, 2000,35(3):229-238.
    47. Quartarone G, Zingales A. Study of inhibition mechanism and efficiency of indole-5-carboxylie acid on corrosion of copper in aerated 0.5M H2SO4[J], British Corrosion Journal,2000,35(4):304-311.
    48. 杨小平,江开兰,贺泽元,汪旨银,向伟.CZ3-1、CZ3-3复合型缓蚀剂的研究与应用[J],西安石油学院学报,1999,14(1):44-47.
    49. 任呈强,周计明,刘道新,白真权.油田缓蚀剂研究现状与发展趋势[J],精细石油化工进展,2002,3(10):33-37.
    50. 贾贵任,董建华,董燕,杜春林.塑料衬管法修复油田在用管道[J],油气田地面工程,1999,18(5):46-47.
    51. 林海潮,李谋成.涂层下金属的腐蚀过程[J],腐蚀科学与防护技术,2002,14(3):180-181.
    52. 蒲万丽.克拉2气田集输管线的材料选择及腐蚀防护[D],西南石油学院,2006.
    53. 杨赫,刘彦礼.近年我国油气管道防腐技术的应用[J],化学工程师,2008,149(2):29-31.
    54. 马国光,付志林.复杂地形长输管道外防腐设计[J],油气储运,2005,24(12):54-57.
    55. 郭明.阴极保护技术的研究与应用[D],大庆石油学院,2006.
    56. 许均民.阴极保护的应用[J],甘肃冶金,2007,29(2):68-69.
    57. 李安军,张智亮.输油管道防腐新技术[J],化工装备技术,2008,29(9):73-75.
    58. Lashmore D S, Ratzker M, Pratt K W. Electrodeposition and corrosion performance of Ni-P amorphous alloys[J], Plating and Surface Finishing,1986,(9):74-82.
    59. 陈相振.化学镀镍磷合金防腐工艺及其推广应用[J],齐鲁石油化工,1997,25(3):221-223.
    60. Koji Tachibana, Yasufumi Morinaga, Masami Mayuzumi. Hot dip fine Zn and Zn-Al alloy double coating for corrosion resistance at coastal area[J], Corrosion Science,2007, 49(1):149~157.
    61. 刘邦津.钢材的热浸镀铝[M],北京:冶金工业出版社,1995,1-8,94-96.
    62. 李焰.钢丝热浸镀层海水腐蚀机理及强化保护途径[D],沈阳东北大学,1999.
    63. 李苏琴.钢材热浸镀铝新工艺[J],热处理,2001,16(4):20-22.
    64. 倪志坚,任重远,浦炯.热浸镀铝技术特点及其在城乡建设和建筑业开发应用的展望[J],西北建筑工程学院学报,1997(4):65-69.
    65. 高殿奎,沈德久,王玉林.低碳钢热浸镀铝微弧氧化陶瓷层厚度研究[J],材料保护,2001,34(5):26-27.
    66. 夏原.钢的热浸镀铝涂层及特性研究[J],机械工程师,1992,(5):48.
    67. 曲敬信,汪泓宏.表面工程手册[M],北京:化学工业出版社,1998,637-642.
    68. 李金桂,吴再思.防腐蚀表面工程技术[M],北京:化学工业出版社,2002,209-211,217-218,228-231.
    69. Nicholls J E. Hot-Dipped Aluminum Coatings[J], Corrosion Technology,Oct.1964:16.
    70. Heumann T, Dittrich N. Structural character of the Fe2Al5 intermetallics compound in hot dip aluminizing process [J], Z.Metallk,1959,50:617-621.
    71. 王德庆,于金龙,段旭东.钢铁表面热浸镀铝技术回顾[J],大连铁道学院学报,2003,24(3):77-83.
    72. 林建强,刘海龙,宋诚忠等.形变20钢热浸镀铝的镀层组织分析[J],热加工工艺,1999,(3):20-21.
    73. 李国喜,郑毅然.钢材热浸铝工艺的研究与应用[J],材料保护,1993,26(9):11-14.
    74. G Adam. The Investigation on the Microstructure Model of Aluminized Steel[J], Metallurgical Transactions A,1997,8A(4):97.
    75. H. Okamoto, Paul A. Beck. Phase Relaationship in the Iron-Rich Fe-Al Alloys[J], Metallurgical Transactions,1971,2(2):569.
    76. 罗吉媛,俞敦义,杨继林.渗铝钢在Na2S溶液中的腐蚀行为研究[J],材料开发与应用,2000,15(4):14-25.
    77. 俞敦义,罗吉媛,杨继林等.渗铝钢在硫化氢盐水体系中的腐蚀研究[J],华中理工大学学报,2000,28(11):113-116.
    78. 宋世,刘顺华,李长茂等.钢材的连续热浸镀铝[J],金属热处理,2005(5):15-18.
    79. 主沉浮,魏云鹤,于萍等.高速公路护栏钢基表面热镀55%Al-Zn合金生产中的关键技术问题[J],中国表面工程,2003,5:43.
    80. Rocco A M, Tania Nogueira M C. Evaluation of chromate passivation and chromate conversion coating on 55%Al-Zn coated steel[J], Surface and Coatings Technology,179(2004):135.
    81. Dominic phelan, Bao Jiang Xu, Rian Dippenaar. Formation of intermetallic phases on 55wt.%Al-Zn-Si hot dip strip[J], Materials Science and Engineering, A(2006):144.
    82. 杜鹏翔.钢板热浸镀铝锌合金镀层的形成过程及其结构分析[J],2001,34(11): 14-15.
    83. Craen M V, Adams F. Study of a 55%Al-Zn alloy coating for coating protection steel wire products[J], Surface and Interface Analysis,1982,4(2):56-62.
    84. 刘顺华,高洪吾,李长茂等.钢丝连续热浸镀铝工艺的研究[J],材料保护,2000,33(9):41-43.
    85. EL-Mahallawy N A, Taha M A, Shady M A, EI-Sissi A R. Analysis of coating layer formed on steel strips during aluminizing by hot dipping in Al-Si baths [J], Materials Science and Technology,1997,13(10):832-838.
    86. EI—Maha uawy E A, Taha M A, Shoeib M A. Analysis of reaction layer formed on steel strips during hot dip aluminizing [J], Materials Science and Techinolgy,200(18): 1201-1208.
    87. 张洪斌,黄永昌,潘健武.钢材热浸镀层的腐蚀性能研究及其耐蚀性比较[J],全面腐蚀控制,1997,11(4):1-7.
    88. 丁庆如.钢铁渗铝及渗铝钢的性能[J],腐蚀与防护,1999,20(11): 508-510.
    89. 丁毅,黄星路,顾伯勤.渗铝Q235钢的渗层组织和抗高温氧化性[J],化工机械,2001,28(4):197-200.
    90. Shigeaki Kobayashi, Takao Yakou. Control of intermetallic compound layers at interface between steel and aluminum by diffusion-treatment[J], Materials Science and Engineering,2002, A338:44-53.
    91. 王兴庆,隋永江.铁铝原子在金属间化合物形成中的扩散[J],上海大学学报,199,4(2):661-667.
    92. 张伟,文九巴,龙永强等.渗铝钢扩散层空洞对循环氧化和剥落性能的影响[J],金属热处理学报,2004,26(5):96-100.
    93. 蒙继龙,魏兴钊,李文方等.渗铝钢高温氧化动力学研究[J],华南理工大学学报,1995,23(2):1-6.
    94. 武汉材料保护研究所.钢铁化学热处理金属图谱[M],北京:机械工业出版社,1980,70-79.
    95.1986 Annual Book of ASTM. Standars [M], Vol.01,06, Designation. A.474-486.
    96. Ho J S, Young Y. Microstructural and hardness investigation of hot-work tool steels by laser surface treatment[J], Journal Materials Processing Technology,2008, 201(3):342-347.
    97. Ryan P, Prangnell P B. Grain structure and homogeneity of pulsed laser treated surface on Al-acrospace alloys and FSWS[J], Materials Science and Engineering,2008, 479(1-2):65-75.
    98. 宋任国,何望昭,王天民等.激光表面熔凝改善热喷涂纯铝涂层的抗氢渗透性[J],材料保护,1999,32(10):6.
    99. 汤光平,周文风,黄文荣.激光重熔处理对渗硼层脆性的影响[J],理化检测-物理分册,2003,39(12):603-608.
    100.徐大鹏,周建忠,郭华锋,季霞.激光熔覆裂纹产生机理及控制方法分析[J],工具技术,2007,41(4):24-28.
    101.郭丽环.材料表面的激光合金化[J],大连大学学报,2003,24(2):16-18.
    102.胡芳友,温景林,王茂才.铸造铝合金表面激光熔凝合金化改性[J],东北大学学报,2002,23(10):964-967
    103.钟军斌,单际国,任家烈.FeAl金属间化合物光束合金化涂层组织的分层现象[J],金属热处理,2004,29(11):30-32.
    104.徐春.激光涂敷的搭接区分析[J].上海冶金专科学校学报,1996,17(3):135-138.
    105.张大伟,雷廷全,李富军等.激光单道与多道熔敷Ni+Cr3C2复合涂层的组织和硬度[J],材料热处理学报,2001,22(3):23-27.
    106.吴旭峰,张文珍,郭亨群.激光交叠热处理的实验研究[J],应用激光,1999,19(1):7-10.
    107.曹楚南.腐蚀电化学[M],北京:化学工业出版社,1994.
    108. Gerhard L. The influence of the nitrogen content of dip aluminized steel sheet on the growth of the Fe2Al5 intermetallic compound layer[J], Practical Metallography,1997, 14:251.
    109. Eggeler G, Auer W. The influence of Si on the growth of the alloy layer during hot dip aluminizing[J], Materials Science,1986,21(11):3348.
    110.丁毅,魏无际,周永璋.Q235钢热浸渗铝层的组织结构和耐高温腐蚀性能[J],材料保护,2001,10:17~18.
    111.张伟,范志康,徐国辉,文九巴.扩散工艺对渗铝钢循环氧化和剥落性能的影响机理研究[J],材料工程,2005(6):45-49.
    112. Hunderi O, Ryum N. The interaction between spherical particles and triple lines and quadruple[J], Acte Metall Mater,1992,40(3):543-549.
    113.胡光立,谢希文.钢的热处理[M],西安:西北工业大学出版社,1993.
    114.陈训浩.30MnMoV(30MnV)钢的研制[J],理化检验-物理分册,1998,34(2):12~15.
    115. Marcelo M, Luiz C C. Heat treatment temperature influence on ASTM A890 GR 6A super duplex stainless steel microstructure[J], Materials Characterization,2005,55(3): 225-233.
    116. Kenoch H, Reppich B. Strenghthening mechanisms in mgo containing coherent stressfree precipitation particles-Ⅱ.Experiments and comparison with thory[J], Acta Metallurgica 1975,23(9):1061-1068.
    117.丁志敏,姜来金,阎颖.表面铝含量对Q235钢电化学腐蚀性能的影响[J],材料保护,2007,40(7):27-29.
    118.王国佐,王万智.钢的化学热处理[M],北京:中国铁道出版社,1980:354-362.
    119.张树坤,张利民.36Mn2V钢石油套管的亚温淬火强韧化处理工艺[J],试验与研究,2005,34(3):20-22.
    120.李虎田,李智超,时海芳.25MnV强韧化工艺[J],辽宁工程技术大学学报,2001,20(2):216-217.
    121.杨文治.缓蚀剂[M],北京:化学工业出版社,1989,20.
    122.龙媛媛.胜利油田典型区块集输系统的腐蚀与防护[J],石油化工腐蚀与防护,2006,23(6):1-2.
    123.李宁,袁国伟,黎德育.化学镀镍基合金理论与技术[M],哈尔滨:哈尔滨工业大学出版社,2000,23-60.
    124.许振明,徐孝勉.铝和镁的表面处理[M],上海:上海科学技术文献出版社,2005,315-330.
    125. He Y D, Fu H F, Li X G, Gao W. Microstructure and properties of mechanical attrition enhanced electroless Ni-P plating on magnesium alloy[J], Scipta Materialia,2008, 58(6):504-507.
    126. Takacs D, Sziraki L, Torok T I, Solyom J. Effects of pre-treatments on the properties of electroless Ni-P layers deposited on AlMg2 alloy[J], Surface and Coatings Technology, 2007,201(8):4594-4600.
    127. Sampath K P, Kesavan N P. Studies on crystallization of electroless Ni-P deposits[J], Journal of Materials and Processing Technology,1996, (56):511-520.
    128.庞晓东,杨建斌,赵伟.确定石油管道表面粗糙度的新型工艺技术[J],国外油田 工程,2006,22(3):33-34.
    129.范建凤,马小玲.铝及铝合金直接化学镀镍前处理工艺研究[J],忻州师范学院学报,2007,23(2):7-9.
    130.陈平,王德中.环氧树脂及其应用[M],北京:化学工业出版社,2004,1-5.
    131.张曼灵.环氧树脂应用原理与技术[M],北京:机械工业出版社,2002,1-2,293-296.
    132.孟德军.汽车铝合金厢体的漆前处理与涂装[J],汽车工艺与材料,2000,(12):21-23.
    133.张赞,王达友,郭铭,周陈亮.铝壳艇表面处理与涂装工艺探究[J],中国涂料,2005,20(6):37-39.
    134.余存烨.石化防腐涂装工程表面预处理要求评述[J],清洗世界,2006,22(3):25-30.
    135.姜作伟.聚全氟乙丙烯符合涂层的研制及性能研究[D],沈阳,东北大学,2007.
    136. Li Guo, Wang Xueming, Li Aiju, Wang Weiqiang, Zheng Liqiang. Fabrication and adhesive properties of thin organosilane films coated on low carbon steel substrates[J], Surface and Coatings Technology,2007,201(24):9571-9578.
    137. Delucchi M, Cerisola G. Influence of organic coatings on the stability macrodefect-free cements exposed to water[J], Construction and Building Materials,2001,15(7): 351-359.
    138.宋玉苏,姚树人.涂层与基体附着力的研究进展[J],材料保护,1999,32(9):21-22.
    139. Silaia G, Prolongo, Gilberto del Rosario, Alejandro urena. Comparative study on the adhesive properties of different epoxy resins[J], International Journal of Adhesion and Adhesive,2006,26(3):125-132.
    140.黄永昌,Ya Lipkin.55%Al-Zn-1.6%Si合金热浸镀工艺及耐蚀性研究[J],腐蚀与防护,2000,21(6):266-268.
    141.石焕荣,魏无际,丁毅等.热镀锌和锌铝合金镀层的微观组织及盐雾腐蚀行为[J],材料保护,2002,35(3):35-36.
    142.刘秀玉,柴本银,马训强等.助镀剂在热浸镀工艺中的应用[J],山东化工,2004(3):20-21.
    143.虞万钟,孙瑛,张长桥等.电解活化助镀剂法热镀铝锌合金工艺[p],中国专利:CN88105232.9,1992-10-14.
    144.魏云鹤,于萍,郭小玉等.高速公路护栏热镀55%Al-Zn的质量控制及耐蚀性能[J], 材料保护,2004,37(1):53-55.
    145.朱涉瑶,赵振国.界面化学基础[M],北京:化学工业出版社,1996,41-44.
    146.颜肖慈,罗明道.界面化学[M],北京:化学工业出版社,2005,112-164.
    147.卢燕平.A155%-Zn合金镀层钢板组织与腐蚀特性[J],材料科学与工艺,1997,5(4):61-65.
    148. Tanigawa S, Doyama M. Hume-Rothery 15% rule and the pseudo-alloy-atom medol[J], Physics Letters A,1973,43(1):17-18.
    149. Tanigawa S, Doyama M. Justification of the size factor rule by pseudo alloy[J], Acta Metallurgica 1974,22(2):129-134.
    150. Watkins K G, Jones R D, Beachan P G. Electrochemical investigation of corrosion rate of 55 aluminium-zinc alloy coated steel[J], Materials Letters,1989,8 (1-2):26~30.