面向工程与科学计算的表面网格处理方法的若干问题研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
网格生成是诸如有限单元法(Finite Element Method,FEM)等各类数值方法的前处理过程,是计算机辅助工程(Computer Aided Engineering,CAE)的共性支撑技术之一,所用网格的质量和生成速度跟数值方法的精度、效率甚至成败都密切相关。作为几何网格的一个子分支,表面网格(包括曲面网格和平面网格)有其特殊性和重要性,不但它的生成跟几何造型直接相关,其自身也是体网格生成程序的输入和各类边界条件的直接加载对象,因而它对最终得到的体网格质量和数值计算结果都有很大影响。在对工程中所用的很多薄壳结构进行壳分析时也要求有高质量的表面网格来支持。此外表面网格在其他很多领域中也有广泛应用。
     为满足工程与科学计算中对高质量曲面网格的需求,本文系统研究了曲面网格生成、重生成和优化等相关热点和难点问题,提出或改进了一系列相应算法;随着大规模工程与科学计算需求的日益迫切,并行网格生成已成为一个新的研究热点,我们还实现了一个通用的并行平面网格生成框架。具体地说,本文从以下几个方面展开论述:
     第1章是绪论,简述了本文的研究背景和意义、研究内容及基本框架。
     第2章是研究综述,回顾了有限元网格生成方法的国内外研究现状,其中跟本文密切相关的几个部分是论述重点,包括网格单元的质量控制与网格过渡、并行网格生成、曲面网格生成和重生成以及网格优化。
     第3章给出了一些平面全四边形有限元网格的拓扑优化策略。由于单纯的光滑化效果受到网格拓扑结构的限制,在进行网格优化时常常需要将拓扑优化和光滑化结合起来使用以得到更高质量的网格。基于有限元网格的局部拓扑结构,这部分给出的拓扑优化策略被组织成“型—操作”的形式,其中“型”是指一类满足一定约束条件的局部区域网格,而“操作”则是指与特定型相对应的拓扑变换,它能优化局部网格中某些节点的度值,从而优化该局部网格质量,最终实现整体网格的优化。
     第4章给出了一个通用的并行平面网格生成框架,它包括如下模块:序列化或并行几何分解器、子域图管理模块、并行平面网格生成器以及可选的网格重划分模块。这个并行框架具有可扩展、稳定和高效等基本特性,同时还具有其他一些良好性质:它可对任意序列化及并行几何分解算法、序列化平面平格生成算法实现完全的代码复用;通过引入子域图的概念,并结合静态或动态图划分策略,可使得并行生成的分布式网格具有很好的划分质量,从而减少或消除传统方法中所需要的网格重划分代价,进而提高整个并行模拟过程的效率。存该框架基础上,实现了一个高效、可扩展的并行平面Delaunay网格生成器PDMG-2D,它能利用中等规模并行资源在几分钟内生成包含上亿三角形单元的平面网格。
     第5章给出了一个复杂组合参数曲面网格生成框架。从系统层面来看,它有自己的面向网格生成的几何模型及其拓扑结构定义,并有相应的几何建模功能,且能和商业CAD文件进行数据交换,并具备常用的几何验证和修复功能。从算法层面来看,它包含两种应用不同参数平面网格生成技巧的间接表面网格生成方法,分别是已有的基于变换矩阵的前沿推进法(Advancing Front Technique,AFT)和新提出的基于黎曼度量的Delaunay方法,它们所生成的表面网格质量都较高。本章详细介绍了框架和算法的各个方面,包括几何模型及其拓扑结构定义;物理空间和参数空间上的黎曼度量和变换矩阵及其相互关系,它们可用来控制参数平面上的网格生成;边界裁剪曲线离散;边界裁剪曲线离散节点在参数平面上的投影计算;参数平面上边界节点方向调整;参数平面网格生成以及对最终得到的整体曲面网格进行方向调整。这些不同环节之间只要满足一定的数据交换标准便可进行模块化封装。
     第6章给出了一个改进的曲面网格拉普拉斯光滑化算法。拉普拉斯光滑化算法是最基本也最流行的一种方法,它实现简单,效率很高,但也存在一些致命缺陷,如可能产生畸形单元或单元自交现象,会使曲面收缩及曲面几何特征消失。本章针对这些问题一一提出了相应的改进方法,它检测曲面的几何特征并在后面的光滑化过程中进行特别处理以保证它们不被丢失;它考虑了一些的新的几何因素,并根据微分几何中的极小曲面原理,通过求解一个带约束的优化问题来防止无效单元的产生;通过投影算法保证光滑化后的网格节点仍落在原始网格上,因此曲面也不会被收缩。
     第7章给出了一个保特征的曲面网格重生成方法,它可以根据用户指定的密度通过拓扑变换对网格的不同区域分别进行粗化细化,这些拓扑变换直接在离散曲面上操作而没有一个连续曲面支持,因而实现较为简单,最后通过边交换操作和本文第6章中给出的改进的拉普拉斯光滑化算法对网格质量进行优化,得到最终高质量的计算网格。
     本文最后的第8章总结全文,并展望了可以进一步开展的研究工作。
Mesh generation is the pre-process of various numerical methods such as Finite Element Method (FEM), and one of the universal supporting techniques of Computer Aided Engineering (CAE). The ability to generate high-qualified meshes in an efficient way is vital to the success of these numerical methods. In this field, surface meshes play a special and important role. They are the input of volume mesh generators and the boundary conditions will be attached on them, thus they will significantly influence the quality of volume meshes and further the numerical results. High-quality surface meshes are also needed for the analysis of shell structures, and their generation is directly related to geometric modelling. Surface meshes also have many other applications in various fields.
     To satisfy the requirements for high-quality surface meshes oriented to engineering and scientific computation, this thesis systematically studies the related problems such as surface meshing, remeshing and optimization with corresponding algorithms implemented. Besides, with the fast development of supercomputers and the ever larger problems arising in such areas as Computational Fluid Dynamics (CFD) and Computational Electro-Magnetics (CEM), close attention has been paid to parallel mesh generation to overcome the bottlenecks of serial mesh generation in terms of time and memory consuming. Thus we also have developed a general framework for parallel planar mesh generation. Concretely, the contents of the thesis are arranged as follows.
     The background, significance and framework of the thesis are briefly introduced in the first chapter. Then comes the review of finite element mesh generation methods, with the emphasis on closely related topics, such as mesh quality control and mesh gradation, parallel mesh generation, surface meshing and remeshing, and mesh optimization.
     Chapter 3 presents several procedures for improving the topology of unstructured quadrilateral meshes. Based on the local topological structures of the meshes, these procedures are organized in the form of "case-operation". A case is a kind of local meshed region, which satisfies some pre-defined constrained conditions, and its topology or the degrees of its vertices can be optimized by means of topological transformation.
     The general framework for parallel planar mesh generation is given in Chapter 4, which includes several modules, i.e. serial or parallel geometry decomposer, SubDomain Graph (SDG) Manager, parallel planar mesh generator and an optional mesh repartitioner. Besides the basic features required by parallel algorithms such as scalability, stability and high parallel efficiency, this framework also possesses some other good traits: It can reuse the existed codes of serial geometry decomposition and mesh generation algorithms; With the help of SDG and its static or dynamic partitioning, the parallel generated distributed mesh is of high partitioning quality, thereby the cost of mesh repartitioning, which is required by traditional methods, can be eliminated or reduced, consequently, the efficiency of the whole parallel simulation will be improved; A parallel planar Delaunay mesh generator PDMG-2D, which is integrated in this framework, can generate hundreds of millions of elements in minutes with medium sized parallel resources.
     Chapter 5 presents a system for complex composite parametric surface mesh generation. From the perspective of system, it has its own geometric definition oriented to mesh generation and the ability to generate such geometric objects, which reveals the effort to bridge the gap between the CAD and mesh generation systems. Meanwhile it also has the functions of CAD/CAE conversion and CAD repair, which brings it the capability of generating meshes on a mass of CAD models. From the perspective of algorithm, it includes two indirect surface mesh generation algorithms. One is an existed Advancing Front Technique (AFT) based on the transformation matrix, and the other a new Delaunay method based on Riemannian metric. The surface meshes generated by them are of high quality. The chapter introduces these algorithms and the framework in detail.
     Chapter 6 gives an improved Laplacian smoothing approach for surface meshes. The geometric features are first detected by a simple procedure and then treated carefully to prevent them from disappearing. All the nodes of smoothed meshes are guaranteed to be on the original discrete surface by a projection algorithm, thus the shrinkage problem of Laplacian smoothing is avoided. What's more important, the fatal flaw of Laplacian smoothing for generating extremely abnormal or even inverted elements is settled by solving a constrained optimization problem, which is based on the principle of minimum surface in differential geometry.
     Chapter 7 presents a surface remeshing method with feature preservation. According to the specified density, different regions on a mesh are coarsened or refined by topological transformations, which operate directly on the discrete surface without a continuous supporting surface. Thus it is easy to implement and of high efficiency. The mesh is finally optimized by methods of edge swapping and the improved Laplacian smoothing approach given in Chapter 6.
     Finally, Chapter 8 concludes the thesis and suggests the directions for future research work.
引文
[1]Owen SJ.http://www.imr.sandia.gov/papers/tumg4/owen-short-course.zip.
    [2]Bern M,Plassmann P.Mesh Generation.In:Sack JR,Urrutia J,editors.Handbook of Computational Geometry:Elsevier Science,1999.
    [3]Liou M-S,Zheng Y.A Novel Approach of Three-Dimensional Hybrid Grid Methodology:Part 2.Flow Solution.Computer Methods in Applied Mechanics and Engineering 2003;192:4173-93.
    [4]Zheng Y,Liou M-S.A Novel Approach of Three-Dimensional Hybrid Grid Methodology:Part 1.Grid Generation.Computer Methods in Applied Mechanics and Engineering 2003;192:4147-71.
    [5]Thompson JF,Soni BK,Weatherill NP.Handbook of Grid Generation.New York:CRC Press,Inc.,1999.
    [6]Castro-Diaz MJ,Hecht F,Mohammadi B.New Progress in Anisotropic Grid Adaptation for Inviscid and Viscous Flows Simulations.Proceedings of the 4th International Meshing Roundtable.Albuquerque,New Mexico,USA,1995.
    [7]Larwood BG,Weatherill NP,Hassan O,Morgan K.Domain decomposition approach for parallel unstructured mesh generation.International Journal for Numerical Methods in Engineering 2003;58:177-88.
    [8]Said R,Weatherill NP,Morgan K,Verhoeven NA.Distributed Parallel Delaunay Mesh Generation.Computer Methods in Applied Mechanics and Engineering 1999;177:109-25.
    [9]Thacker WC.A brief review of methods used for generating irregular computational grids.International Journal for Numerical Methods in Engineering 1980;15:1335-41.
    [10]Shephard MS.Approaches to the automatic generation and control of finite element meshes.Appl.Mech.Rev.1988;41:169-85.
    [11]Shephard MS,Grice KR,Lo JA,Schroeder WJ.Trends in automatic three-dimensional mesh generation.Computers & Structures 1988;30(1-2):421-9.
    [12]胡思球,张新访,向文,周济.有限元网格生成方法综述.计算机辅助设计与图形学学报1997;9(4):378-83.
    [13]Lo SH.Finite Element Mesh Generation and Adaptive Meshing.Progress in Structural Engineering and Materials 2002;4:381-99.
    [14]Owen SJ.A Survey of Unstructured Mesh Generation Technology.Proceedings of the 7th International Meshing Roundtable.Dearborn,Michigan,USA,1998.
    [15]Teng SH,Wong CW.Unstructured Mesh Generation:Theory,Practice,and Perspectives.International Journal of Computational Geometry and Applications 2000;10:227-66.
    [16]关振群,末超,顾元宪,陌晓峰.有限元网格生成方法研究的新进展.计算机辅助设计与图形学学报2003;15(1):1-14.
    [17]Cougny HLd,Shephard MS.Parallel Unstructured Grid Generation.In: Thompson JF, Soni BK, Weatherill NP, editors. Handbook of Grid Generation: CRC Press, Inc., 1999. pp. 24.1-.18.
    [18] Chrisochoides N. A Survey of Parallel Mesh Generation Methods. http://www.cs.wm.edu/-nikos/papers/pmesh-survey.pdf.
    [19] Vallet MG. Generation de maillages elements finis anisotropes et adattatifs. Paris: These Universite, 1992.
    [20] Borouchaki H, George PL, Hecht F, Laug P, Saltel E. Delaunay mesh generation governed by metric specifications, Part I. Algorithms. Finite Element Analysis and Design 1997;25 (1-2):61-83.
    [21] Borouchaki H, Laug P, George PL. Parametric surface meshing using a combined advancing-front generalized Delaunay approach. International Journal for Numerical Methods in Engineering 2000;49 (1):233-59.
    [22] Lee CK. Automatic adaptive mesh generation using metric advancing front approach. Engineering Computations 1999;16 (2):230-63.
    [23] Tristano JR, Owen SJ, Canann SA. Advancing front surface mesh generation in parametric space using a Riemannian surface definition. Proceedings of the 7th International Meshing Roundtable. Sandia National Labs, Dearborn, Michigan, 1998. pp. 429-45.
    [24] Lee CK. Automatic metric advancing front triangulation over curved surfaces. Engineering Computations 2000; 17:48-74.
    [25] Yamakawa S, Shimada K. Anisotropic tetrahedral meshing via bubble packing and advancing front. International Journal for Numerical Methods in Engineering 2003;57 (13): 1923-42.
    [26] Jansen KE, Shephard MS, Beall MW. On Anisotropic Mesh Generation and Quality Control in Complex Flow Problems. 10th International Meshing Roundtable, 2001. pp. 111-34.
    [27] Li X, Remacle JF, Chevaugeon N, M.S. S. Anisotropic mesh gradation control. 13th International Meshing Roundtable, 2004.
    [28] Lo SH. 3D anisotropic mesh refinement in compliance with a general metric specification. Finite Elements in Analysis and Design 2001;38 (1):3-19.
    [29] Borouchaki H, Hecht F, Frey PJ. Mesh Gradation Control. International Journal for Numerical Methods in Engineering 1998;43 (6): 1143-65.
    [30] Shimada K, Yamada A, Itoh T. Anisotropic Triangular Meshing of Parametric Surfaces via Close Packing of Ellipsoidal Bubbles. Proceedings of the 6th International Meshing Roundtable, 1997.
    [31] Peric D, Vaz M, Owen DRJ. On adaptive strategies for large deformations of elasto-plastic solids at finite strains: computational issues and industrial applications. Computer methods in applied mechanics and engineering 1999;176(1):279-312.
    [32] Borouchaki H, Frey PJ. Adaptive triangular-quadrilateral mesh generation. International Journal for Numerical Methods in Engineering 1998;41 (5):915-34.
    [33] Jones MT, Plassmann PE. Adaptive refinement of unstructured finite-element meshes. Finite Elements in Analysis and Design 1997;25 (1):41-60.
    
    [34] 关振群,单菊林,顾元宪.基于黎曼度量的复杂参数曲面有限元网格生成 方法.计算机学报2006;29(10):1423-33.
    [35]Lee CK.On curvature element-size control in metric surface mesh generation.International Journal for Numerical Methods in Engineering 2001;50:787-807.
    [36]Guan Z,Shah J,Zheng Y,Gu Y.An extended advancing front technique for closed surfaces mesh generation.International Journal for Numerical Methods in Engineering 2007.
    [37]Shewchuk JR.What is a good linear finite element? Interpolation,Conditioning,Anisotropy,and Quality Measures.http://www.cs.berkeley.edu/-jrs/papers/elemj.pdf.
    [38]Deister F,Tremel U,Hassan O,Weatherill NP.Fully automatic and fast mesh size specification for unstructured mesh generation.Engineering with Computers 2004;20:237-48.
    [39]Quadros WR,Owen SJ,Brewer M,Shimada K.Finite element mesh sizing for surfaces using skeleton.13th International Meshing Roundtable,2004.
    [40]Quadros WR,Shimada K,Owen SJ.Skeleton-based computational method for the generation of a 3D finite element mesh sizing function.Engineering with Computers 2004;20:249-64.
    [41]Lohner R.Extensions and improvements of the advancing front grid generation technique.Communications in Numerical Methods in Engineering 1996;12:683-702.
    [42]Zheng Y,Weatherill NP,Turner-Smith EA.An interative geometry utility environment for multi-disciplinary computational engineering.International Journal for Numerical Methods in Engineering 2002;53:1277-99.
    [43]陈建军.非结构化网格生成及其并行化的若干问题研究.浙江大学博士学位论文,2006.
    [44]Frey PJ,Borouchaki H.Geometric evaluation of finite element surface mesh.Finite Elements in Analysis and Design 1998;31:33-53.
    [45]Frey PJ,Borouchaki H.Surface mesh evaluation.6th International Meshing Roundtable,1997.
    [46]Frey PJ,Borouchaki H.Surface mesh quality evaluation.International Journal for Numerical Methods in Engineering 1999;45:101-18.
    [47]Anglada MV,Garcia NP,Crosa PB.Directional adaptive surface triangulation.Computer Aided Geometric Design 1999;16:107-26.
    [48]Frey PJ,Borouchaki H.Geometric surface mesh optimization.Computing and Visualization in Science 1998;21.
    [49]Frey PJ,Borouchaki H.Surface meshing using a geometric error estimate.International Journal for Numerical Methods in Engineering 2003;58:227-45.
    [50]Frey PJ.Generation and adaptation of computational surface meshes from discrete anatomical data.International Journal for Numerical Methods in Engineering 2004;60:1049-74.
    [51]Aftosmis MJ,Delanaye M,Haimes R.Automatic generation of CFD-Ready surface triangulations from CAD geometry.AIAA paper 1999.
    [52]Pica A.Geometric mesh adaptivity.Engineering Computation 1996;13(5):4-12.
    [53]Miranda ACO,Martha LF.Mesh generation on high-curvature surfaces based on a background quadtree structure.11th International Meshing Roundtable, 2002.
    [54] Cuilliere JC. An adaptive method for the automatic triangulation of 3D parametric surfaces. Computer-Aided Design 1998;30 (2): 139-49.
    [55] Bechet E, Cuilliere J-C, Trochu F. Generation of a finite element mesh from stereolithography (STL) files. Computer-Aided Design 2002;34:1-17.
    [56] Chew LP. Guaranteed-Quality Mesh Generation for Curved Surfaces. Proceedings of the ninth annual symposium on Computational geometry. San Diego, California, United States, pp. 274-80.
    [57] Sherwin SJ, Peiro J. Mesh generation in curvilinear domains using high-order elements. International Journal for Numerical Methods in Engineering 2002;53:207-23.
    [58] Lee CK. Automatic metric 3D surface mesh generation using subdivision surface geometrical model. Part 1: Construction of underlying geometrical model. International Journal for Numerical Methods in Engineering 2003;56:1593-614.
    [59] Lee CK. Automatic metric 3D surface mesh generation using subdivision surface geometrical model. Part 2: Mesh generation algorithm and examples. International Journal for Numerical Methods in Engineering 2003;56:1615-46.
    [60] Laug P, Borouchaki H. Interpolating and meshing 3D surface grids. International Journal for Numerical Methods in Engineering 2003;58:209-25.
    [61] Borouchaki H, Frey PJ, George PL. Unstructured Triangular-Quadrilateral mesh generation. Application to surface meshing. 5th International Meshing Roundtable, 1996.
    [62] P.J. Frey FA. Anisotropic mesh adaptation for CFD computation. Computer methods in applied mechanics and engineering 2005; 194:5068-82.
    [63] Bellenger E, Coorevits P. Adaptive mesh refinement for the control of cost and quality in finite element analysis. Finite Elements in Analysis and Design 2005;41:1413-40.
    [64] Li X, Shephard MS, Beall MW. 3D anisotropic mesh adaptation by mesh modification. Computer methods in applied mechanics and engineering 2005;194:4915-50.
    [65] Bank RE, Smith RK. Mesh smoothing using a posteriori error estimates. SIAM Journal on Numerical Analysis 1997.
    [66] Park YM, Kwon OJ. A parallel unstructured dynamic mesh adaptation algorithm for 3-D unsteady flows. International Journal for Numerical Methods in Fluids 2005;48:671-90.
    [67] Biswas R, Oliker L, Sohn A. Global load balancing with parallel mesh adaptation on distributed-memory systems. 1996.
    [68] Alauzet F, Li X, Seol ES, Shephard MS. Parallel anisotropic 3D mesh adaptation by mesh modification. Engineering with Computers 2006;21:247-58.
    [69] Laug P, Borouchaki H. Automatic remeshing of deformed and damaged structures. European Congress on Computational Methods in Applied Sciences and Engineering, ECCOMAS 2004, 2004.
    [70] Rassineux A, Villon P, J.-M.Savignat, Stab O. Surface remeshing by local hermite diffuse interpolation. International Journal for Numerical Methods in Engineering 2000;49:31-49.
    [71]Owen SJ,Saigal S.Surface mesh sizing control.International Journal for Numerical Methods in Engineering 2000;47:497-511.
    [72]Borouchaki H,Lafon P,Laug P,George PL.Minimal variational surfaces and quality triangular meshes.
    [73]Peraire J,Peiro J,Formaggia L,Morgan K,Zienkiewicz OC.Finite element Euler computations in three dimensions.International Journal for Numerical Methods in Engineering 1988;26:2135-59.
    [74]Zhu JZ,Zienkiewicz OC,Hinton E,Wu J.A new approach to the development of automatic quadrilateral mesh generation.International Journal for Numerical Methods in Engineering 1991;32:849-66.
    [75]Canann SA,Liu YC,Mobley AV.Automatic 3D surface meshing to address today's industrial needs.Finite Elements in Analysis and Design 1997;25:185-98.
    [76]宋超.非结构化自适应有限元网格网格生成的AFT方法.大连理工大学博士学位论文,2004.
    [77]Thompson JF,Warsi ZUA,Mastin CW.Numerical Grid Generation:Foundations and Applications.New York,USA:North-Holland,1985.
    [78]Zheng Y,Lewis RW,Gethin DT.Three-dimensional unstructured mesh generation:Part 1.Fundamental aspects of triangulation and point creation.Computer Methods in Applied mechanics and engineering 1996;134:249-68.
    [79]Zheng Y,Lewis RW,Gethin DT.Three-dimensional unstructured mesh generation:Part 2.Surface meshes.Computer Methods in Applied mechanics and engineering 1996;134:269-84.
    [80]Zheng Y,Lewis RW,Gethin DT.Three-dimensional unstructured mesh generation:Part 3.Volume meshes.Computer Methods in Applied mechanics and engineering 1996;134:285-310.
    [81]Chen H,Bishop J.Delaunay triangulation for curved surfaces.6th International Meshing Roundtable,1997.
    [82]熊英,胡于进,赵建军.基于映射法和Delaunay方法的曲面三角网格划分算法.计算机辅助设计与图形学学报2002;14(1).
    [83]李吉刚,杨钦,孟宪海.2D约束Delaunay剖分生成表面模型的表面网格.北京航空航天大学学报2005;31(11).
    [84]Zhao J,Wang Q,Zhong Y,Zhou J,Zhao Y.Delaunay triangulation method of curved surfaces based on Riemannian metric.Chinese Journal of Mechanical Engineering 2003;16(1).
    [85]Cougny HLD,Shephard MS.Surface Meshing Using Vertex Insertion.Proceedings of the 5th International Meshing Roundtable,1996.
    [86]Sun K.Improved Delaunay triangulation for trimmed Nurbs surface.Transactions of Nanjing University of Aeronautics & Astronautics 2004;21(2).
    [87]V.MA,P.CM,R.TJ.A 3D surface meshing algorithm using Riemann calculations with 2D Delaunay in parametric space.In:Generation TISoG,editor.Numerical Grid Generation in Computational Field Simulations,2000.pp.729-42.
    [88] 徐永安.约束Delaunay三角化的关键问题研究与算法实现及应用.浙江大学博士学位论文,1999.
    
    [89] Shewchuk JR. Delaunay refinement mesh generation. Computer Science Department: Carnegie Mellon University, 1997.
    [90] George PL, Borouchaki H, Laug P. An efficient algorithm for 3D adaptive meshing. Advances in Engineering Software 2002;33:377-87.
    [91] Du Q, Wang D. Recent progress in robust and quality Delaunay mesh generation. Journal of Computational and Applied Mathematics 2006;195 (1-2):8-23.
    [92] George PL. From Delaunay triangulation to adaptive anisotropic mesh generation.
    [93] Chrisochoides N, Nave D. Parallel Delaunay mesh generation kernel. International Journal for Numerical Methods in Engineering 2003;58:161-76.
    [94] Chrisochoides N, Nave D. Simultaneous mesh generation and partitioning for Delaunay meshes. 8th International Mesh Roundtable, 1999.
    [95] Nave D, Chrisochoides N, Chew LP. Guaranteed-quality parallel Delaunay refinement for restricted polyhedral domains. Computational Geometry: Theory and Applications 2004;28 (2-3):191-215.
    [96] Chernikov AN, Chrisochoides NP. Generalized Delaunay mesh refinement: from scalar to parallel. 15th International Mesh Roundtable, 2006.
    [97] Dirichlet PGL. Uber die Reduktion der positiven quadratishen Formen mit drei unbestimmten ganzen Zahlen. Journal fur die Reine und Angewandte Mathematik 1850;40:209-27.
    [98] Vorono(?) G. Nouvelles applications des parametres continus a la theorie des formes quadratiques, Premier Memoire: Sur quelques proprietes des formes quadratiques positive parfaits. Journal fur die Reine und Angewandte Mathematik 1907;33:97-178.
    [99] Vorono(?) G. Nouvelles applications des parametres continus a la theorie des formes quadratiques, Deuxieme Memoire: Recherches sur les parallelloedres primitives. Journal fur die Reine und Angewandte Mathematik 1908;134:198-287.
    [100] Delaunay B. Sur la sphere vide, Izvestia Akademii Nauk SSSR. Otdelenie Matematicheskii i Estestvennyka Nauk 1934;7:793-800.
    [101] Borouchaki H, George PL. Aspects of 2-D Delaunay mesh generation. International Journal for Numerical Methods in Engineering 1997;40:1957-75.
    [102] Weatherhill NP. The integrity of geometrical boundaries in the two-dimensional Delaunay triangulation. Commun. Appl. Numer Meth 1990;6:101-9.
    [103] George PL, Hecht F, Saltel E. Automatic mesh generator with specified boundary. Computer Methods in Applied Mechanics and Engineering 1991;92 (3):269-88.
    [104] Wright JP, Jack AG. Aspects of three-dimensional constrained Delaunay meshing. International Journal for Numerical Methods in Engineering 1994;37 (11):1841-61.
    
    [105] Du Q, Wang D. Boundary recovery for three dimensional conforming Delaunay triangulation. Computer Methods in Applied Mechanics and Engineering 2004;193:2547-63.
    [106]Weatherill NP,Hassan O.Efficient three-dimensional Delaunay triangulation with automatic point creation and imposed boundary constraints.International Journal for Numerical Methods in Engineering 1994;37(12):2005-39.
    [107]Talmor D.Well-Spaced Points for Numerical Methods.School of Computer Science:Carnegie Mellon University,1997.
    [108]Li X.Sliver-free three dimensional Delaunay mesh generation.University of Illinois,2000.
    [109]Peraire J,Peiro J,Morgan K.Advancing Front Grid Generation.In:Handbook of Grid Generation.
    [110]George AJ.Computer implementation of the finite element method.Stanford University,1971.
    [111]Lo SH.A new mesh generation scheme for arbitrary planar domains.International Journal for Numerical Methods in Engineering 1985;21:1403-26.
    [112]Lohner R,Parikh P.Generation of three-dimensional unstructured grids by the advancing-front method.AIAA Paper 1988.
    [113]单菊林.自适应有限元网格生成算法研究与应用.大连理工大学博士学位论文,2007.
    [114]Peiro J.Surface grid generation.In:Handbook of Grid Generation.
    [115]Ito Y,Shih AM,Erukala AK,Soni BK,Chernikov A,Chrisochoides NP,Nakahashi K.Parallel unstructured mesh generation by an advancing front method.Mathematics and Computers in Simulation 2007;75(5-6):200-9.
    [116]Pirzadeh S.Unstructured Viscous Grid Generation by Advancing-Layers Method.AIAA Paper 1993.pp.420-34.
    [117]Blacker TD,Stephenson MB.Paving:A New Approach to Automated Quadrilateral Mesh Generation.International Journal for Numerical Methods in Engineering 1991;32:811-47.
    [118]Cass RJ,Benzley SE,Meyers RJ,Blacker TD.Generalized 3-D Paving:An Automated Quadrilateral Surface Mesh Generation Algorithm.International Journal for Numerical Methods in Engineering 1996;39:1475-89.
    [119]Tautges TJ,Blacker T,Mitchell S.The whisker-weaving algorithm:A connectivity based method for constructing all-hexahedral finite element meshes.International Journal for Numerical Methods in Engineering 1996;39(19):3327-49.
    [120]Blacker TD,Meyers RJ.Seams and wedges in plastering:A 3D hexahedral mesh generation algorithm.Engineering with Computers 1993;9(2):83-93.
    [121]Yerry MA,Shephard MS.Three-Dimensional Mesh Generation by Modified Octree Technique.International Journal for Numerical Methods in Engineering 1984;20:1965-90.
    [122]Shephard MS,Georges MK.Three-Dimensional Mesh Generation by Finite Octree Technique.International Journal for Numerical Methods in Engineering 1991;32:709-49.
    [123]Schneiders R,Schindler R,Weiler F.Octree-based generation of hexahedral element meshes.5th International Meshing Roundtable.Pittsburgh,1996.pp.205-16.
    [124] Cougny HLd, Shephard MS. Parallel Volume Meshing Using Face Removals and Hierarchical Repartitioning. Computer Methods in Applied Mechanics and Engineering 1999; 174:275-98.
    
    [125] Lohner R. A Parallel Advancing Front Grid Generation Scheme. International Journal for Numerical Methods in Engineering 2001 ;51:663-78.
    [126] Chernikov A, Chrisochoides N. Practical and Efficient Point Insertion Scheduling Method for Parallel Guaranteed Quality Delaunay Refinement. Proceedings of the 18th Annual International Conference on Supercomputing. Saint-Malo, France, 2004.
    [127] Touheed N, Jimack PK. Improved parallel mesh generation through dynamic load-balancing.
    [128] Lammer L, Burghardt M. Parallel generation of triangular and quadrilateral meshes. Advances in Engineering Software 2000;31:929-36.
    [129] Lohner R. Parallel unstructured grid generation. Computer Methods in Applied Mechanics and Engineering 1992;95:343-57.
    [130] Chae S-W, Jeong J-H. Unstructured Surface Meshing Using Operators. Proceedings of the6th International Meshing Roundtable. Park City, Utah, USA, 1997.
    [131] Nowottny D. Quadrilateral Mesh Generation via Geometrically Optimized Domain Decomposition. Proceedings of the 6th International Meshing Roundtable. Park City, Utah, USA, 1997.
    [132] Sarrate J, Huerta A. Efficient Unstructured Quadrilateral Mesh Generation. International Journal for Numerical Methods in Engineering 2000;49:1327-50.
    [133] Laug P, Borouchaki H. Molecular surface modeling and meshing. Engineering with Computers 2002;18:199-210.
    [134] Beall MW, Walsh J, Shephard MS. A comparison of techniques for geometry access related to mesh generation. Engineering with Computers 2004;20:210-21.
    [135] Zheng Y, Weatherill NP, Hassan O. Topology abstraction of surface models for three-dimensional grid generation. Engineering with Computers 2001;17:28-38.
    [136] Dawes WN, Dhanasekaran PC, Demargne AAJ, Kellar WP, Savill AM. Reducing bottlenecks in the CAD-to-mesh-to-solution cycle time to allow CFD to participate in design. Journal of Turbomachinery 2001;123 (3):552-7.
    [137] Panthaki MJ, Sahu R, Gerstle WH. An object-oriented virtual geometry interface. 7th International Meshing Roundtable, 1997.
    [138] Tautges TJ. The common geometry module (CGM): A generic, extensible geometry interface. 9th International Meshing Roundtable, 2000.
    [139] Merazzi S, Gerteisen EA, Mezentsev A. A generic CAD-mesh interface. 9th International Meshing Roundtable, 2000.
    [140] Lira WM, Cavalcanti PR, Coelho LCG, Martha LF. A modeling methodology for finite element mesh generation of multi-region models with parametric surfaces. Computers & Graphics 2002;26:907-18.
    [141] Marchant MJ, Weatherill NP, Turner-Smith E, Zheng Y, Sotirakos M. A Parallel Simulation User Environment for Computational Engineering. Proceedings of the 5th International Conference on Numerical Grid Generation in Computational Field Simulations.Mississippi State University,MS,USA,1996.
    [142]Botsch M,Steinberg S,Bischoff S,Kobbelt L.OpenMesh - a generic and efficient polygon mesh data structure.OpenSG Symposium,2002.
    [143]http://www.cgal.org
    [144]Garimella RV.Mesh data structure selection for mesh generation and FEA application.International Journal of Numerical Methods in Engineering 2002;55(4):451-78.
    [145]谭永基,陈华,崔灵伟.参数曲面的有限元网格化.计算机应用与软件2001:11.
    [146]Tremel U,Deister F,Hassan O,Weatherill NP.Automatic unstructured surface mesh generation for complex configuration.International Journal for Numerical Methods in Fluids 2004;45:341-64.
    [147]陈文亮,孙立波,张胜.复杂曲面混合网格的生成算法.中国图形图象学报2004;9(8).
    [148]Rypl D,Bittnar Z.Direct triangulation of 3d surfaces using the advancing front technique.Numerical methods in engineering,ECCOMAS '96,1996.pp.86-99.
    [149]Wang D,Hassan O,Morgan K,Weatherill N.EQSM:An efficient high quality surface grid generation method based on remeshing.Computer Methods in Applied Mechanics and Engineering 2006;195:5621-33.
    [150]Wang D,Hassan O,Morgan K,Weatherill N.Enhanced remeshing from STL files with applications to surface grid generation.Communications in Numerical Methods in Engineering 2007;23:227-39.
    [151]Owen SJ,White DR,Tautges TJ.Facet-based surfaces for 3d mesh generation.11th International Meshing,Roundtable.2002.
    [152]梅中义,范玉青,胡世光.NURBS曲面的有限元网格三角剖分.计算机辅助设计与图形学学报1997;9(4).
    [153]Lau TS,Lo SH.Finite element mesh generation over analytical curved surfaces.Computers & Structures 1996;59(2):301-9.
    [154]Rypl D,Krysl P.Triangulation of 3D surfaces.Engineering with Computers 1997;13(2):87-98.
    [155]Borouchaki H,George PL,Mohammadi B.Delaunay mesh generation governed by metric specifications.Part Ⅱ.Applications.Finite Elements in Analysis and Design 1997;25:85-109.
    [156]FLITE-3D User Manual.Singleton Park,Swansea SA2 8PP,U.K.:Computational and Civil Engineering Department,University of Wales Swansea.
    [157]Jiao XM,Heath MT.Feature detection for surface meshes.Proceedings of 8th International Conference on Numerical Grid Generation in Computational Field Simulations.Honolulu,HI,2002.pp.705-14.
    [158]Frey PJ.About surface remeshing.Proceedings of 9th International Meshing Roundtable.New Orleans,Louisiana,USA,2000.pp.123-36.
    [159]Lohner R.Regridding surface triangulations.Journal of Computational Physics 1996;126(1):1-10.
    [160]Hattangady NV.Coarsening of mesh models for representation of rigid objects in finite element analysis. International Journal for Numerical Methods in Engineering 1999;44:313-26.
    
    [161] Borouchaki H, Frey PJ. Simplification of surface mesh using Hausdorff envelope. Computer Methods in Applied Mechanics and Engineering 2005;194:4864-84.
    [162] Alliez P, Ucelli G, Gotsman C, Attene M. Recent advances in remeshing of surfaces.
    [163] Heckbert PS, Garland M. Survey of polygonal surface simplification algorithms.
    [164] Field D. Laplacian smoothing and Delaunay triangulations. Communications in Numerical Methods in Engineering 1988;4:709-12.
    [165] Canann SA, Liu YC, Mobley AV. Automated 3D surface meshing to address today's industrial needs. Finite Elements in Analysis and Design 1997;25 (1-2):185-98.
    [166] Hansbo P. Generalized Laplacian smoothing of unstructured grids. Communications in Numerical Methods in Engineering 1995;11:455-64.
    
    [167] Ji Z, Liu L, Wang G. A global Laplacian smoothing approach with feature preservation. 9th International Conference on Computer Aided Design and Computer Graphics, 2005.
    [168] Freitag LA, Knupp PM. Tetrahedral mesh improvement via optimization of the element condition number. International Journal for Numerical Methods in Engineering 2002;53:1377-91.
    [169] Knupp PM. A method for hexahedral mesh shape optimization. International Journal for Numerical Methods in Engineering 2003;58:319-32.
    [170] Munson T. Mesh shape-quality optimization using the inverse mean-ratio metric. Mathematical Programming 2007;110 (3):561-90.
    [171] Knupp PM. Achieving finite element mesh quality via optimization of the Jacobian matrix norm and associated quantities. Part I-A framework for surface mesh optimization. International Journal for Numerical Methods in Engineering 2000;48:401-20.
    [172] Knupp PM. Achieving finite element mesh quality via optimization of the Jacobian matrix norm and associated quantities. Part II-A framework for volume mesh optimization and the condition number of the Jacobian matrix. International Journal for Numerical Methods in Engineering 2000;48:l 165-85.
    [173] Knupp PM. Algebraic mesh quality metrics. SIAM Journal on Scientific Computing 2001;23 (1): 193-218.
    [174] Dompierre J, Labbe P, Guibault F, Camarero R. Proposal of benchmarks for 3d unstructured tetrahedral mesh optimization. 7th International Meshing Roundtable, 1998.
    [175] Freitag LA, Plassmann P. Local optimization-based simplicial mesh untangling and improvement. International Journal for Numerical Methods in Engineering 2000;49:109-25.
    [176] Freitag LA. On combining laplacian and optimization-based mesh smoothing techniques. AMD Trends in Unstructured Mesh Generation, ASME 1997;220 (1):37-43.
    [177] Canann SA, Tristano JR, Staten ML. An approach to combined Laplacian and optimization-based smoothing for triangular, quadrilateral, and quad-dominant meshes. 7th International Meshing Roundtable, 1998.
    [178] Garimella RV, Shashkov MJ, Knupp PM. Triangular and quadrilateral surface mesh quality optimization using local parametrization. Computer Methods in Applied Mechanics and Engineering 2004;193:913-28.
    [179] Escobar JM, Montero G, Montenegro R, Rodriguez E. An algebraic method for smoothing surface triangulations on a local parametric space. International Journal for Numerical Methods in Engineering 2006;66:740-60.
    [180] Jiao X. Volume and feature preservation in surface mesh optimization. 15th International Meshing Roundtable, 2006.
    [181] Acikgoz N, Bottasso CL. Metric-driven mesh optimization using a local simulated annealing algorithm. International Journal for Numerical Methods in Engineering 2007;71:201-23.
    [182] Brewer M, Diachin LF, Knupp P, Leurent T, Melander D. The mesquite mesh quality improvement toolkit. 12th International Meshing Roundtable, 2003.
    [183] Lohner R, Morgan K, Zienkiewicz OC. Adaptive grid refinement for the compressible Euler equations. In: I. Babuska OCZ, J. Gago and E.R. de A. Oliviera, editor. Accuracy Estimates and Adaptive Refinements in Finite Element Computations: Wiley, 1986. pp. 281-97.
    [184] George PL, Borouchaki H. Back to Edge Flips in 3 Dimensions. Proceedings of the 12th International Meshing Roundtable. Santa Fe, New Mexico, USA, 2003. pp. 393-402.
    [185] Yamakawa S, Shimada K. Increasing the Number and Volume of Hexahedral and Prism Elements in a Hex-Dominant Mesh by Topological Transformations. Proceedings of the 12th International Meshing Roundtable. Santa Fe, New Mexico, USA, 2003. pp. 403-13.
    [186] Schneiders R, Debye J. Refinement algorithms for unstructured quadrilateral or brick element meshes. Proceedings IMA Workshop on Modeling, Mesh Generation and Adaptive Numerical Methods for Partial Differential Equations, 1995.
    [187] Staten ML, Canann SA. Post refinement element shape improvement for quadrilateral meshes. Applied Mechanics Division-Publications, Trends in Unstructured Mesh Generation 1997;220:9-16.
    [188] Kinney P. CleanUp: Improving quadrilateral finite element meshes. Proceedings of the 6th International Meshing Roundtable. Park City, Utah, USA, 1997. pp. 437-47.
    [189] Canann SA, Muthukrishnan SN, Phillips RK. Topological refinement procedures for quadrilateral finite element meshes. Engineering with Computers 1998;12:168-77.
    
    [190] 陈建军,郑耀.多子域网格生成方法中健壮保质的型模板.计算机辅助设计与图形学学报2005;17(10):2286-92.
    
    [191] Hodgson DC, Jimack PK. Efficient Parallel Generation of Partitioned, Unstructured Meshes. Advances in Engineering Software 1996;27:59-70.
    [192] METIS. Family of multilevel partitioning algorithms. 2007.
    [193]梁义,陈建军,陈立岗,郑耀.并行平面Delaunay网格生成.浙江大学学报(工学版) 2008.
    [194]ParMETIS.Parallel graph partitioning and fill reducing matrix ordering.2007.
    [195]朱心雄.自由曲线曲面造型技术:科学出版社,2000.
    [196]Ferguson JC.Multivariable curve interpolation.Seattle,Washington:The Boeing Co.,1963.
    [197]Opera J.Differential geometry and its applications,Second Edition:China Machine Press,2005.
    [198]黄克智,薛明德,陆明万.张量分析,第2版:清华大学出版社,2003.
    [199]William HP,Saul AT,William TV,Brian PF.Numerical recipes in C++,Second Edition:Publishing House of Electronics Industry,2003.
    [200]O'Rourke J.Computational Geometry in C,Second Edition:China Machine Press,2005.
    [201]Bonet J.Error estimators and enrichment procedures for the finite element analysis of thin sheet large deformation processes.International Journal for Numerical Methods in Engineering 1994;37(9):1573-91.
    [202]陈立岗,郑耀,陈建军.全四边形有限元网格的拓扑优化策略.计算机辅助设计与图形学学报2007;19(1):78-83.