Harpin_(Xoo)诱发植物过敏反应和抗病性信号传导解析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
植物使用不同的信号通路控制对不同类型病原物的抗性。由水杨酸(salicylic acid,
    SA)、乙烯(ethylene)、茉莉酸(jasmonic acid,JA)介导的信号传导被称为植物抗病
    防卫基本信号通路。它们之间及与其它信号通路之间通过某些通调因子的作用进行交
    叉对话,形成复杂的信号传导网络,可以使植物应对不同刺激、快速调动防卫反应。
    这些因子如何对不同的外源信号作出反应,通过何种机制形成信号网络并发挥作用,
    是抗病防卫研究中的重要内容。
     Harpins 是革兰氏阴性(G-)植物病原细菌产生的一类蛋白质激发子,可以在产生
    菌的非寄主植物上激发过敏反应即过敏性细胞死亡(hypersensitive cell death, HCD)。该
    类蛋白拥有共同生化特征:水溶性酸性蛋白、富含甘氨酸、不含半胱氨酸、热稳定、
    对蛋白酶敏感。已从绝大多数 G-植物病原细菌中克隆到编码 harpin 的基因,并在原核
    系统中表达出了有生物学活性的harpin蛋白。 HarpinXoo 是水稻白叶枯病菌 Xanthomonas
    oryzae pv. oryzae 的 hrfAXoo 基因编码的蛋白,它显示一些独特性质,如它比其它 harpins
    都小,富含甘氨酸,并含有其它 harpins 不具备的半胱氨酸。HarpinXoo还具有其它 harpin
    所共有的生物学活性,包括诱发过敏反应、诱导抗病、抗虫和促进作物生长等,但对
    其作用机制还不知道。
     本研究的目的是研究 harpinXoo是否启动抗病和 HCD 信号传导通路,解剖二者的关
    系。采用了两种方法,一种是解析外源施用 harpinXoo引发的反应;二是将编码 harpinXoo
    的基因 hrfAXoo转化番茄,研究转基因在番茄体内表达激发的有关信号传导的关键环节。
    结果表明,外源施用 harpinXoo 在烟草上可同时激发过敏反应和对 TMV 的抗性,而在
    番茄上则启动了 Pti 激酶通路和对细菌 Pseudomonas syringae pv. tomato 的抗性;转
    hrfAXoo 基因的番茄也获得了对该细菌的抗性。
    1.HarpinXoo 启动烟草 HCD 通路,诱发具有程序化细胞死亡特征的反应
     病原物等因子诱导的 HCD 与程序化的细胞死亡(programmed cell death, PCD)发
    生机制相似,可引发细胞核形态的变化、基因组 DNA 的断裂、信号分子 H2O2的积累
    等典型反应。为明确 harpinXoo诱导的烟草 HCD 是否具有 PCD 的特征,我们从以下几
    方面进行了研究。
     1.1 用 harpinXoo 注射烟草最早在诱导后 20h 开始出现肉眼可见的 macro-HR,为确
     1
    
    
    刘爱新:HarpinXoo诱发植物过敏反应和抗病性信号传导解析
    定在 macro-HR 发生前是否有微过敏反应(micro-HR),我们用死细胞特异结合染料 Evans
    blue 对 harpinXoo 诱导的烟草叶片染色然后测定光吸收,检测细胞死亡动态。结果是,诱
    导后 4-8h 开始有少量光吸收,到 16-20h 光吸收达最大值,表明在 macro-HR 发生前烟
    草细胞已陆续发生 micro-HR。
     1.2 hin1 和 hsr203J 是 HCD 的分子标志,为检测 harpinXoo 诱导的 HCD 是否伴有
    标志基因的表达,用 RT-PCR 法对 hin1 和 hsr203J 的诱导表达进行了研究,结果发现诱
    导后 3h,hin1 和 hsr203J 已开始表达,诱导后 5-7h 表达相对较强,至 10h 表达开始减
    弱。
     1.3 用 DNA 特异结合染料(DAPI)对 harpinXoo 诱导处理的烟草叶片进行染色、在
    荧光显微镜下观察发现,细胞核染色质发生了浓缩和片断化;基因组 DNA 琼脂糖凝胶
    电泳表明,烟草叶片在诱导后 12h 开始出现 DNA 片断化,到 24-48h,断裂的 DNA 小
    片段大量增加。这些现象说明,harpinXoo诱导的烟草 HCD 具有类似细胞凋亡的性质。
     1.4 H2O2 是 HCD 通路的重要信号分子,它在植物组织中的积累可以用专化性染料
    DAB 染色来显示。为检测 harpinXoo 诱导的烟草 HCD 是否伴有信号分子的积累,我们对
    harpinXoo 诱导的烟草叶片做了 DAB 染色观察。结果发现,在 harpinXoo 诱导的烟草叶片
    中有 H2O2的明显积累;为了明确 H2O2积累的分子基础,我们对 H2O2代谢相关基因的
    诱导表达进行了研究。RT-PCR 分析显示,harpinXoo诱导后 1h 编码 NADPH 氧化酶的基
    因 rboh 即开始表达,3-7h 表达较强,10h 开始减弱,其表达趋势与 H2O2积累趋势一致,
    编码交替氧化酶的基因 aox1 表达较迟,sodA 基因则在诱导后表达减弱。这些基因的不
    同表达模式说明,它们在 harpinXoo诱导的 H2O2代谢过程中可能具有不同的作用。
     1.5 我们还对 harpinXoo 诱导的烟草叶片进行了组织化学研究 诱导叶片经乳酚油组
     o
    织透明、在荧光显微镜下观察,发现死亡细胞发出较强的荧光,表明由 harpinXoo诱导的
    烟草 HCD 过程可能涉及了苯丙烷代谢途径。
     以上结果说明,harpinXoo 诱导的烟草 HCD 不仅具有程序化细胞死亡的典型特征,
    还伴有信号分子 H2O2的积累和组织化学的变化。
    2.HarpinXoo诱导烟草对 TMV 的抗性
     用 harpinXoo喷雾处理烟草可诱导对 TMV 的抗性,抗病效率平均约 47.97%。对诱导
    的烟草叶片经 RT-PCR 检测发现,harpinXoo处理可诱导防卫反应基因 PR-1a、PR-1b 的
    表达,这表明 harpinXoo可能通过激活系统获得抗性(SAR)通路诱导了对 TMV 的抗性。
     2
    
    
    山东农业大学博士学位论文
    3
Plants defend themselves against different pathogens by activating distinct signal
    transduction pathways. Basal defense pathways leading to non-specific resistance to
    different categories of pathogens are mediated by plant hormones salicylic acid (SA),
    jasmonates (JA) and ethylene (ET). These pathways often cross-talk one to another and with
    pathways for insect resistance, plant growth and development in response to stimulations by
    different exogenous signals. The cross-talk requires modulation by components that can
    regulate different pathways.
     Harpins are a group of proteinous elicitors produced by Gram-negative (G-) plant
    pathogenic bacteria and are required for induction of the hypersensitive response (HR) in
    non-host of the bacteria. They share some common characteristics such as rich in Glycine,
    containing no Cysteine, heat-stable and sensitive to protease. Genes encoding harpins have
    been cloned from most G- bacteria and harpins with biological functions are expressed in E.
    coli. HarpinXoo in this study has been identified recently from a Japanese strain of
    Xanthomonas oryzae pv. oryzae and expressed in E. coli BL21. It showed some special
    properties such as having small molecular weight, containing Cysteine ect. Application of
    harpinXoo to many plants can enhance plant growth, induce resistance to pathogens and
    insects. How harpinXoo performes those diverse functions have been unclear.
     Studies in this Ph. D project was aimed to dissect the signaling pathway leading to
    pathogen defense and hypersensitive cell death (HCD) induced by harpinXoo. Two
    approaches were used to determine signaling pathway in two plant species. The first
    approach is the assays of plants treated with harpinXoo for signaling events. The second
    approach is to test disease resistance and signaling of transgenic tomato plants expressing
    hrfAXoo. Tobacco and tomato plants sprayed with harpinXoo can enhance disease resistance to
    TMV and Pseudomonas syringae pv. tomato respectively. Tobacco plants infiltrated with
    harpinXoo have showed properties of PCD (programmed cell death) but it has not in tomato.
     4
    
    
    山东农业大学博士学位论文
    Transgenic tomato expressing harpinXoo showed increased resistance to P. syringae pv.
    tomato also.
     HCD in tobacco induced by harpinXoo showing properties of PCD
     HR/HCD occurred after infiltration of tobacco leaves with harpinXoo. Histochemical and
    molecular changes can be tested during the process of HCD including condensation of nucleic
    chromatin, cleavage and fragmentation of nucleic DNA, accumulation of H2O2 and
    expression of defense genes. In order to determine whether these responses occur in tobacco
    induced by harpinXoo or not, we tested the histochemical and molecular changes in tobacco
    leaves after infiltration with harpinXoo. The results are read as follows.
     1. Death kinetics study showed that micro-HR began to occur gradually before the
    occurrence of macro-HR. HR observed by our naked eyes are results of micro-HR. Results of
    RT-PCR showed that the expression of hin1and hsr203 started before the occurrence of
    macro-HR. The expression module of those two genes showed that they involved in tobacco
    HCD.
     2. To understand the cellular and molecular response in the process of HCD, tobacco leaves
    infiltrated with harpinXoo are stained with DAPI and examined under up-right fluorescence
    microscope using UV filters sets. Tobacco cells treated with harpinXoo showed condensation
    and fragmentation of nucleic chromatin accompanying HCD. DNA were extracted at different
    times after infiltration and separated by 2% agarose gel electrophoresis. DNA fragmentation
    began to appear 12 hours after induction; Most DNA was degraded to small fragment 24 to 48
    hours after induction. These results showed that tobacco cells induced by harpinXoo had the
    properties of programmed cell death.
     3. The results of DAB staining showed that H2O2 accumulated in tobacco leaves during
    the process of HCD, which prior to the condensa
引文
1. Aarts N., Metz M., Holub E., Staskawicz B. J., Daniels M. J. and Parker J. E. 1998. Different
     requirements for EDS1 and NDR1 by disease resistance genes define at least two R gene-mediated
     signaling pathways in Arabidopsis. Proc. Natl. Acad. Sci. USA, 95: 10306-10311
    2. Alfano J. R. and Collmer A. 1996. Bacterial pathogens in plants: life up against the wall. Plant Cell, 8:
     1683-1698
    3. Alfano J. R., Charkowski A. O., Deng W. L., Badel J. L., Tanja P. O. and Collmer A. 2000. The
     Pseudomonas syringae hrp pathogenicity island has a tripartite mosaic structure composed of a cluster
     of type III secretion genes bounded by exchangeable effector and conserved effector loci that
     contribute to parasitic fitness and pathogenicity in plants. Proc. Ntal. Acad. Sci. USA, 97: 4856-4861
    4. Alonso J. M., Hirayama T., Roman G., Nourizadeh S. and Ecker J. R. 1999. EIN2, a bifunctional
     transducer of ethylene and stress responses in Arabidopsis. Science, 284: 2148–2152
    5. Anderson P. A., Lawrence G. J., Morrish B. C., Ayliffe M. A., Finnegan E. J. and Ellis J. G. 1997.
     Inactivation of the flax rust resistance gene M associated with loss of a repeated unit within the
     leucine-rich repeat coding region. Plant Cell, 9: 641-651
    6. Alvarez M. E., Pennell R. I., Meijer P. J., Ishikawa A., Dixon R. A. and Lamb C. 1998. Reactive
     oxygen intermediates mediate a systemic signal network in the establishment of plant immunity. Cell,
     92: 773-784
    7. Arlat M. F., Van Gijsegem, Huet J. C., Pernollet J. C. and Boucher C. A. 1994. PopA1, a protein which
     induces a hypersensitive-like response on specific petunia genotypes, is secreted via the Hrp pathway
     of Pseudomonas solanacearum. Eur. Mol. Biol. Org. J., 13: 543-553
    8. Asai T., Stone J. M., Heard J. E., Kovtun Y., Yorgey P., Sheen J. and Ausubel F. M. 2000. Fumonisin
     B1–induced cell death in Arabidopsis protoplasts requires jasmonate-, ethylene-, and
     salicylate-dependent signaling pathways. Plant Cell, 12: 1823–1836
    9. Austin M. J., Muskett P., Kahn K., Feys B. J., Jones J. D. G. and Parker J. E. 2002. Regulatory role of
     SGT1 in early R gene-mediated plant defenses. Science, 295: 2073–2076
    10. Alvarez M. E., Penell R. I. and Meijer P. L. 1998. Reactive oxygen intermediates mediate a systemic
     signal network in the establishment of plant immunity. Cell, 92: 773-784
    11. Azevedo C., Sadanandom A., Kitagawa K., Freialdenhoven A., Shirasu K. and Schulze-Lefert P.
     2002. The RAR1 interactor SGT1, an essential component of R gene-triggered disease resistance.
     Science, 295: 2077–2080
    12. Bachmair A., Novatchkova M., Potuschak T. and Eisenhaber F. 2001. Ubiquitylation in plants: A
     post-genomic look at a post-translational modification. Trends Plant Sci., 6: 463–470
    13. Baker C. J., Orlandi E. W. and Mock N. M. 1993. Harpin, an elicitor of hypersensitive response in
     tobacco caused by Erwinia amylovora, elicits active oxygen production in suspension cells. Plant
     85
    
    
    刘爱新:HarpinXoo诱发植物过敏反应和抗病性信号传导解析
     Physiol., 102: 1341-1344
    14. Baker C. J. and Mock N. M. 1994. An improved method for monitoring cell death in cell suspension
     and leaf disc assays using Evans blue. Plant Cell, Tissue and Culture, 39: 7-12
    15. Bauer D. W., Wei Z. M., Beer S. V. and Collmer A. 1995. Erwinia chrysanthemi harpinEch: an elicitor
     of the hypersensitive response that contributes to soft-rot pathogenesis. Mol. Plant-Microbe Interact.,
     8: 484-491
    16. Bell P. R. 1996. Megspore abortion –a consequence of selectable apoptosis. Int. J. Plant Sci., 157:
     1-7
    17. Bendahmane A., Kanyuka K. and Baulcombe D. C. 1999. The Rx gene from potato controls seporate
     virus resistance and cell death responses. Plant Cell, 11: 781-792
    18. Bent A. 1996. Function meets structure in the study of plant disease resistance genes. Plant Cell, 8:
     1757–1771
    19. Bent A. F., Kunkel B. N., Dahlbeck D., Brown K. L., Schmldt R. L., Giraudat J., Leung J. L. and
     Staskawia B. J. 1994. RPS2 of Arabidopsis thaliana: A leucine-rich repeat class of plant disease
     resistance genes. Science, 265: 1856-1860
    20. Bent A. F., Innes R., Ecker J. and Staskawicz B. 1992. Disease development in ethylene-insensitive
     Arabidopsis thaliana infected with virulent and avirulent Pseudomonas and Xanthomonas pathogens.
     Mol. Plant-Microbe Interact., 5: 372-378
    21. Berrocal-Lobo M., Molina A. and Solano R. 2002. Constitutive expression of
     ETHYLENE-RESPONSE-FACTOR1 in Arabidopsis confers resistance to several necrotrophic fungi.
     Plant J., 9: 23–32
    22. Bi Y. M., Kenton P., Mur L., Darby R. and Draper J. 1995. Hydrogon peroxide does not function
     downstream of salicylic acid in the induction of PR protein expression. Plant J., 8: 235-245
    23. Bittner-Eddy P. D., Crute I. R. and Holub E. B. 2000. RPP13 is a simple locus in Arabidopsis thaliana
     for alleles that specify downy mildew resistance to different avirulence determinants in Peronospora
     parasitica. Plant J., 21 : 177-88
    24. Bittner-Eddy P. D. and Beynon J. L. 2001. The Arabidopsis downy mildew resistance gene,
     RPP13-Nd, functions independently of NDR1 and EDS1 and does not require the accumulation of
     salicylic acid. Mol. Plant-Microbe Interact., 14: 416–421
    25. Bogdanove A. J., Wei Z. M., Zhao L. and Beer S. V. 1996. Erwinia amylovora secretes harpin via a
     type III pathway and contains a homolog of yopN of Yersinia spp. J. Bacteriol., 178: 1720-1730
    26. Bogdanove A. J., Kim J. F., Wei Z., Kolchinsky P., Charkowski A. O., Conlin A. K., Collmer A. and
     Beer S. V. 1998. Homology and function of an hrp-linked pathogenicity locus, dspEF, of Erwinia
     amylovora and the avirulence locus avrE of Pseudomonas syringae pv tomato. Proc. Natl. Acad. Sci.
     USA, 95: 1325-1330
    27. Bolwell G. P. and Wojitaszek P. 1997. Mechanisms for the generation of reactive oxygen species in
     86
    
    
    山东农业大学博士学位论文
     plant defense: a broad perspective. Physiol. Mol. Plant Pathol., 51: 347-366
    28. Boyes D. C., Nam J. and Dangl J. L. 1998. The Arabidopsis thaliana RPM1 disease resistance gene
     product is a peripheral plasma membrane protein that is degraded coincident with the hypersensitive
     response. Proc. Natl. Acad. Sci. USA, 96: 3292–3297
    29. Brader G., Tas E. and Palva E. T. 2001. Jasmonate-dependent induction of indole glucosinolates in
     Arabidopsis by culture filtrates of the nonspecific pathogen Erwinia carotovora. Plant Physiol., 126:
     849–860
    30. Buschges R., Holricher K., Pangstruga R., Simons G., Wolter M., Frijters A., van Daelen R., van de
     Lee T. and Diergaarde P. 1997. The barley Mlo gene: a novel control element of plant pathogen
     resistance. Cell, 88: 695-705
    31. Cai D., Kleine M., Kiflr S., Harloff H. J., Sandal N. N., Marcker K. A., Klein-Lankhorst R. M.,
     Salentijn E. M., Lange W. and Stiekema W. J. 1997. Positional cloning of a gene for nematode
     resistance in sugar beet. Science, 275: 832-834
    32. Chamnongpol S., Willekens H., Moeder W., Langebartels C., Sandremann H. J., Van Montagu M.,
     Inze D. and Van Camp W. 1998. Defense activation and enhanced pathogen tolerance induced by
     H2O2 in transgenic tobacco. Proc. Natl. Acad. Sci. USA, 95: 5818-5823
    33. Cao H., Bowling S. A., Gordon A. S. and Dong X. 1994. Characterization of an Arabidopsis NPRl
     gene that is non-responsive to inducers of systemic acquired resistance. Plant Cell, 6: 1583-1592
    34. Cao H., Li X. and Dong X. N. 1998. Generation of broad-spectrum disease resistance by
     overexpression of an essential regulatory gene in systemic acquired resistance. Proc. Natl. Acad. Sic.
     USA, 95: 6531-6536
    35. Cao H., Glazebrook J., Clark J. D., Volko S. and Dong X. 1997. The Arabidopsis NPR1 gene that
     controls systemic acquired resistance encodes a novel protein containing ankyrin repeats. Cell, 88:
     57–64
    36. Charkowski A. O., Alfano J. R., Preston G., Yuan J., He S.Y. and Collmer A. 1998. The Pseudomonas
     syringae pv. tomato HrpW protein has domains similar to harpins and pectate lyases and can elicit the
     plant hypersensitive response and bind to pectate. J. Bacteriol., 180: 5211-5217
    37. Chen Z. and Klessig D. 1991. Identification of a soluble salicylic acid-binding protein that may
     function in signal transduction in the plant disease resistance response. Proc. Natl. Acad. Sci. USA, 88:
     8179-8183
    38. Chen Z., Ricigliano J. W. and Klessig D. F. 1993. Purification and characterization of a soluble
     salicylic acid-binding protein from tobacco. Proc. Natl. Acad. Sci. USA, 90: 9533-9537
    39. Chern M. S., Fitzgerald H. A., Yadav R. C., Canlas P. E., Dong X. and Ronald P. C. 2001. Evidence
     for a disease-resistance pathway in rice similar to the NPR1-mediated signaling pathway in
     Arabidopsis. Plant J., 27: 101–113
    40. Century K. S., Shapiro A. D., Repetti P. P., Dahlbeck D., Holub E. and Staskawicz B. J. 1997.
     87
    
    
    刘爱新:HarpinXoo诱发植物过敏反应和抗病性信号传导解析
     NDR1, a pathogen-induced component required for Arabidopsis disease resistance. Science, 278:
     1963-1965
    41. Clarke J. D., Aarts N., Feys B. J., Dong X. and Parker J. E. 2001. Constitutive disease resistance
     requires EDS1 in the Arabidopsis mutants cpr1 and cpr6 and is partially EDS1-dependent in cpr5.
     Plant J., 26: 409–420
    42. Clarke J. D., Volko S. M., Ledford H., Ausubel F. M. and Dong X. 2000. Roles of salicylic acid,
     jasmonic acid, and ethylene in cpr-induced resistance in Arabidopsis. Plant Cell, 12: 2175–2190
    43. Clark K. L., Larsen P. B., Wang X. and Chang C. 1998. Association of the Arabidopsis CTR1 Raf-like
     kinase with the ETR1 and ERS ethylene receptors. Proc. Natl. Acad. Sci. USA, 95: 5401–5406
    44. Clough S. J., Fengler K. A., Yu I. C., Lippok B., Smith R. K. and Bent A. F. 2000. The Arabidopsis
     dnd1 ‘defence, no death’ gene encodes a mutated cyclic nucleotide gated ion channel. Proc. Natl.
     Acad. Sci. USA, 97: 9323-9328
    45. Collmer A., Badel J. L., Charkowski A. O., Deng W. L., Fouts D. E., Ramos A. R., Rehm A. H.,
     Anderson D. M. and Alfano J. R. 2000. Pseudomonas syringae Hrp type III secretion system and
     effector proteins. Proc. Natl. Acad. Sci. USA, 97: 8770-8777
    46. Cohen Y., Gisi U. and Niderman T. 1993. Local and systemic protection against Phytophthora
     infestans induced in potato and tomato plants by jasmonic acid and jasmonic methyl ester.
     Phytopathology, 83: 1054-1062
    47. Conrath U., Chen Z., Ricigliano J. W. and Klessig D. 1995. Two inducers of plant defense responses,
     2,6-dichoroisonicotinic acid and salicylic acid, inhibit catalase activity in tobacco. Proc. Natl. Acad.
     Sci. USA, 92: 7143-7147
    48. Dangl J. L. and Jones J. D. G. 2001. Plant pathogens and integrated defense responses to infection.
     Nature, 411: 826-833
    49. Delaney T. P. 1997. Genetic dissection of acquired resistance to disease. Plant Physiol., 113: 5–12
    50. Delaney T. P., Friedrich L. and Ryals J. A. 1995. Arabidopsis signal transduction mutant defective in
     chemically and biologically induced disease resistance. Proc. Natl. Acad. Sci. USA, 92: 6602-6606
    51. Delaney T. P., Uknes S., Vernoij N., Friedrich L., Weymsnn K., Negrotto H., Ward E., Ryals J. 1994. A
     central role of salicylic acid in plant disease resistance. Scince, 266: 1247-1250
    52. Desikan R., Hancock J. T., Ichimura K. and Neill S. J. 2001. Harpin induces activation of the
     Arabidopsis mitogen-activated protein kinases ATMPK4 and ATMPK6. Plant Physiol., 126:
     1579-1587
    53. Desikan R., Reynolds A., Hancock J. T. and Neill S. J. 1998. Harpin and hydrogen peroxide both
     initiate programmed cell death but have differential effects on defense gene expression in Arabidopsis
     suspension cultures. J. Biochem., 330(Pt1): 115-120
    54. Després C., DeLong C., Glaze S., Liu E. and Fobert P. R. 2000. The Arabidopsis NPR1/NIM1 protein
     enhances the DNA binding activity of a subgroup of the TGA family of bZIP transcription factors.
     88
    
    
    山东农业大学博士学位论文
     Plant Cell, 12: 279–290
    55. Banerjee D., Zhang X. and Bent A. F. 2001. The leucine-rich repeat domain can determine effective
     interaction between RPS2 and other host factors in Arabidopsis RPS2-mediated disease resistance.
     Genetics, 158: 439–450
    56. Dixon M. S., Jones D. A., Keddie J. S., Thomas C. M., Harrison K. and Jones J. D. G. 1996. The
     tomato Cf-2 disease resistance locus comprises two functional genes encoding leucine-rich repeat
     proteins. Cell, 84: 451-459
    57. Dixon M. S., Golstein C. and Thomas C. M. 2000. Genetic complexity of pathogen perception by
     plants: the example of Rcr3, a tomato gene required specifically by Cf-2. Proc. Natl. Acad. Sci.
     USA, 97: 8807–8814
    58. Dixon M. S., Hatzixanthis K., David A. J., Harrison K. and Jonathan D. G. J. 1998 .The tomato Cf-5
     disease resistance gene and six homologs show pronounced allelic variation in leucine-rich repeat
     copy number. Plant Cell, 10: 1915-1926
    59. Dodds P. and Schwechheimer C. 2002 A breakdown in defense signaling. Plant Cell, S5–S8
    60. Dong X. 1998. SA, JA, ethylene, and disease resistance in plants. Curr. Opin. Plant Biol., 1: 316-23
    61. Dong X. 2001. Genetic dissection of systemic acquired resistance. Curr. Opini. Plant Biol., 4: 309-314
    62. Dong H. and Beer S. V. 2000. Riboflavin induces disease resistance in plants by activating a novel
     signal transduction pathway. Phytopathology, 90: 801-811
    63. Dong H., Delaney T. P., Bauser D. W. and Beer S. V. 1999. Harpin induced disease resistance in
     Arabidopsis through the systemic acquired resistance pathway mediated by salicylic acid and the
     NIM1 gene. Plant J., 20: 207-215
    64. Du H. and Klessig D. 1997. Identification of a soluble, high-affinity salicylic acid-binding protein in
     tobacco. Plant Physiol., 113: 1319-1327
    65. Durner J. and Klessig D. F. 1995. Inhibition of ascorbate peroxidase by salicylic acid and 2,6-
     dichloroisonicotinic acid, two inducers of plant defense responses. Proc. Natl. Acad. Sci. USA, 92:
     11312-11316
    66. Durrant W. E., Rowland O., Piedras P., Hammond-Kossak K. E. and Jones J. D. G. 2000.
     cDNA-AFLP reveals a striking overlap in the race-specific resistance and wound response expression
     profiles. Plant Cell, 12: 963–977
    67. Ecker J. R. 1995. The ethylene signal transduction pathway in plants. Science, 268: 667-675
    68. Ellis J. G., Lawrence G. J., Luck J. E. and Dodds P. N. 1999. Identification of regions in alleles of the
     flax rust resistance gene L that determine differences in gene-for-gene specificity. Plant Cell, 11:
     495–506
    69. Ellis J., Dodds P. and Pryor T. 2000. Structure, function, and evolution of plant disease resistance
     genes. Curr. Opin. Plant Biol., 3: 278–284
     89
    
    
    刘爱新:HarpinXoo诱发植物过敏反应和抗病性信号传导解析
    70. Epple P., Apel K. and Bohlmann H. 1995. An Arabidopsis thaliana thionin gene is inducible via a
     signal transduction pathway different from that for pathogenesis-related proteins. Plant Physiology,
     109: 813-820
    71. Eulgem T., Rushton P. J., Robatzek S. and Somssich I. E. 2000. The WRKY superfamily of plant
     transcription factors. Trends Plant Sci., 5: 199-205
    72. Falk A., Feys B. J., Frost L. N., Jones J. D., Daniels M. J. and Parker J. E. 1999. EDS1, an essential
     component of R gene-mediated disease resistance in Arabidopsis has homology to eukaryotic lipases,
     Proc. Natl. Acad. Sci. USA, 96: 3292-3297
    73. Fan W. H. and Dong X. N. 2002. In vivo interaction between NPR1 and transcription factor TGA2
     leads to salicylic acid–mediated gene activation in Arabidopsis. Plant Cell, 14: 1377–1389
    74. Frye C. A., Tang D. and Innes R.W. 2001. Negative regulation of defense responses in plants by a
     conserved MAPKK kinase. Proc. Natl. Acad. Sci. USA, 98: 373–378
    75. Friedrich L., Lawton K., Dietrich R., Willits M., Cade R. and Ryals J. 2001. NIM1 overexpression in
     Arabidopsis potentates plant disease resistance and results in enhanced effectiveness of fungicides.
     Mol. Plant-Microbe Interact., 14: 1114–1124
    76. Frederick R. D., Thilmony R. L., Sessa G. and Martin G. B. 1998. Recognition specificity for the
     bacterial avirulence protein AvrPto is determined by Thr-204 in the activation loop of the tomato Pto
     kinase. Mol. Cell., 2: 241–245
    77. Friedrich L., Lawton K., Ruess W., Masner P., Specker N., Rella M. G., Uknes S., Metraux J. P.,
     Kessmann H. and Ryals J. 1996. A benzothiadiazole derivative induces systemic acquired resistance in
     tobacco. Plant J., 10: 61-70
    78. Galan J. E. and Collmer A. 1999. Type III secretion machines: bacterial device for protein delivery
     into host cells. Science, 284: 1322-1328
    79. Gaudriaut S., Malandrin L., Paulin J. P. and Barny M. A. 1997. DspA, an essential pathogenicity factor
     of Erwinia amylovora showing homology with AvrE of Pseudomonas syringae, is secreted via Hrp
     secretion pathway in a Dsp-depend way. Mol. Microbiol., 26: 1075-1069
    80. Gopalan S., Bauer D. W., Alfano J. R., Loniello A. O., He S. Y. and Collmer A. 1996. Expression of
     the Pseudomonas syringae avirlence protein AvrB in plant cells alleviates its dependence on the
     hypersensitive response and pathogenicity (Hrp) secretion system in eliciting genotype-specific
     hypersensitive cell death. Plant Cell, 8: 1095-1105
    81. Grant M. and Mansfield J. 1999. Early events in host-pathogen interactions. Curr. Opin. Plant Biol., 2:
     312–319
    82. Grant M. R., Godiard L., Straube E., Ashfield T., Lewald J., Sattler A., Innes R. W. and Dangl J. L.
     1995. Structure of the Arabidopsis RPM1 gene enabling dual specificity disease resistance. Science,
     269: 843-846
    83. Glazebrook J. 2001. Genes controlling expression of defense responses in Arabidopsis: 2001 status.
     90
    
    
    山东农业大学博士学位论文
     Curr. Opin. Plant Biol., 13: 1983–1986
    84. Greenberg J. T., Silverman F. P. and Liang H. 2000. Uncoupling salicylic acid–dependent cell death
     and defense-related responses from disease resistance in the Arabidopsis mutant acd5. Genetics. 156:
     341–350
    85. Greenberg J. T. 1996. Programmed cell death-a way of life for plants. Proc. Natl. Acad. USA, 93:
     12094-12097
    86. Gu Y. Q., Wildermuth M. C., Chakravarthy S. and Loh Y. T. 2002. Tomato transcription factors Pti4,
     Pti5, and Pti6 activate defense responses when expressed in Arabidopsis. Plant Cell, 14: 817-831
    87. Gu Y. Q., Yang C., Thara V., Zhou J. and Martin G. B. 2000. Pti4 is induced by ethylene and salicylic
     acid, and its product is phosphorylated by the Pto Kinase. Plant Cell, 12: 771-785
    88. Gupta V., Willits M.G. and Glazebrook J. 2000. Arabidopsis thaliana EDS4 contributes to salicylic
     acid (SA)–dependent expression of defense responses: Evidence for inhibition of jasmonic acid
     signaling by SA. Mol. Plant-Microbe Interact., 13: 503–511
    89. Hall A. E., Findell J. L., Schaller G. E., Sisler E. C. and Bleecker A. B. 2000. Ethylene perception by
     the ERS1 protein in Arabidopsis. Plant Physiol., 123: 1449–1458
    90. Halterman D.,Zhou F., Wei F., Wise R. P. and Schulze-Lefert P. 2001. The Mla6 coiled-coil,
     NBS-LRR protein functions in barley and wheat to confer resistance specificity to Blumeria graminise
     f. sp. hordei. Plant J., 25: 335-348
    91. Hammond-Kosack K. E., Jones D. A. and Jones J. D. G. 1994. Identification of two genes required in
     tomato for full Cf-9 dependent resistance to Cladosporium fulvum. Plant Cell, 6: 361-374
    92. Hammond-Kosack K. E. and Jones J. D. G. 1996. Resistance gene-dependent plant defense responses.
     Plant Cell, 8: 1773-1791
    93. He S. Y.,Huang H. C. and Collmer A. 1993. Pseudomonas syringae pv. syringae harpinPss: A protein
     that is secreted via the Hrp pathway and elicites the hypersensitive response in plants. Cell, 73:
     1255-1266
    94. He S.Y. 1998. Type III protein secretion systems in plant and animal pathogenic bacteria. Annu. Rev.
     Phytopathol., 36: 363-392
    95. Hirayama T., Kieber J. J., Hirayama N., Kogan M., Guzman P., Nourizadeh S., Alonso J. M., Dailey
     W. P., Dancis A. and Ecker J. R. 1999. RESPONSIVE-TO-ANTAGONIST1, a Menkes/Wilson
     disease–related copper transporter, is required for ethylene signaling in Arabidopsis. Cell, 97: 383–393
    96. Hoffman T., Schmidt J. S., Zhemg X. and Bent A. F. 1999. Isolation of ethylene-insensitive soybean
     mutants that are altered in pathogen susceptibility and gene-for-gene disease resistance. Plant Physiol.,
     119: 935-950
    97. Houot V., Etienne P., Petitot A. S., Barbier S., Blein J. P. and Suty L. 2001. Hydrogen peroxide induces
     programmed cell death features in cultured tobacco BY-2 cell, in a dose-dependent manner. J. Exp
     Bot., 52: 1721-1730
     91
    
    
    刘爱新:HarpinXoo诱发植物过敏反应和抗病性信号传导解析
    98. Hoyos A. E., Stanley C. M., He S. Y., Pike S., Pu X. A. and Novacky A. 1996. The interaction of
     harpinpss with plant cell walls. Mol. Plant-Microbe Interact., 9: 608-616
    99. Hu W., Yuan J., Jin Q. L., Hart P. and He S. Y. 2001. Immunogold labeling of Hrp pili of Pseudomonas
     syringae pv. tomato assembled in minimal medium and in planta. Mol. Plant-Microbe Interact., 14:
     234-241
    100. Hua J., Sakai H., Nourizadeh S., Chen Q. G., Bleecker A. B., Ecker J. R. and Meyerowitz E. M. 1998.
     EIN4 and ERS2 are members of the putative ethylene-receptor gene family in Arabidopsis. Plant Cell,
     10: 1321–1332
    101. Jabs T. 1999. Reactive oxygen intermediates as mediators of programmed cell death in plant and
     animals. Biochem. Pharmacol., 57: 231-145
    102. Jackson R.W., Athanassopoulos E. and Triamis G. 1999. Identification of a pathogenicity island, which
     contains genes for virulence and avirulence, on a large native plasmid in the been pathogen
     Pseudomonas syringae pathovar phaseolicola. Proc. Natl. Acad. USA, 96: 10875-10880
    103. Jin Q., Hu W., Brown I., McGhee G., Hart P., Jones A. L. and He S. Y. 2001. Visualization of secreted
     Hrp and Avr proteins along the Hrp pilus during type III secretion in Erwinia amylovora and
     Pseudomonas syringae. Mol. Microbiol., 40: 1129-1139
    104. Jin Q. L., Liu N. Z., Qiu J. L., Li D. B. and Wang J. 1997. A truncated fragment of harpinpss induces
     systemic resistance to Xanthomonas campestris pv. oryzae in rice. Physiol. Mol. Plant Pathol., 51:
     243-57
    105. Jirage D., Zhou N., Cooper B., Clarke J. D., Dong X. and Glazebrook J. 2001. Constitutive salicylic
     acid–dependent signaling in cpr1 and cpr6 mutants requires PAD4. Plant J., 26: 395–407
    106. Johal G. S. and Brigss S. P. 1992. Reductase activity encoded by the Hm1 disease resistance gene in
     maize. Science, 258: 985-987
    107. Jones D. A. and Jones J. D. G. 1996. The roles of leucine rich repeats in plant defenses. Adv. Bot. Res.
     Adv. Plant Pathol., 24: 90–167
    108. Jones D. A., Thomas C. M., Hammond-Kosack K. E., Balint-Kurti P. J. and Jones J. P. G. 1994.
     Isolation of the tomato Cf-9 gene for resistance to Cladosporium fulvum by transposon targeting.
     Science, 66: 789-793
    109. Jupin I. and Chua N. H. 1996. Activation of the CaMV as-1 cis-element by salicylic acid, differential
     DNA-binding of a factor related to TGAla. Eur. Mol. Biol. Org. J., 15: 5679-5689
    110. Kajava A. V. 1998. Structural diversity of leucine-rich repeat proteins. J. Mol. Biol., 277: 519–527
    111. Kieber J. J., Rothenberg M., Roman G., Feldmann K. A. and Ecker J. R. 1993. CTR1, A negative
     regulator of the ethylene response pathway in Arabidopsis, encodes a member of the raf family of
     protein kinase. Cell, 7: 2427-441
    112. Keller H., Pamboukdjian N., Ponchet M., Poupet A., Delon R. and Verrier J. L. 1999. Pathogen
     induced elicitin production in transgenic tobacco generates a hypersensitive response and nonspecific
     92
    
    
    山东农业大学博士学位论文
     disease resistance. Plant Cell, 11: 223-236
    113. Keller H. 1998. A plant homolog of the neutrophil NADPH oxidase gp91phox subunit gene encodes a
     plasma membrane protein with Ca2+ binding motifs. Plant Cell, 10: 255-266
    114. Kim J. F. and Beer S. V. 2000. hrp gene and harpins of Erwinia amylovora: A decade of discovery,
     pp.141-162 in: J. L. Vanneste, Fire Blight and its Causative Ageht, Erwinia amylovora, CAB
     International, Wallingford, UK
    115. Kim J. F., Ham J. H., Bauer D. W., Collmer A. and Beer S.V. 1998 . The hrpC and hrpN operons of
     Erwinia chrysanthemi EC16 are flanked by plcA and homologs of hemolysin/adhesin genes and
     accompanying activator/transporter genes. Mol. Plant-Microbe Interact., 11: 563-567
    116. Kinkema M., Fan W. and Dong X. 2000. Nuclear localization of NPR1 is required for activation of PR
     gene expression. Plant Cell, 12:2339–2350
    117. Krǖger J., Thomas C. M., Golstein C. and Dixon M. S. 2002. A tomato cysteineprotease required for
     Cf-2–dependent disease resistance and suppression of autonecrosis. Science, 296:744-747
    118. Kobe B. and Deisenhofer J. 1994. The leucine-rich repeat: A ver-satile binding motif. Trends
     Biochem. Sci., 19:415-421
    119. Kooman-Gersmann M., Honee G., Bonnema G. M. and De Wit P. J. G. M. 1996. A high-affinity
     binding site for the AVR9 peptide elicitor of Cladosporium fulvum is present on plasmamembranes of
     tomato and other solanaceous plants. Plant Cell, 8: 929–938
    120. Knight V. I., Wang H., Lincoln J. E., Lulai E. C. and Gilchrist D. G. 2001. Hydroperoxides of fatty
     acids induce programmed cell death in tomato protoplasts. Physiol. Mol. Plant Pathol., 59: 277-286
    121. Kyriakis J. M., App H., Zhang X. F., Banerjee P., Brautigan D. L., Rapp U. R. and Avruch J. 1992.
     Raf-1 activates MAP kinase kinase. Nature, 358:417–421
    122. Lawrence G. J., Finnegan E. J., Ayliffe M. A. and Ellis J. G. 1994. The L6 gene for flax rust resistance
     is related to the Arabidopsis bacterial resistance gene RPS2 and the tobacco viral resistance gene N.
     Plant Cell, 7: 1195-1206
    123. Lawton K. A., Friedrich L., Hunt M., Weymann K., Delaney T., Kessmann H., Staub T. and Ryals J.
     1996. Benzothiadiazole induces disease resistance in Arabidopsis by activation of the systemic
     acquired resistance signal transduction pathway. Plant J., 10: 71-82
    124. Landschulz W. H., Johnson P. F. and McKnight S. L. 1998. The leucine zipper : a hypothesis structure
     common to a new class of DNA biding proteins. Science, 240: 1759-1764
    125. Lebel E., Heifetz P., Thorne L., Uknes S., Ryals J. and Ward E. 1998. Functional analysis of
     regulatory sequences controlling PR-1 gene expression in Arabidopsis. Plant J., 16: 223-233
    126. Lee J., Klüsener B., Tsiamis G., Stevens C., Neyt C., Tampakaki A. P., Panopoulos N. J., N?ller J.,
     Weiler E. W., Cornelis G. R., Mansfield J. W. and Nürnberger T. 2001a. HrpZPsph from the plant
     pathogen Pseudomonas syringae pv. phaseolicola binds to lipid bilayers and forms an ion-conducting
     pore in vitro. Proc. Natl. Acad. Sci. USA, 98: 289-294
     93
    
    
    刘爱新:HarpinXoo诱发植物过敏反应和抗病性信号传导解析
    127. Lee J., Klessig D. F. and Nürnberger T. 2001b. A harpin biding site in tobacco plasma membranes
     mediates activation of the extracellular calcium but dependent on mitogen-activated protein kinase
     activity. Plant Cell, 13: 1079-1093
    128. Leister R. T. and Katagiri F. 2000. A resistance gene product of the nucleotide binding site—leucine
     rich repeats class can form a complex with bacterial avirulence proteins in vivo. Plant J., 22: 345–354
    129. Li R. and Fan Y. 1999. Reduction of lesion growth rate of late blight plant disease in transgenic potato
     expressing harpin protein. Sci. China Ser. C., 42: 96-101
    130. Li X., Zhang Y., Clarke J. D., Li Y. and Dong X. 1999. Identification and cloning of a negative
     regulator of systemic acquired resistance, SNI1, through a screen for suppressors of npr1-1. Cell, 98:
     329–339
    131. Ligternik W., Kroj T., zur Nieden U., Hirt H. and Scheel D. 1997. Receptor-mediated activation of a
     MAP kinase in pathogen defense of plants. Science, 276: 2054–2057
    132. Lindgern P. B., Peet R. C. and Panopoulos N. J. 1986. Gene cluster of Pseudomonas syringae pv.
     phaseolocola controls pathogenicity of bean plants and hypersensitivity on non-host plants. J.
     Bacteriol., 168: 512-522
    133. Luck J. E., Lawrence G. J., DoddS P. N., Shepherd K. W. and Ellis J. G. 2000. Regions outside of the
     leucine-rich repeats of flax rust resistance proteins play a role in specificity determination. Plant Cell,
     12: 1367-1377
    134. Mauch-Mani B. and Slrenko A. J. 1996. Production of salicylic acid precursors is major function of
     phenylalanine ammonia-lyase in the resistance of Arabidopsis to Peronospora parasitica. Plant Cell, 8:
     203-212
    135. McDowell J. M., Dhandaydham M., Long T. A., Aarts M. G. M., Goff S., Holub E. B. and Dangl J. L.
     1998. Intragenic recombination and diversifying selection contribute to the evolution of downy
     mildew resistance at the RPP8 locus of Arabidopsis. Plant Cell, 10: 1861-1874
    136. Milligan S. B., John B., Yaghoobi J., Kaloshian I., Zabel P. and Williamson V. M. 1998. The root knot
     nematode resistance gene Mi from tomato is a member of the leucine zipper, nucleotide binding,
     leucine-rich repeat family of plant genes. Plant Cell, 10: 1307-1320
    137. Mindrinos M., Katagiri F., Yu G. L. and Ausubel F. M. 1994. The Arabidopsis thaliana disease
     resistance gene RPS2 encodes a protein containing a nucleotide-binding site and leucine-rich repeats.
     Cell, 78: 1089-1099
    138. Malamy J., Sanchez-Casas P., Hennig J., Guo A. and Klessig D. F. 1996. Dissection of the salicylic
     acid signaling pathway in tobacco. Mol. Plant-Microbe Interact., 9: 474-482
    139. Maleck K., Levine A., Eulgem T., Morgan A., Schmidl J., Lawton K. A., Dangl J. L. and Dietrich R.
     A. 2000. An Arabidopsis promoter element shared among genes co-regulated during systemic
     acquired disease resistance. Nat. Genet. 26: 403-410
    140. Martin G. B. 1999. Functional analysis of plant disease resistance gene and their downstream effectors.
     94
    
    
    山东农业大学博士学位论文
     Curr. Opin. Plant Biol., 2: 273-279
    141. Martin G. B., Frary A., Wu T., Bmmmonschenkl S., Chunwongse J., Earle E. D. and Tanksley S. D.
     1994. A member of the tomato Pto gene family confers sensitivity to fenthion resulting in rapid cell
     death. Plant Cell, 6: 1543-1552
    142. Martin G. B., Brommonschenkel S., Chunwongse J., Frary A., Ganal M. W., Spivey R., Wu T., Earle
     E. D. and Tanksley S. D. 1993. Mapbased cloning of a protein kinase gene conferring disease
     resistance in tomato. Science, 262: 1432–1436
    143. McDowell J. M., Dhandaydham M., Long T. A., Aarts M. G. M., Goff S., Holub E. B. and Dangl J. L.
     1998. Intragenic recombination and diversifying selection contribute to the evolution of downy
     mildew resistance at the RPP8 locus of Arabidopsis. Plant Cell, 10: 1861-1874
    144. McDowell J. M., Cuzick A., Can C., Beynon J., Dangl J. L. and Holub E. B. 2000. Downy mildew
     (Peronospora parasitica) resistance genes in Arabidopsis vary in functional requirements for NDR1,
     EDS1, NPR1 and salicylic acid accumulation. Plant J., 22: 523–529
    145. Meyers B. C. 1998. The major resistance gene cluster in lettuce is highly duplicated and spans several
     megabases. Plant Cell, 10: 1817–1832
    146. Michelmore R. W. and Meyers B. C. 1998. Clusters of resistance genes in plants evolve by divergent
     selection and a birth-and-death process. Genome Res., 8: 111– 113
    147. Mor H., Manulis S., Zuck M., Nizan R., Coplin D. L. and Barash I. 2001. Genetic organization of
     the hrp gene cluter and dspAE/BF operon in Erwinia herbicola pv. gypsophilae. Mol. Plant-Microbe
     Interact., 14: 431-436
    148. Muskett P. R., Kahn K., Austin M. J., Moisan L. J., Sadanandom A., Shirasu K., Jones J. D. G. and
     Parker J. E. 2002. Arabidopsis RAR1 exerts rate-limiting control of R gene–mediated defenses against
     multiple pathogens. Plant Cell, 14: 979–992
    149. Mukherjee A., Cui Y., Liu Y. and Chatterjee A. K. 1997. Molecular characterization and expression of
     the Erwinia carotovora hrpNEcc gene, which encodes an elicitor of the hypersensitive reaction. Mol.
     Plant-Microbe Interact., 10: 462-471
    150. Nizan R., Barash I., Valinsky L., Lichter A. and Manulis S. 1997. The presence of hrp genes on the
     pathogenicity-associated plasmid of the tumorigenic bacterium Erwinia herbicola pv. gypsophilae.
     Mol. Plant-Microbe Interact., 10: 677-682
    151. Nishimura M. and Somerville S. 2002. Resisting attack. Science, 295: 2032-2033
    152. Niggeweg R., Thurow C., Weigel R., Pfitzner U. and Gatz C. 2000. Tobacco TGA factors differ with
     respect to interaction with NPR1, activation potential and DNA-binding properties. Plant Mol. Biol.,
     42: 775–788
    153. Nawrath C. and Métraux J. P. 1999. Salicylic acid induction-deficient mutants of Arabidopsis express
     PR-2 and PR-5 and accumulate high levels of camalexin after pathogen inoculation. Plant Cell, 11:
     1393–1404
     95
    
    
    刘爱新:HarpinXoo诱发植物过敏反应和抗病性信号传导解析
    154. O’Donnell P. J., Jones J. B., Antoine F. R., Ciardi J. and Klee H. J. 2001. Ethylene-dependent salicylic
     acid regulates an expanded cell death response to a plant pathogen. Plant J., 25: 315–323
    155. Oldroyd G. E. D. and Staskawicz B. J. 1998. Genetically engineered broad-spectrum disease resistance
     in tomato. Proc. Natl. Acad. Sci. USA, 95: 10300–10305
    156. Orozco-Cardenas M. L., Narvaez-Vasquez J. and Ryan C. A. 2001. Hydrogen peroxide acts as a
     second messenger for the induction of defense genes in tomato plants in response to wounding,
     systemin, and methyl jasmonate. Plant Cell, 13: 179-191
    157. Pallas J. A., Paiva N. L., Lamb C. and Dixon R. A. 1996. Tobacco plants epigenetically suppressed in
     phenylalanine ammonia-lyase expression do not develop systemic acquired resistance in response to
     infection by tobacco mosaic virus. Plant J., 10: 281-293
    158. Parker J. E., Coleman M. J., Szabo V., Frost L. N., Schmidt R., van der Biezen E. A., Moores T., Dean
     C., Daniels M. J. and Jones J. D. 1997. The Arabidopsis downy mildew resistance gene RPP5 shares
     similarity to the toll and interleukin-1 receptors with N and L. Plant Cell, 9: 879-894
    159. Parniske M. and Jones J. D. G. 1999. Recombination between diverged clusters of the tomato Cf-9
     plant disease resistance gene family. Proc. Natl. Acad. Sci. USA, 96: 5850-5855
    160. Parniske M. 1997. Novel disease resistance specificities result from sequence exchange between
     tandemly repeated genes at the Cf-4/9 locus of tomato. Cell, 91: 821-832
    161. Penninckx I. A., Eggermont K., Terras F. R., Thomma B. P., De Samblanx G. W., Buchala A., Metraux
     J. P., Manners J. M. and Broekaert W. F. 1996. Pathogen-induced systemic activation of a plant
     defensin gene in Arabidopsis follows a salicylic acid-independent pathway. Plant Cell, 8: 2309-2323
    162. Petersen M., Brodersen P., Naested H., Andresson E., Lindhart U., Johansen B., Nielsen H. B., Lacy
     M., Austin M. J. and Parker J. E. 2000. Arabidopsis MAP kinase 4 negatively regulates systemic
     acquired resistance. Cell, 103: 1111-1112
    163. Pickard B. G. 1994. Contemplatting the plasmalemmal control center model. Protoplasma, 182: 1-9
    164. Pieterse C. M., van Wees S. C., van Pelt J. A., Knoester M., Laan R., Gerrits H., Weisbeek P. J. and
     van Loon L. C. 1998. A novel signaling pathway controlling induced systemic in Arabidopsis. Plant
     Cell, 10: 1571-1580
    165. Pirrung M. C. 1999. Histidine kinases and two-component signal transduction systems. Chem. Biol.,
     6: R167–R175
    166. Preston G., Huang H.C., He S.Y. and Collmer A. 1995. The HrpZ proteins of Pseudomonas syringae
     pvs. syringae, glycinea, and tomato are encoded by an operon containing Yersinia ysc homologs and
     elicit the hypersensitive response in tomato but not soybean. Mol. Plant-Microbe Interact., 8: 717-32
    167. Qiu D., Wei Z. M., Bauer D. W. and Beer S. V. 1997. Treatment of tomato seeds with harpin enhances
     germination and growth and induces resistance to Ralstonia solanacearum. Phytopathology, 87: S80
    168. Reuber T. L. 1998. Correlation of defense gene induction defects with powdery mildew susceptibility
     in Arabidopsis enhanced disease susceptibility mutants. Plant J., 16: 473–485
     96
    
    
    山东农业大学博士学位论文
    169. Riechmann J. L., and Meyerowitz E.M. 1998. The AP2/EREBP family of plant transcription factors.
     Biol. Chem. 379: 633–646
    170. Ritter C. and Dangl J. L. 1996. Interference between two specific pathogen recognition events
     mediated by distinct plant disease resistance genes. Plant Cell, 8: 251–257
    171. Robson C. A. and Vanlerberghe G. C. 2002. Transgenic plant cells lacking mitochondrial alternative
     oxidase have increased susceptibility to mitochondria-dependent and independent pathways of
     programmed cell death. Plant Physiol., 129: 1908-1920
    172. Rossi M. 1998. The nematode resistance gene Mi of tomato confers resistance against the potato
     aphid. Proc. Natl Acad. Sci. USA, 95: 9570–9754
    173. Rodriguez F. I., Esch J. J., Hall A. E., Binder B. M., Schaller G. E. and Bleecker A. B. 1999. A copper
     cofactor for the ethylene receptor ETR1 from Arabidopsis. Science, 283: 996–998
    174. Romeis T., Piedras P., Zhang S., Klessig D. F., Hirt H. and Jones J. D. G. 1999. Rapid, Avr9- and
     Cf-9-dependent activation of MAP kinases in tobacco cell cultures and leaves: convergence of
     resistance gene, elicitor, wound and salicylate responses. Plant Cell, 11: 273–287
    175. Rushton P. J., Torres J., Parniske M., Wernert P., Hahlbrock K. and Somssich I. E. 1996. Interaction of
     elicitor-induced DNA-binding proteins with elicitor response elements in the promoter of parsley PR1
     genes. Eur. Mol. Biol. Org. J., 15: 5690-5700
    176. Ryals J., Lawton K. A., Delaney T. P., Friedrich L., Kessmann H., Neuenschwander U., Uknes S.,
     Vernooij B. and Weymann K. 1995. Signal transduction in systemic acquired resistance. Proc. Natl.
     Acad. Sci. USA, 92: 4202-4205
    177. Ryals J. A., Neuenschwander U. H., Willits M. G., Molina A., Steiner H. Y. and Hunt M. D. 1996.
     Systemic acquired resistance. Plant Cell, 8: 1809-1819
    178. Ryals J., Weymann K., Lawton K., Friedrich L., Ellis D., Steiner H. Y., Johnson J., Delaney T. P.,
     Jesse T., Vos P. and Uknes S. 1997. The Arabidopsis NIM1 protein shows homology to the
     mammalian transcription factor inhibitor IκB. Plant Cell, 9: 425–439
    179. Ryan C. A. 1990. Protease inhibitors in plants: genes for improving defenses against insects and
     pathogens. Annu. Rev. Phytopathol. 28: 425-449
    180. Ryerson D. E. and Heath M. C. 1996. Cleavage of nuclear DNA into oligonucleosomal fragments
     during cell death induced by fungal infection or by abiotic treatments. Plant Cell, 8: 393-402
    181. Salmeron J. M., Oldroyd G. E. D., Rommens C. M. T., Scofield S. R., Kim H. S., Levelle D. T.,
     Dahlbeck D. and Staskawicz B. J. 1996. Tomato Prf is a member of the leucine-rich repeat class of
     plant disease resistance genes and lies embedded within the Pto kinase gene claster. Cell, 86: 123-33
    182. Saraste M., Sibbald P. R. and Wittinghofer A. 1990. The P-loop- a common motif in ATP- and
     GTP-binding proteins. Trends Biochem., 15: 430-434
    183. Schwechheimer C. and Deng X. W. 2001. COP9 signalosome revisited: A novel mediator of protein
     degradation. Trends Cell Biol., 11: 420–426
     97
    
    
    刘爱新:HarpinXoo诱发植物过敏反应和抗病性信号传导解析
    184. Scheel D. 1998. Resistance response physiology and signal transduction. Curr. Opin. Plant Biol., 1:
     305–310
    185. Schaller G. E. and Bleecker A. B. 1995. Ethylene-binding sites generated in yeast expressing the
     Arabidopsis ETR1 gene. Science, 270: 1809–1811
    186. Schaller G. E., Ladd A. N., Lanahan M. B., Spanbauer J. M. and Bleecker A. B. 1995. The ethylene
     response mediator ETR1 from Arabidopsis forms a disulfide-linked dimer. J. Biol. Chem., 270:
     12526–12530
    187. Schneider D. S. 2002. Plant immunity and film Noir: what gumshoe detectives can teach us about
     plant-pathogen interactions. Cell, 109: 537-540
    188. Scofield S. R., Tobias C. M., Rathjen J. P., Chang J. H., Lavelle D. T., Michelmore R. W. and
     Staskawicz B. J. 1996. Molecular basis of gene-for-gene specificity in bacterial speck disease of
     tomato. Science, 274:2063-2065
    189. Schwechheimer C., Serino G., Callis J., Crosby W. L., Lyapina S., Deshaies R. J., Gray W. M., Estelle
     M. and Deng X. W. 2001. Interactions of the COP9 signalosome with the E3 ubiquitin ligase
     SCFTIR1 in mediating auxin response. Science, 292: 1379–1382
    190. Schenk P. M., Kazan K., Wilson I., Anderson J. P., Richmond T., Somerville S. C. and Manners J. M.
     2000. Coordinated plant defense responses in Arabidopsis revealed by microarray analysis. Proc. Natl.
     Acad. Sci. USA, 97: 11655–11660
    191. Sessa G., D’Ascenzo M., Loh Y. T. and Martin G. B. 1998. Biochemicol properties of two protein
     kinases involved in disease resistance signaling in tomato. J. Biol. Chem., 273: 15860-15865
    192. Shah J., Kachroo P. and Klessig D. F. 1999. The Arabidopsis ssi1 mutation restores
     pathogenesis-related gene expression in npr1 plants and renders defensin gene expression salicylic
     acid dependent. Plant Cell, 11: 191–206
    193. Shirasu K., Lahaye T., Tan M. W., Zhou F., Azevedo C. and Schulze-Lefert P. 1999. A novel class of
     eukaryotic zinc binding proteins is required for disease resistance signaling in barley and development
     in C. elegans. Cell, 99: 355–366
    194. Simons B. H., Millenaar F. F., Mulder L., Van Loon L. C. and Lambers H. 1999. Enhanced expression
     and activation of the alternative oxidase during infection of Arabidopsis with Pseudomonas syringae
     pv. tomato. Plant Physiol., 120: 529-538
    195. Solano R., Stepanova A., Chao Q. and Ecker J. R. 1998. Nuclear events in ethylene signaling: A
     transcriptional cascade mediated by ETHYLENE-INSENSITIVE3 and
     ETHYLENE-RESPONSE-FACTOR1. Genes Dev., 12: 3703–3714
    196. Song W. Y., Pi L. Y., Wang G. L., Gardner J., Holsten T. and Ronald P. C. 1997. Evolution of the rice
     Xa-21 disease resistance gene family. Plant Cell, 9:1279-87
    197. Song W. Y., Wang G. L., Chen L. L., Kim H. S., Pi L. Y., Holsten T., Gardner J., Wang B., Zhai W. X.
     and Zhu L. H. 1995. A receptor kinase-like protein encoded by the rice disease resistance gene Xa-21.
     98
    
    
    山东农业大学博士学位论文
     Science, 270:1804-1806
    198. Staskawicz B. J., Mudgett M. B., Dangl J. L. and Galan J. E. 2001. Common and contrasting themes
     of plant and animal diseases. Science, 292: 2285-2289
    199. Staskawicz B. J. 2001. Genetics of plant-pathogen interactions specifying plant disease resistance.
     Plant Physiol., 125: 73-76
    200. Staswick P. E., Yuen G. Y. and Lehman C. C. 1998. Jasmonate signaling mutants of Arabidopsis are
     susceptible to the soil fungus Pythium irregulare. Plant J., 15: 747-754
    201. Stroble R. N., Gopalan J. S., Kuc J. A. and He S. Y. 1996. Induction of systemic acquired resistance in
     cucumber by Pseudomonas syringae pv. syringae 61 HrpZPss protein. Plant J., 9: 431-439
    202. Stange C., Ramirez I., Gomez I., Jordana X. and Holuigue L. 1997. Phosphorylation of nuclear
     proteins directs binding to salicylic acid-responsive elements. Plant J., 11: 1315-1324
    203. Strompen G., Gruner R. and Pfitzner U. M. 1998. An as-1-like motif controls the level of expression of
     the gene for the pathogenesis-related protein 1a from tobacco. Plant Mol. Biol., 37: 871-883
    204. Takken F. L. W., Schipper D., Nijkamp H. J. I. and Hille J. 1998. Identification and Ds-tagged
     isolation of a new gene at the Cf-4 lucos of tomato involved in disease resistance to Cladosporium
     fluvum race 5. Plant J., 14: 401-411
    205. Takken F. L. W., Thomas M. H. A. J., Golstein C., Westerink N., Hille J., Nijkamp H. J. I., De Wit P. J.
     G. M. and Jones J. D. G. 1999. A second gene at the tomato Cf-4 locus confers resistance to
     Cladosporium fluvum through recognition of a novel avirulence determinant. Plant J., 20: 279-288
    206. Tameling W. I., Elzinga S. D., Darmin P. S., Vossen J. H., Takken F. L., Haring M. A. and Cornelissen
     B. J. 2002. The tomato R gene products I-2 and MI-1 are functional ATP binding proteins with ATPase
     activity. Plant Cell, 14: 2929–2939
    207. Tang X., Frederick R. D., Zhou J., Halterman D. A., Jia Y. and Martin G. B. 1996. Initiation of plant
     disease resistance by physical interaction of AvrPto and the Pto kinase. Science, 274: 2060–2063
    208. Thara V. K., Tang X., Gu Y.Q., Martin G. B. and Zhou J. M. 1999. Pseudomonas syringae pv. tomato
     induces the expression of tomato EREBP-like genes Pti4 and Pti5 independent of ethylene, salicylate
     and jasmonate. Plant J., 20: 475–483
    209. Thomma B. P., Eggermont K., Tierrens K. F. and Broekaert W. F. 1999. Requirement of functional
     ethylene-insensitive 2 gene for efficient resistance of Arabidopsis to infection by Botryktis cinerea.
     Plant Physiol., 121: 1093-1102
    210. Tornero P., Merritt P., Sadanandom A., Shirasu K., Innes R. W. and Dangl J. L. 2002. RAR1 and
     NDR1 contribute quantitatively to disease resistance in Arabidopsis, and their relative contributions
     are dependent on the R gene assayed. Plant Cell, 14: 1005–1015
    211. T?r M., Gordon P., Cuzick A., Eulgem T., Sinapidou E., Mert-Türk F., Can C., Dangl J. L. and Holub
     E. B. 2002. Arabidopsis SGT1b is required for defense signaling conferred by several downy mildew
     resistance genes. Plant Cell, 14: 993–1003
     99
    
    
    刘爱新:HarpinXoo诱发植物过敏反应和抗病性信号传导解析
    212. Thomas C. M., Jones D. A., Parniske M., Harrison K., Balint-Kurti P. J., Hatzixanthis K. and Jones J.
     D. G. 1997. Characterizition of the tomato Cf-4 gene for resistance to Cladosporium fluvum identifies
     sequences that determine recognition specificity in Cf-4 and Cf-9. Plant Cell, 9: 2209-2224
    213. Traut T. W. 1994. The functions and consensus motifs of nine types of peptide segments that form
     different types of nucleotide-binding sites. Eur. J. Biochem., 222: 9-19
    214. Urao T., Miyata S., Yamaguchi-Shinozaki K. and Shinozaki K. 2000. Possible His to Asp
     phosphorelay signaling in an Arabidopsis two-component system. FEBS Lett., 478: 227–232
    215. Vaux D. L. 1997. CED4-the third horse man of apoptosis. Cell, 90: 389-390
    216. Van der Hoorn R. A., De Wit P. J. and Joosten M. H. 2002. Balancing selection favors guarding
     resistance proteins. Trends Plant Sci., 7: 67-71
    217. Van der Hoorn R. A., Roth R., Pierre J. G. M. and De Wit P. J. 2001. Identification of distinct
     specificity determinants in resistance protein Cf-4 allows construction of a Cf-9 mutant that confers
     recognition of avirulence protein AVR4. Plant Cell, 13: 273–285
    218. Verberne M. C., Verpoorte R., Bol J. F., Mercado-Blanco J. and Linthorst H. J. 2000. Overproduction
     of salicylic acid in plants by bacterial transgenes enhances pathogen resistance. Nat. Biotechnol., 18:
     779-783
    219. Vijayan P., Shockey J., Levesque C. A., Cook R. J. and Browse J. 1998. A role for jasmonate in
     pathogen defense of Arabidopsis. Proc. Natl. Acad. Sci. USA, 95: 7209-7214
    220. Wang G. L., Ruan D. L., Song W. Y., Sideris S., Chen L., Pi L. Y., Zhang Z., Fauquet C., Gaut B. S.,
     Whale M. C. and Ronald P.C. 1998. Xa21D encodes a receptor-like molecule with a leucine-rich
     repeat domain that determines race-specific recognition and is subject to adaptive evolution. Plant
     Cell, 10: 765–779
    221. Wang G. L., Song W. Y., Ruan D. L., Sideris S. and Ronald P. C. 1996. The cloned gene, Xa21 confers
     resistance to multiple Xanthomonas oryzae pv. oryzae isolates in transgenic plants. Mol.
     Plant-Microbe Interact., 9: 850-855
    222. Warren R. F., Henk A., Mowery P., Holub E. and Innes R. W. 1998. A mutation with the leucine-rich
     repeat domain of the Arabidopsis disease resistance gene RPS5 partially suppresses multiple bacterial
     and downy mildew resistance gene. Plant cell, 10: 1439-1452
    223. Warren R. F., Merritt P. M., Holub E. and Innes R. W. 1999. Identification of three putative signal
     transduction genes involved in R gene-specific disease resistance in Arabidopsis. Genetics, 152:
     401-412
    224. Wei Z. M., Sneath B. J. and Beer S. V. 1992. Expression of Erwinia amylovora hrp genes in response
     to environmental stimuli. J. Bacteriol., 174: 1875-1882
    225. Wengelnik K., Marie C., Russel M. and Bonas U. 1996. Expression and localization of HrpA1, a
     protein of Xanthomonas campestris pv. vesicatoria essential for pathogenicity and induction of the
     hypersensitive reaction. J. Bacteriol., 178: 1061-1069
     100
    
    
    山东农业大学博士学位论文
    226. Wengelnik K., Rossier O. and Bonas U. 1999. Mutations in the regulatory gene hrpG of Xanthomonas
     campestris pv. vescatoria result in constitutive expression of all hrp genes. J. Bacteriol., 181:
     6828-6831
    227. Wengelnik K. and Bonas U. 1996. HrpXv, an AraC-type regulator, activates expression of five of the
     six loci in the hrp cluster of Xanthomonas campestris pv. vesicatoria. J. Bacteriol., 178: 3462-3469
    228. Whitham S., Dinesh-Kumar S. P., Choi D., Hehl R., Corr C. and Baker B. 1994. The product of the
     tobacco mosaic virus resistance gene N: similarity to toll and the interleukin-1 receptor. Cell, 78:
     1101-1105
    229. Wurgler-Murphy S. M. and Saito H. 1997. Two-component signal transducers and MAPK cascades.
     Trends Biol. Sci., 22: 172-6
    230. Wulff B. B. H., Thomas C. M., Smoker M., Grant M. and Jones J. D. G. 2001. Domain swapping and
     gene shuffling identify specificity determinants required for induction of an Avr-dependent
     hypersensitive response by the tomato Cf-4 and Cf-9 proteins. Plant Cell, 13: 255–272
    231. Xie Z. and Chen Z. 2000. Harpin induced hypersensitive cell death is associated with altered
     mintocondrial functions in tobacco cells. Mol. Plant-Microbe Interact., 13: 183-190
    232. Xie D. X., Feys B. F., James S., Nieto-Rostro M. and Turner J. G. 1998. COI1, an Arabidopsis gene
     required for jasmonate-regulated defense and fertility. Science, 280: 1091-1094
    233. Xiao S., Ellwood S., Calis O. and Patrick E. 2001. Broad-spectrum mildew resistance in Arabidopsis
     thaliana mediated by RPW8. Science, 291: 118-120
    234. Xu Y., Tao X., Shen B., Horng T., Medzhitov R., Manley J. L. and Tong L. 2000. Structural basis for
     signal transduction by the Toll/interleukin-1 receptor domain. Nature, 408: 111-115
    235. Xu Y., Chang P. F. L., Liu D., Narasimhan M. L., Raghothama K. G., Hasegawa P. M. and Bressan R.
     A. 1994. Plant defense genes are synergistically induced by ethylene and methyl jasmonate. Plant
     Cell, 6: 1077-1085
    236. Yan W. S. C., de Swart E. A., van Pelt J. A., van Loon L. C. and Pieterse C. M. 2000. Enhancement of
     induced disease resistance by simultaneous activation of salicylate- and jasmonate-dependent defense
     pathways in Arabidopsis thaliana. Proc. Natl. Acad. Sci. USA, 97: 8711–8716
    237. Yang K. Y., Liu Y. and Zhang S. 2001. Activation of a mitogen-activated protein kinase pathway is
     involved in disease resistance in tobacco. Proc. Natl. Acad. Sci. USA, 98: 741-747
    238. Yamamoto S., Suzuki K. and Shinshi H. 1999. Elicitor responsive, ethylene-independent activation of
     GCC box–mediated transcription that is regulated by both protein phosphorylation and
     dephosphorylation in cultured tobacco cells. Plant J., 20: 571–579
    239. Yu I. C., Parker J. and Bent A. F. 1998. Gene-for-gene disease resistance without the hypersensitive
     response in Arabidopsis dnd1 mutant. Proc. Natl. Acad. Sci. USA, 95: 7819-7824
    240. Yu D., Chen C. and Chen Z. 2001. Evidence for an important role of WRKY DNA binding proteins in
     the regulation of NPR1 gene expression. Plant Cell, 13: 1527–1539
     101
    
    
    刘爱新:HarpinXoo诱发植物过敏反应和抗病性信号传导解析
    241. Zhang J. H., Liu X. S., Scherer D. C., Vankaer L., Wang X. D. and Xu M. 1998. Resistance to DNA
     fragmentation and chromatin condensation in mice lacking the DNA fragmentation factor. Proc. Natl.
     Acad. Sci. USA, 95: 12480-12485
    242. Zou H., Henzel W. J. and Liu X. S. 1997. Apaf-1, a human protein homologous to C. elegans CED-4,
     participates in cytochrome c dependent activation of caspase-3. Cell, 90: 405-413
    243. Zhou J. M., Trifa Y., Silva H., Pontier D., Lam E., Shah J. and Klessig D. F. 2000. NPR1
     differentially interacts with members of the TGA/OBF family of transcription factors that bind an
     element of the PR-1 gene required for induction by salicylic acid. Mol. Plant-Microbe Interact., 13:
     191–202
    244. Zhou J., Loh Y. T., Bressan R. A. and Martin G. B. 1995. The tomato gene Pti1 encodes a
     serine/threonine kinase that is phosphorylated by Pto and is involved in the hypersensitive response.
     Cell, 83: 925–935
    245. Zhou J., Tang X. and Martin G. B. 1997. The Pto kinase conferring resistance to tomato bacterial
     speck disease interacts with proteins that bind a cis-element of pathogenesis-related genes. Eur. Mol.
     Biol. Org. J., 16: 15860-15865
    246. Zhou F., Joachim K., Wei F. S., Elliott C., Valè G., Yahiaoui N., Keller B., Somerville S., Wise R. and
     Schulze-Lefert P. 2001. Cell-autonomous expression of barley mal1 confers race-specific resistance to
     the powdery mildew fungus via a rar1-independent signaling pathway. Plant Cell, 13: 337-350
    247. Zhou N., Tootle T. L., Tsui F., Klessig D. F. and Glazebrook J. 1998. PAD4 functions upstream of
     salicylic acid to control defense responses in Arabidopsis. Plant Cell, 10: 1021–1030
    248. Zitter T. A. and Beer S. V. 1998. Harpin for insect control. Phytopathology, 88: S 104-105
    249. 董宏平. 2003. 博士学位论文,南京农业大学
    250. 董汉松. 1994. 植物-病原菌识别. 植物病理学报,24:289-292
    251. 董汉松.1996. 植物防卫反应基因的表达调控和诱导抗病性遗传的机制. 植物病理学报,26:
     289-293
    252. 孔维文. 2001. 博士学位论文,南京农业大学
    253. 李 平. 2002. 博士学位论文,南京农业大学
    254. 李宗霆,周 燮. 1996. 植物激素及其免疫检测技术. 江苏科学技术出版社
    255. 彭建令. 2003. 博士学位论文,南京农业大学
    256. 沈 同,王镜岩. 1990. 生物化学,高等教育出版社
    257. 王金生. 2000. 植物病原细菌学,中国农业出版社
    258. 王金生. 1999. 分子植物病理学,中国农业出版社
    259. 闻伟刚,王金生. 2001. 水稻白叶枯菌 harpin 基因的克隆与表达. 植物病理学报,31:295-300
     102
    
    
    山东农业大学博士学位论文
    260. 闻伟刚. 2001. 博士学位论文,南京农业大学
    261. 邹华松. 2002. 博士学位论文,南京农业大学
    262. 赵立平,梁元存,刘爱新,董汉松. 1997. 表达 harpin 基因的大肠杆菌 DH5(Pcpp430)诱导植物抗
     病性研究. 高技术通讯, 7(9):1-4
    263. 余晓江. 2002. 硕士学位论文, 南京农业大学