基于毫米波阵列雷达的破片速度参数测量技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
靶场破片初速和速度衰减系数的测定是战斗部静爆试验中比较重要及复杂的项目,本文针对战斗部破片速度参数的测量问题,提出采用毫米波阵列雷达实现对位于阵列近场的破片目标速度参数的测量与估计。从空间谱估计技术、阵列的优化设置、阵列模型误差的校正、破片目标速度参数估计算法以及毫米波破片速度测量系统实现等五个方面开展了研究。
     论文首先阐述了研究背景和意义,回顾了靶场测速系统、毫米波连续波雷达和空间谱估计技术的发展现状,详细地比较和分析了目前国内外靶场破片测速方法的优缺点,指出了其在测量破片速度参数中存在的问题。
     推导了远场和近场窄带信号数学模型,介绍了两种子空间类空间谱估计算法、最大似然估计算法以及空间谱估计的Cramér-Rao界(CRB)。
     针对阵列的优化设置问题,提出了一种以提高空间谱估计性能为目标的阵列优化设置方法,与传统的以峰值旁瓣电平为目标的优化方法相比,提高了优化阵列的空间谱估计性能。通过计算机仿真对该方法进行了验证。
     针对阵列模型误差的校正问题,提出了一种阵列位置与通道不一致误差的校正算法。为忽略阵元间的互耦效应,简化阵列误差的校正,本文特意使用阵元间距较大的阵列。文中根据通道相位误差较大和较小两种情况分别给出了对应的校正算法。通道相位误差较大时,将阵列向两侧旋转相同的角度,可计算获得辅助源的方位,从而可估计阵元位置误差及通道幅相误差。而通道相位误差较小时,直接以未校正的阵列垂线附近辅助源的方位估计值作为其真实值,估计阵元位置误差和通道幅相误差。对两种情况分别进行了仿真。
     提出了基于毫米波阵列雷达的破片速度参数估计算法。针对各个破片目标相对于天线阵元多普勒频率的不同,提出按多普勒频率分离出各个目标对应的回波信号,然后分别估计各个目标的位置,由目标相对于每个接收阵元的多普勒频率和目标的位置估计出目标的速度,最后由不同时刻目标的速度得到目标的初速和速度衰减系数的估计值。介绍了几种用于频率估计的算法,并提出了相应的目标信号分离方法。文中推导了频率估计以及目标位置估计的CRB,并分别对频率估计和位置估计性能与CRB进行仿真比较,根据比较结果选择ML算法作为最终的频率估计算法和信号分离算法。最后对初速及速度衰减系数估计进行了仿真,仿真结果表明所提算法能够准确地估计目标速度参数。
     设计了毫米波破片速度参数测量系统。说明了测量系统的原理、系统的结构以及各个部分的原理。使用回波信号源对该系统进行了暗室测试实验,包括静止情况下对信源位置进行估计以及运动情况下对信源不同时刻的速度进行估计,获得了满意的实验结果。
The measurement of start velocity and coefficient of velocity attenuation of fragments from static explosion test of fragment warhead is an important and complicated test item at shooting range. To realize the velocity measurement of shooting range fragments, a methodology using millimeter-wave array radar to obtain the velocity parameter measurement and estimation of near-field moving fragments is presented in this dissertation. Five main subjects have been researched, which are the spatial specrum estimation techniques, the optimization of linear array, array manifold calibration, the velocity parameter estimation algorithm of moving fragments and the realization of the millimeter-wave velocity measurement system for shooting range fragments.
     Firstly, the research background and significance is introduced, and the shooting range velocity measuring system, the development of millimeter-wave continuous wave radar and spatial specrum estimation techniques are reviewed. The advantages and disadvantages of the common shooting range velocity measurement methods at home and abroad are compared and analyzed in detail. The problems of these methods in measuring velocity parameters of the fragments are pointed out.
     The mathematical models of far-field and near-field narrowband signal are deduced. Two subspace-based spatial spectrum estimation methods, maximum likelihood method and the Cramér-Rao bound for spatial spectrum are introduced.
     In order to solve the optimization of linear array, a novel array optimization method is presented, which takes the improvement of the direction-of-arrival angle(DOA) estimation performance as the optimization goal. Compared with the conventional method based on the peak side lobe level (PSLL), the method presented performs more efficiently. Computer simulations verify this conclusion.
     The calibration methods for unequal gain and phase responses, and the small errors in element positions are researched. In order to neglect the mutual coupling and simplify the array model calibration, the physical separations of the array elements in use exceed a few wavelengths designedly. Two calibration methods are presented, which calibrate the array with large channel phase errors and small channel phase errors, respectively. When the channel phase errors are large, the DOAs of the pilot sources are calculated through rotating the array twice with the same angle, and the gain/phase perturbation matrix and element position errors can be estimated. When the channel phase errors are small, the uncalibrated DOA of the pilot source, which is located at the orthogonal direction of the array boresight, is taken for the actual DOA. Then the array model errors are estimated.
     A fragment velocity parameter estimation algorithm is presented, which is based on the millimeter-wave array radar. According to the different Doppler frequencies of moving fragments, the echo signals of the fragments are separated. Then the location of these fragments are estimated, respectively. Using the Doppler frequencies of each fragement relative to the array elements, the fragement velocity estimation can be obtained. Finally, the start velocity and coefficient of velocity attenuation of fragment are estimated according to the velocities of different times. Several frequency estimation algorithms along with signal separation methods are introduced. The Cramér-Rao bounds of frequency estimation and fragement location estimation are also deduced. According to the simulation results, use ML method to estimate the frequency and separate the echo signals finally. The simulation results of start velocity and coefficient of velocity attenuation estimations prove the validity of the proposed algorithm.
     A millimeter-wave fragment velocity parameter measurement system is designed. The measurement principle of this system is introduced. The system architecture and design of the components are also described. Finally, satisfied results are obtained through the darkroom test experiments, including the location estimation of fixed sources and the velocity estimation of moving source.
引文
[1] Skolnik M. I. Radar Handbook[M]. Third Edition ed: McGraw-Hill, 2008.
    [2] Carrie N. C., Brown C. E. Principles and Application of MMW Radar[M]. Artech House, INC, 1987.
    [3]夏桂芬,朱淮城,李天池, et al.毫米波雷达导引头频域仿形技术研究[J].系统工程与电子技术, 2008, 30(9): 1649-1652.
    [4] Oderland I., Nordlof S., Leijor B. EAGLE-A High Accuracy 35 GHz Tracking Radar [C] // IEEE International Radar Conference, 1990.
    [5] Komeev D., Bogdanov L., Nalivkin A., et al. 3D Imaging System Based on FMCW Millimeter Wave Radar[C] // 2005 Joint 30th Intl. Conf. on Infrared and Millimeter Waves & 13th Intl. Conf. on Terahertz Electronics, 2005.
    [6] Uehara K., Miyashita K., Natsume K.-I., et al. Lens-Coupled Imaging Arrays for the Millimeter and Submillimeter-Wave Regions[J]. IEEE Trans. Microwave Theory Tech., 1992, 40(5): 806-811.
    [7] Detlefsen J. B. Imaging Applications of Millimeter Wave Sensors in Robotics and Road Traffic[C] // 1995 IEEE Microwave Systems Conference, 1995: 115-124.
    [8] Li D. D., Luo S. C., Pero C., et al. Millimeter-Wave FMCW/Monopulse Radar Front-End for Automotive Applications[C] // IEEE MTT-S Digest, 1999: 277-280.
    [9] Macfarlane D. G., Robertson D. A. Long Range, High Resolution 94GHz FMCW Imaging Radar (AVTIS)[C] // 30th Intl. Conf. Infrared & MM Waves, 2005: 201-202.
    [10] Mizuno K., Uehara K., Nishimura H., et al. Yagi-Uda Array for Millimetre-Wave Imaging[J]. Electronics Letters, 1991, 27(2): 108-109.
    [11] Rebeiz G. M., Kasilingam D. P., Guo Y., et al. Monolithic Millimeter-Wave Two-Dimensional Horn Imaging Arrays[J]. IEEE Trans. Antennas and Propagation, 1990, 38: 1473-1482.
    [12] Watabe K., Shimizu K., Yoneyama M. Millimeter-Wave Active Imaging Using Neural Networks for Signal Processing[J]. IEEE Trans. Microwave Theory Tech., 2003, 51(5): 1512-1516.
    [13]张光义.毫米波空间目标探测雷达[J].电子工程信息, 2003: 1-7.
    [14]尹建凤,李道京,吴一戎.基于星载毫米波雷达的空间目标探测与成像[J].宇航学报, 2007, 28(6): 1683-1688.
    [15]张志鸿,周申生.防空导弹引信与战斗部配合效率和战斗部设计[M].宇航出版社, 1994.
    [16]卢芳云,李翔宇,林玉亮.战斗部结构与原理[M].北京:科学出版社, 2009.
    [17]倪晋平,宋玉贵,冯斌.双天幕靶交汇测量弹丸飞行参数原理[J].光学技术, 2008, 34(3): 388-390.
    [18] GauthierJr L. R., DrewryJr D. G., Brunner L. Optical Sensor and Method for Detecting Projectile Impact Location and Velocity Vector[P].
    [19]倪晋平,杨雷.能识别破片群飞行方向和位置的速度测量方法[J].兵工学报, 2007, 28(1): 33-37.
    [20]倪晋平,田会,杨雷.战斗部破片速度光幕靶测量方法研究[J].光学技术, 2008, 34(1): 152-155.
    [21]赵锦,倪晋平.光幕靶测量破片群初速的方法[J].测试技术学报, 2007, 21(3): 214-218.
    [22]庞秋红,田会,倪晋平.六幕光幕靶测量破片群飞行参数算法[J].西安工业大学学报, 2008, 28(5): 417-421.
    [23]韦宏强,王劲松,冯进良, et al.基于激光靶的战斗部破片群速度测量方法[J].仪器仪表学报, 2008, 29(10): 2225-2229.
    [24]张国伟.终点效应及靶场试验[M].北京理工大学出版社, 2009.
    [25]马宏伟,王珂,李艳.基于数字图像处理的破片速度参数测量[J].测试技术学报, 2004, 18(4): 355-358.
    [26]翁佩英,任国民,于骐.弹药靶场试验[M].兵器工业出版社, 1995.
    [27] Weibel. Weible Doppler Radars[EB/OL]. http://www.weibel.dk/, 2011-01-17/2011-10-7.
    [28]向敬成,张明友.毫米波雷达及其应用[M].北京:国防工业出版社, 2005.
    [29] Rohling H., Lissel E. 77 GHz Radar Sensor for Car Application[C] // IEEE International Radar Conference, 1995: 373-379.
    [30] Tsang S. H., Hoare E. G., Hall P. S., et al. Automotive Radar Image Processing To Predict Vehicle Trajectory[C] // International Conference on Image Processing, 1999: 867-870.
    [31] Pourvoyeur K., Feger R., Haderer A., et al. A Highly Modular 77-GHz FMCW Radar Sensor Prototype for Multi Target Tracking Applications[C] // Proceedings of the 38th European Microwave Conference, Amsterdam, The Netherlands, 2008: 1612-1615.
    [32] Wu Y., Wang C., Li X., et al. Study on Automotive Anti-collision Radar System and Its Signal Processing Algorithm[C] // International Forum on Information Technology and Applications, 2009: 586-590.
    [33] Cheng F., Zhu D., Xu Z. The Study of Vehicle's Anti-collision Early Warning System Based on Fuzzy Control[C] // International Conference on Computer, Mechatronics, Control and Electronic Engineering, 2010: 275-277.
    [34]党宏社,韩崇昭,赵广社.汽车毫米波FMCW雷达中频信号的采样与处理[J].现代雷达, 2002, 24(4): 43-45.
    [35]金昶明,徐涛,孙晓玮, et al.时频分析在毫米波防撞雷达信号处理中的应用[J].电子学报, 2002, 30(9): 1413-1416.
    [36] Dornheim M. A. MMW Radar Shows Commercial Utility[J]. Aviation Week & Space Technology, November 2, 1992.
    [37] Bui L. Q., Alon Y., Morton T. 94 GHz FMCW Radar for Low Visibility Aircraft Landing System[C] // IEEE MTT-IMS Digest, 1991: 1147-1150.
    [38] Rangwala M., Lee J., Sarabandi K. Design of FMCW Millimeter-Wave Radar for Helicopter Assisted Landing[C] // IEEE IGARSS, 2007: 4183-4186.
    [39] Migliaccio C., Nguyen B. D., Pichot C., et al. Millimeter-Wave Radar for Rescue Helicopters[C] // ICARCV, 2006.
    [40] Nguyen B. D., Migliaccio C., Pichot C., et al. W-Band Fresnel Zone Plate Reflector for Helicopter Collision Avoidance Radar[J]. IEEE Trans. Antennas and Propagation, 2007, 55(5): 1452-1456.
    [41] Feil P., Menzel W., Nguyen T. P., et al. Foreign Objects Debris Detection (FOD) on Airport Runways Using a Broadband 78 GHz Sensor[C] // Proceedings of the 38th European Microwave Conference, Amsterdam,The Netherlands, October 2008: 1608-1611.
    [42] Goshi D. S., Liu Y., Mai K., et al. Recent Advances in 94 GHz FMCW Imaging Radar Development[C] // IEEE MTT-IMS, Boston, 2009: 77-80.
    [43] Goshi D. S., Liu Y., Mai K., et al. Cable Imaging with an Active W-band Millimeter-Wave Sensor[C] // IEEE MTT-IMS, 2010: 1620-1623.
    [44] Macfarlane D. G., Robertson D. A. A 94GHz Dual-Mode Active/Passive Imager for Remote Sensing[C] // SPIE European Symposium on Optics/Photonics in Security & Defence, London, UK, 2004: 70-81.
    [45] Robertson D. A., Macfarlane D. G. AVTIS:All-weather Volcano Topography Imaging Sensor[C] // 29th Intl.Conf. Infrared & MM Waves, Karlsruhe,Germany, 2004: 813-814.
    [46] Macfarlane D. G., Robertson D. A. A 94GHz Real Aperture 3D Imaging Radar[C] // Proceedings of the 3rd European Radar Conference, 2006: 154-157.
    [47] Macfarlane D. G., Robertson D. A. AVTIS - A Dual-Mode Imaging Millimetre Wave Radar/Radiometer for Volcanological Surveying[C] // Proc. IGARSS, 2004: 3299-3302.
    [48] Robertson D. A., Macfarlane D. G. High Resolution, Long Range Radar Imaging at 94GHz[C] // Proc. of SPIE, 2006.
    [49] Macfarlane D. G., Robertson D. A. SAFIRE: A Close Range Real TimeMillimetre Wave Radar for Public Education[C] // IRMMW-THz2007, Cardiff, UK, Sept. 2007: 924-925.
    [50] Macfarlane D. G., Robertson D. A. SAFIRE: A Close Range Fast Scanning High Resolution Millimetre Wave Radar for Public Education[C] // European Microw. Conf., Munich, Germany, Oct. 2007: 684-687.
    [51] Schellenberg J., Chedester R., McCoy J. Multi-Channel Receiver for an E-band FMCW Imaging Radar[C] // 2007 IEEE MTT-S Int. Microwave Symp. Dig., June 2007: 1359-1362.
    [52] Miyashiro K., Schellenberg J., Loveberg J., et al. An E-band Electronically Scanned Imaging Radar System[C] // 2007 IEEE MTT-S Int. Microwave Symp. Dig., June 2007: 1459-1462.
    [53] Langer D. An Integrated MMW Radar System for Outdoor Navigation[C] // IEEE International Conference on Robotic and Automation, Minneapolis, Minnesota, 1996: 417-422.
    [54] Boemhke S., Bares J., Mutschler E., et al. A High Speed 3D Radar Scanner for Automation[C] // IEEE International Conference on Robotics and Automation, Leuven, Belgium, 1998.
    [55] Foessel A. Scene Modelling from Motion-Free Radar Sensing[D]. Pittsburgh, USA: Carnegie Mellon University, 2002.
    [56] Adams M., Jose E. Millimeter Wave Radar Power-Range Spectra Interpretation for Multiple Feature Detection[Z]. 2006, 41-98.
    [57] Suomela J., Kuusela J., Halme A. Millimeter Wave Radar for Close Terrain Mapping of an Intelligent Autonomous Vehicle[C] // 2nd IFAC Conference on Intelligent Autonomous Vehicles, Helsinki, Finland, 1995.
    [58] Brooker G., Hennessey R., Bishop M., et al. High-Resolution Millimeter-Wave Radar Systems for Visualization of Unstructured Outdoor Environments,[J]. Journal of Field Robotics, 2006, 23(10): 891-912.
    [59] Durrant-Whyte H., Bell E., Avery P. The Design of a Radar-Based Navigation System for Large Outdoor Vehicles[C] // IEEE International Conference on Robotics and Automation, Nagoya, Japan, 1995.
    [60] Clark S., Durrant-Whyte H. Autonomous Land Vehicle Navigation Using Millimeter Wave Radar[C] // IEEE International Conference on Robotics and Automation, Leuven, Belgium, 1998.
    [61] Brooker G., Birch D., Solms J. W-Band Interrupted FMCW Imaging Radar[J]. IEEE Trans. Aerospace and Electronic Systems, 2005, 41(3): 955-972.
    [62] Widzyk-Capehart E., Brooker G., Scheding S., et al. Application of Millimetre Wave Radar Sensors to Environment Mapping in Surface Mining[C] // 9th International Conference on Control, Automation, Robotics and Vision(ICARCV 2006), Singapore, 2006.
    [63] Brooker G., Widzyk-Capehart E., Scheding S., et al. Millimetre Wave Radar Visualisation in Mines[C] // Proceedings of the 4th European Radar Conference, Munich Germany, 2007: 417-420.
    [64] Brooker G. M., Scheding S., Bishop M. V., et al. Development and Application of Millimeter Wave Radar Sensors for Underground Mining[J]. IEEE Sensors Journal, 2005, 5(6): 1270-1280.
    [65] Moya J. C., Zongbo W., Campoá. B. d., et al. Real-time Signal Processing System for High Resolution CWLFM Millimeter-wave Radars[C] // IEEE Radar Conference, 2008.
    [66] Blanco-del-Campoá., Asensio-López A., Gismero-Menoyo J., et al. Instrumental CWLFM High-Range Resolution Radar in Millimeter Waveband for ISAR Imaging[J]. IEEE Sensors Journal, 2011, 11(2): 418-429.
    [67] Mu?oz-Ferreras J. M., Pérez-Martínez F., Calvo-Gallego J., et al. Traffic Surveillance System Based on a High-Resolution Radar[J]. IEEE Trans. Geoscience and Remote Sensing, 2008, 46(6): 1624-1633.
    [68] Almorox-González P., González-Partida J.-T., Burgos-García M., et al. Portable High Resolution LFM-CW Radar Sensor in Millimeter-Wave Band[C] // International Conference on Sensor Technologies and Applications, 2007: 5-9.
    [69] Toshiaki T., Jun Y., Hideji A., et al. Observations of Cloud Properties Using the Millimeter-Wave FM-CW Radar of Chiba Univ.[C] // Proceedings of Asia-Pacific Microwave Conference, 2006.
    [70] Neumann C., Weiss G., Wahlen A., et al. Ground Surveillance with mmW Radar for Border Control and Camp Protection Applications[C] // Proceedings of the 37th European Microwave Conference, Munich Germany, 2007: 700-703.
    [71] González-Partida J.-T., Almorox-González P., Burgos-García M., et al. Through-the-Wall Surveillance With Millimeter-Wave LFMCW Radars[J]. IEEE Trans. Geoscience and Remote Sensing, 2009, 47(6): 1796-1805.
    [72] Gumbmann F., Tran P., Weinzierl J., et al. Multistatic Short Range Ka-Band Imaging System[C] // German Microwave Conference, Munchen, Germany, 2009.
    [73] Chioukh L., Boutayeb H., Li L., et al. Integrated Radar Systems for Precision Monitoring of Heartbeat and Respiratory Status[C] // Asia Pacific Microwave Conference, 2009: 405-408.
    [74]杨建宇,凌太兵,贺峻. LFMCW雷达运动目标检测与距离速度去耦合[J].电子与信息学报, 2004, 26(2): 169-173.
    [75]肖汉,杨建宇,熊金涛. LFMCW雷达多目标MTD-速度配对法[J].电波科学学报, 2005, 20(6): 712-715.
    [76]王永良,陈辉,彭应宁, et al.空间谱估计理论与算法[M].北京:清华大学出版社, 2004.
    [77] Haykin S., Reilly J. P., Kezys V., et al. Some aspects of array signal processing[J]. IEE Proceeding-F, 1992, 139(1): 1-26.
    [78] Krim H., Viberg M. Two Decades of Array Signal Processing Research: The Parametric Approach[J]. IEEE Signal Processing Mag., 1996, 13(4): 67-94.
    [79] Capon J. High-Resolution Frequency-Wavenumber Spectrum Analysis[Z]. 1969, 57, 1408-1418.
    [80] Burg J. P. Maximum Entropy Spectral Analysis[C] // Proc. of the 37th Meeting of the Annual Int. Society of Exporation Geophysicists Meeting, Oklahoma City, 1967.
    [81] Johnson D. H. The Application of Spectral Estimation Methods to Bearing Estimation Problems[Z]. 1982, 70, 1018-1028.
    [82] Tufts D. W., Kumaresan R. Estimation of Frequencies of Multiple Sinusoids: Making Linear Prediction Performance Like Maximum Likelihood[Z]. 1982, 70, 975-989.
    [83] Kay S. M., Marple S. L. Sources of and Remedies for Spectral Line Splitting in Autoregressive Spectrum Analysis[Z]. 1979, 4, 151-154.
    [84] Ng B. P. Constraints for Linear Predictive and Minimum-Norm Methods in Bearing Estimation[J]. IEE Proc. -F, 1990, 137(3): 187-192.
    [85] Schmidt R. O. Multiple Emitter Location and Signal Parameter Estimation[J]. IEEE Trans. Antennas and Propagation, 1986, 34(3): 276-280.
    [86] Schmidt R. O. Multiple Emitter Location and Signal Parameter Estimation[C] // Proceeding of RADC Spectrum Estimation Workshop, 1979: 243-258.
    [87] Kaveh M., Bassias A. Threshold Extension Based on a New Paradigm for MUSIC-Type Estimation[C] // International Conference on ASSP, 1990: 2535-2538.
    [88] Stoica P., Nehorai A. MUSIC Maximum Likelihood, and Cramer-Rao Bound[J]. IEEE Trans. Acoustics, Speech, and Signal Processing, 1989, 37(5): 720-741.
    [89] Johnson D. H., Degraaf S. R. Improving the Resolution of Bearing in Passive Sonar Arrays by Eigenvalue Analysis[J]. IEEE Trans. Acoustics, Speech, and Signal Processing, 1982, 30(4): 638-647.
    [90] Kumaresan R., Tufts D. W. Estimating the Angles of Arrival of Multiple Plane Waves[J]. IEEE Trans. Aerospace and Electronic Systems, 1983, 19(1): 134-139.
    [91] Rao B. D., Hari K. V. S. Performance Analysis of Root-MUSIC[J]. IEEE Trans. Acoustics, Speech, and Signal Processing, 1989, 37(12): 1939-1949.
    [92] Shan T. J., Wax M., Kailath T. On Spatial Smoothing for Estimation of Coherent Signals[J]. IEEE Trans. Acoustics, Speech, and Signal Processing, 1985, 33(4): 806-811.
    [93] Pillai S. U., Kwon B. H. Forward/Backward Spatial Smoothing Techniques for Coherent Signal Identification[J]. IEEE Trans. Acoustics, Speech, and Signal Processing, 1989, 37(1): 8-15.
    [94] Lee H., Wengrovitz M. Resolution Threshold of Beamspace MUSIC for Two Closely Spaced Emitter[J]. IEEE Trans. Acoustics, Speech, and Signal Processing, 1990, 38(9): 1545-1559.
    [95] Roy R., Kailath T. ESPRIT-A Subspace Rotation Approach to Estimation of Parameters of Cissoids in Noise[J]. IEEE Trans. Acoustics, Speech, and Signal Processing, 1986, 34(10): 1340-1342.
    [96] Roy R., Kailath T. ESPRIT-Estimation of signal parameters via rotational invariance techniques[J]. IEEE Trans. Acoustics, Speech, and Signal Processing, 1989, 37: 297-301.
    [97] Rao B. D., Hari K. V. S. Performance Analysis of ESPRIT and TAM in Determining the Direction of Arrival of Plane Waves in Noise[J]. IEEE Trans. Acoustics, Speech, and Signal Processing, 1989, 40(12): 1990-1995.
    [98] Kung S. Y., Lo C. K., Foke R. A Toeplitz Approximation Approach to Coherent Source Direction Finding[J]. IEEE Trans. on ICASSP, 1986, 11: 193-196.
    [99] Swindlehurst A. L., Ottersten B., Rao R., et al. Multiple Invariance ESPRIT[J]. IEEE Trans. Signal Processing, 1992, 40(4): 867-881.
    [100] Eriksson A., Stoica P. Optimally Weighted ESPRIT for Direction Estimation[J]. Signal Processing, 1994, 38: 223-229.
    [101] Rao B. D., Hari K. V. S. Weighted Subspace Methods and Spatial Smoothing: Analysis and Comparison[J]. IEEE Trans. Signal Processing, 1993, 41(2): 788-803.
    [102] Haardt M., Nossek J. A. Unitary ESPRIT: How to Obtain Increased Estimation[J]. IEEE Trans. Signal Processing, 1995, 43(5): 1232-1242.
    [103] Hua Y., Sarkar T. K. Matrix pencil Method for Estimation Parameters of Exponentially Damped/Undamped Sinusoids in Noise[J]. IEEE Trans. Acoustics, Speech, and Signal Processing, 1990, 38: 814-824.
    [104] Hua Y., Sarkar T. K. On SVD for Estimation Generalized Eigenvalues of Sigular Matrix Pencil in Noise[J]. IEEE Trans. Signal Processing, 1991, 39(4): 892-900.
    [105] Viberg M., Ottersten B. Sensor Array Processing Based on Subspace fitting[J]. IEEE Trans. Signal Processing, 1991, 39(5): 1110-1121.
    [106] Viberg M., Ottersten B., Kailath T. Detection and Estimation in Sensor Arrays Using Weighted Subspace Fitting[J]. IEEE Trans. Signal Processing, 1991, 39(11): 2436-2449.
    [107] Clergeot H., Tressens S., Ouamri A. Performance of High Resolution Frequencies Estimation Methods Compared to the Cramer-Rao Bounds[J]. IEEE Trans. Acoustics, Speech, and Signal Processing, 1989, 37(11): 1703-1720.
    [108] Stoica R., Moses B., Ferid L., et al. Maximun Likelihood Estimation of the Parameters of the Multiple Sinusoids from Noisy Measurements[J]. IEEE Trans. Acoust., Speech, Signal Processing, 1989, 37: 378-392.
    [109] Ottersten B., Viberg M., Stoica P., et al. Exact and Large Sample ML Techniques for Parameter Estimation and Detection in Array Processing[C] // Radar Array Processing, Berlin, Springer-Verlag,1993: 99-151.
    [110] Ziskind I., Wax M. Maximum Likelihood Location of Multiple Sources by Alternating Projection[J]. IEEE Trans. Acoustics, Speech, and Signal Processing, 1988, 36(10): 1553-1159.
    [111] Stoica P., Sharman K. C. Novel Eigenanalysis Method for Direction Estimation[J]. IEE Proceeding-F, 1990, 137(1): 19-26.
    [112] Stoica P., Sharman K. C. Maximum Likelihood Methods for Direcion-of-arrival Estimation[J]. IEEE Trans. Acoustics, Speech, and Signal Processing, 1990, 38(7): 1132-1143.
    [113] Miller M. I., Fuhrmann D. R. Maximum-Likelihood Narrow-Band Direction Finding and the EM Algorithm[J]. IEEE Trans. Acoustics, Speech, and Signal Processing, 1990, 38(5): 1560-1577.
    [114] Fessler J. A., Hero A. O. Space Alternation Generalized Expectation Maximization Algorithm[J]. IEEE Trans. Signal Processing, 1994, 42(10): 2664-2677.
    [115] Chung P. J., Bohme J. F. Comparative Convergence Analysis of EM and SAGE Algorithm in DOA Estimation[J]. IEEE Trans. Signal Processing, 2001, 49(12): 2940-2949.
    [116] Bresler Y., Macovski A. Exact Maximum Likelihood Parameter Estimation of Superimposed Exponential Signals in Noise[J]. IEEE Trans. Acoustics, Speech, and Signal Processing, 1986, 34(5): 1081-1089.
    [117] Lo Y. T., Lee S. W. A Study of Space-Tapered Arrays[J]. IEEE Trans. Antennas and Propagation, 1966, 14(1): 22-30.
    [118] Harrington R. F. Sidelobe Reduction by Nonuniform Element Spacing[J]. IEEE Trans. Antennas and Propagation, 1961, 9(2): 187.
    [119] Andreasan M. G. Linear Arrays with Variable Inter-Element Spacings[J]. IEEE Trans. Antennas and Propagation, 1962, 10(2): 137-143.
    [120] Ishimaru A. Theory of Unequally-Spaced Arrays[J]. IEEE Trans. Antennas and Propagation, 1962, 11(6): 691-702.
    [121] Skolnik M. I., Nemhauser G., Sherman J. W. Dynamic Programming Applied to Unequally Spaced Arrays[J]. IEEE Trans. Antennas and Propagation, 1964, 12(1): 35-43.
    [122] Murino V., Trucco A., Regazzoni C. S. Synthesis of Unequally Spaced Arrays by Simulated Annealing[J]. IEEE Trans. Signal Processing, 1996, 44(1): 119-123.
    [123] Kumar B. P., Branner G. R. Design of Unequally Spaced Arrays for Performance Improvement[J]. IEEE Trans. Antennas and Propagation, 1999, 47(3): 511-523.
    [124] Kumar B. P., Branner G. R. Generalized Analytical Technique for the Synthesis of Unequally Spaced Arrays With Linear, Planar, Cylindrical or Spherical Geometry[J]. IEEE Trans. Antennas and Propagation, 2005, 53(2): 621-634.
    [125] Quevedo-Terueló., Rajo-Iglesias E. Ant Colony Optimization in Thinned Array Synthesis with Minimum Sidelobe Level[J]. IEEE Antennas and Wireless Propagation Letters, 2006, 5: 349-352.
    [126] Haupt R. L. Thinned Arrays Using Genetic Algorithms[J]. IEEE Trans. Antennas and Propagation, 1994, 42(7): 993-999.
    [127] Trucco A., Murino V. Stochastic Optimization of Linear Sparse Arrays[J]. IEEE Journal of Oceanic Engineering, 1999, 24(3): 291-299.
    [128] Holland J. H. Genetic Algorithms[J]. Scientific American, 1992, (6): 44-50.
    [129] Johnson J. M., Rahmat-Samii Y. Genetic Algorithms in Engineering Electromagnetics[J]. IEEE Antennas and Propagation Magazine, 1997, 39(4): 7-21.
    [130] Samii Y. R., Michielssen E. Electromagnetic Optimization by Genetic Algorithm[M]. New York: Wiley, 1999.
    [131] Kirkpatrick S., Gelatt C. D., Vecchi M. P. Optimization by Simulated Annealing[J]. Sci, 1983, 220(4598): 671-680.
    [132] Marcano D., Duran F. Synthesis of Antenna Arrays Using Genetic Algorithms[J]. IEEE Antennas and Propagation Magazine, 2000, 42(3): 12-20.
    [133] Moffet A. T. Minimum-Redundancy Linear Arrays[J]. IEEE Trans. Antennas and Propagation, 1968, 16: 172-175.
    [134] Chambers C., Tozer T. C., Sharman K. C., et al. Temporal and Spatial Sampling Influence on the Estimates of Superimposed Narrowand Signals: When Less Can Mean More[J]. IEEE Trans. Signal Processing, 1996, 44(12): 3085-3098.
    [135] Abramovich Y. I., Spencer N. K., Gorokhov A. Y. Positive Definite Toeplotz Completion in DOA Esitmation for Nonuniform Linear Antenna Arrays-Part II: Partially-Augmentable Arrays[J]. IEEE Trans. Signal Processing, 1999, 47(6): 1502-1521.
    [136] Weiss A. J., Friedlander B. Effects of Modeling Errors on the Resolution Threshold of the MUSIC Algorithm[J]. IEEE Trans. Signal Processing, 1994, 42(6): 1519-1526.
    [137] Swindlehurst A. L., Kailaith T. A Performance Analysis of Subspace-Based Methods in the Presence of Model Errors, Part I : The MUSIC Algorithm[J]. IEEE Trans. Signal Processing, 1992, 40(7): 1758-1773.
    [138] Swindlehurst A. L., Kailaith T. A Performance Analysis of Subspace-Based Methods in the Presence of Model Errors, Part II : MultidimensionalAlgorithms[J]. IEEE Trans. Signal Processing, 1993, 41(9): 2882-2890.
    [139] Li F., Vaccaro R. J. Sensitivity Analysis of DOA Estimation Algorithm to Sensor Errors[J]. IEEE Trans. Aerospace and Electronic Systems, 1992, 28(3): 708-717.
    [140] Hamza R., Buckley K. An Analysis of Weighted Eigenspace Methods in the Presence of Sensor Errors[J]. IEEE Trans. Signal Processing, 1995, 43(5): 1140-1150.
    [141] Friedlander B. A Sensitivity Analysis of the MUSIC Algorithm[J]. IEEE Trans. Acoustics, Speech, and Signal Processing, 1990, 38(10): 1740-1751.
    [142] Friedlander B. Sensitivity Analysis of the Maximum Likelihood Direction-Finding Algorithm[J]. IEEE Trans. Aerospace and Electronic Systems, 1990, 26(6): 953-968.
    [143] Schmidt R. O. Multilinear array manifold interpolation[J]. IEEE Trans. Signal Processing, 1992, 40(4): 857-866.
    [144] Weiss A. J., Friedlander B. Manifold Interpolation for Diversely Polarized Arrays[J]. IEE Proc Radar, Sonar, and Navigation, Feb. 1994, 141(1): 19~24.
    [145] Ng B. C., See C. M. S. Sensor-Array Calibration Using a Maximum-Likelihood Aproach[J]. IEEE Trans. Antennas and Propagation, Jun 1996, 44(6): 827-835.
    [146] Hung E. K. L. Matrix-Construction Calibration Method for Antenna Arrays[J]. IEEE Trans. Aerospace and Electronic Systems, 2000, 36(3): 819-828.
    [147] Hung E. K. L. Computation of the Coupling Matrix Among the Elements of an Array Antenna[C] // In Proceedings of the International Conference on Radar(Radar 94), Paris, 1994: 703-706.
    [148] Zhang M., Zhu Z. D. DOA Estimation with Sensor Gain, Phase and Position Perturbations[C] // Proc. IEEE National Aerospace and Electronics Conference, 1993: 67-69.
    [149] Zhang M., Zhu Z. D. Array Shape Calibration Using Sources in Known Locations[C] // Proc. IEEE National Aerospace and Electronics Conference, 1993: 70-73.
    [150] Stavropoulos K., Manikas A. Array Calibration in the Presence of Unknown Sensor Characteristics and Mutual Coupling[C] // Proc. European Signal Processing Conference, 2000: 1417-1420.
    [151] Gupta I. J., Baxter J. R., Ellingson S. W. An Experimental Study of Antenna Array Calibration[J]. IEEE Trans. Antennas and Propagation, 2003, 51(3): 664-667.
    [152] Fistas N., Manikas A. A New General Global Array Calibration Method[C] // ICASSP, 1994: 73-76.
    [153] Weiss A. J., Friedlander B. Eigenstructure Methods for Direction Finding with Sensor Gain and Phase Uncertainties[J]. Circuits, Syst. Signal Processing, 1990, 9(3): 271-300.
    [154] Friedlander B., Weiss A. J. Performance of Direction-Finding Systems with Sensor Gain and Phase Uncertainties[J]. Circuits, Syst. Signal Processing, 1993, 12(1): 3-33.
    [155] Hong J. S. Genetic Approach to Bearing Estimation with Sensor Location Uncertainties[J]. Electronics Letters, 1993, 29(23): 2013-2014.
    [156] Rockah Y., Schultheiss P. M. Localization Performance of Arrays Subject to Phase Errors[J]. IEEE Trans. Aerospace and Electronic Systems, 1988, 24(4): 402-409.
    [157] Rockah Y., Schultheiss P. M. Array Shape Calibration Using Sources in Unknown Locations-Part I: Far Field Sources[J]. IEEE Trans. Acoustics, Speech, and Signal Processing, 1987, 35(3): 286-317.
    [158] Rockah Y., Schultheiss P. M. Array Shape Calibration Using Sources in Unknown Locations-Part II:Near Field Sources and Estimator implementation[J]. IEEE Trans. Acoustics, Speech, and Signal Processing, 1987, 35(3): 724-735.
    [159] Weiss A. J., Friedlander B. Array Shape Calibration Using Soureces in Unknowe Location-A Maximum Likelihood Approach[J]. IEEE Trans. Acoustics, Speech, and Signal Processing, 1989, 37(12): 1958-1966.
    [160] Weiss A. J., Friedlander B. Array Shape Calibration Using Eigenstructure Methods[J]. Signal Processing, 1991, 22(3): 251-258.
    [161] Friedlander B., Weiss A. J. Direction Finding in the Presence of Mutual Coupling[J]. IEEE Trans. Antennas and Propagation, 1991, 39(3): 273-284.
    [162] Hung E. K. L. A Critical Study of a Self-Calibration Direction-Finding Method for Arrays[J]. IEEE Trans. Signal Processing, 1994, 42(2): 471-474.
    [163] Pierre J., Kaveh M. Experimental Performance of Calibration and Direction Finding Algorithms[C] // Proceedings of IEEE ICASSP, 1991: 1365-1368.
    [164] Soon V. C., Tong L., Huang Y. F., et al. A Subspace Method for Estimating Sensor Gains and Phases[J]. IEEE Trans. Signal Processing, 1994, 42(4): 973-976.
    [165] Wahlberg B., Ottersten B., Viberg M. Robust Signal Parameter Estimation in the Presence of Array Perturbations[C] // Proceedings of IEEE ICASSP, 1991: 3277-3280.
    [166] Viberg M., Swindlehurst A. L. A Bayesian Approach to Auto-Calibration for Parametric Array Signal Processing[J]. IEEE Trans. Signal Processing, 1994, 42(12): 3495-3507.
    [167] Jansson M., Swindlehurst A. L., Ottersten B. Weighted Subspace Fitting for General Array Error Models[J]. IEEE Trans. Signal Processing, 1998, 46(9): 2484-2497.
    [168] Stoica P., Nehorai A. Performance Comparison of Subspace Rptation and MUSIC Methods for Direction Estimation[J]. IEEE Trans. Signal Processing,1991, 39(2): 446-453.
    [169] Huang Y. D., Barkat M. Near-Field Multiple Source Localization by Passive Sensor Array[J]. IEEE Trans. Antennas and Propagation, 1991, 39(7): 968-975.
    [170] Stoica P., Larsson E. G., Gershman A. B. The Stochastic CRB for Array Processing: a Textbook Derivation[J]. IEEE Signal Processing Letters, 2001, 8(5): 148-150.
    [171]王玲玲,方大纲.运用遗传算法综合稀疏阵列[J].电子学报, 2003, 31(12A): 2135-2138.
    [172]陈客松,何子述,韩春林.利用GA实现非对称稀疏线阵旁瓣电平的优化[J].电子与信息学报, 2007, 29(4): 987-990.
    [173]尚飞,蔡亚星,张颖, et al.阵列天线的双种群遗传算法综合[J].电波科学学报, 2007, 22(2): 224-228.
    [174]贾永康,保铮,李有明.线性阵相位误差校正约束条件性能分析[J].电子学报, 1998, 26(4): 104-106.
    [175]林川.粒子群优化与差分进化算法研究及其应用[D].西南交通大学, 2009.
    [176] Rife D. C., Boorstyn R. R. Single-tone Parameter Estimation from Discrete-time Observations[J]. IEEE Trans. Information Theory, 1974, 20(5): 591-598.
    [177] Athley F. Threshold Region Performance of Maximum Likelihood Direction of Arrival Estimators[J]. IEEE Trans. Signal Processing, 2005, 53(4): 1359-1373.
    [178] Athley F. Performance Analysis of DOA Estimation in the Threshold Region[C] // IEEE International Conference on Acoustics, Speech, and Signal Processing Orlando, 2002: III-3017-III-3020.
    [179] Viberg M., Ottersten B., Nehorai A. Performance Analysis of Direction Finding with Large Arrays and Finite Data[J]. IEEE Trans. Signal Processing, 1995, 43(2): 469-477.
    [180]张祖稷,金林,束咸荣.雷达天线技术[M].北京:电子工业出版社, 2005.
    [181] Hui H. T. Compensating for the Mutual Coupling Effect in Direction Finding Based on a New Calculation Method for Mutual Impedance[J]. IEEE Antennas and Wireless Propagation Letters, 2003, 2: 26-29.
    [182] Ye Z., Liu C. 2-D DOA Estimation in the Presence of Mutual Coupling[J]. IEEE Trans. Antennas and Propagation, 2008, 56(10): 3150-3158.
    [183] Durrani S., Bialkowski M. E. Effect of Mutual Coupling on the Interference Rejection Capabilities of Linear and Circular Arrays in CDMA Systems[J]. IEEE Trans. Antennas and Propagation, 2004, 52(4): 1130-1134.
    [184]陈宝林.最优化理论与算法[M].北京:清华大学出版社, 2005.
    [185]隋树元,王树山.终点效应学[M].北京:国防工业出版社, 2000.
    [186] Gough P. T. A Fast Spectral Estimation Algorithm Based on the FFT [J]. IEEETrans. Signal Processing, 1994, 42(6): 1317-1322.
    [187]王兆华,侯正信,苏飞.全相位FFT频谱分析[J].通信学报, 2003, 24(11A): 16-19.
    [188]黄翔东.全相位数字信号处理[D].天津大学, 2006.
    [189]黄翔东,王兆华.基于全相位频谱分析的相位差频谱校正法[J].电子与信息学报, 2008, 30(2): 293-297.
    [190] Rao B. D., Arun K. S. Model Based Processing of Signals:A State Space Approach[J]. Proceedings of the IEEE, 1992, 80(2): 283-309.
    [191]王剑,吴嗣亮,侯淑娟.超分辨条件下雷达目标散射点数的估计方法[J].电子学报, 2008, 36(6): 1058-1062.
    [192] A.Horn R., Johnson C. R. Matrixs Analysis[M]. U.K.: Cambridge Univ. Press, 1985.
    [193] Wax M., Kailath T. Detection of signals by information theoretic criteria[J]. IEEE Trans. Acoustics, Speech, and Signal Processing, 1985, 33: 387–392.
    [194] Wax M., Ziskind I. Detection of the Number of Coherent Signals by the MDL Principle[J]. IEEE Trans. Acoust., Speech, Signal Processing, 1989, 37(8): 1190-1196.
    [195] Wu H. T., Yang J. F., Chen F. K. Source Number Estimation Using Transformed Gerschgorin Radii[J]. IEEE Trans. Signal Processing, 1995, 43(6): 1325-1333.