产形线切齿法加工准双曲面齿轮研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
准双曲面齿轮用于传递空间相错轴的运动和动力,多用于汽车后桥的减速传动,同时也在工程机械、船舶和飞行器等领域具有广泛的应用。由于其几何关系与螺旋锥齿轮有相似之处,目前生产中常用的螺旋锥齿轮加工方法和切齿机床可以在计算和调整后用于加工准双曲面齿轮,并逐渐形成了以Gleason公司所采用的面铣削法和面滚切法为代表的齿轮加工体系。但是,上述两种方法加工的螺旋锥齿轮并不是理想的球面渐开线齿形,因此加工的齿面存在理论误差,瞬时速比不恒定,同时也造成齿面修形与机床调整复杂、设计制造周期较长、非同批加工的齿轮之间无法互换等问题,因此需要对机床参数和刀具进行不断地修正和改进,以减小这种误差的影响。
     产形线切齿法是基于渐开线和圆锥螺旋渐开面的生成原理提出的一种新型齿轮加工方法,该方法加工的螺旋锥齿轮齿形为理想的球面渐开线,具有瞬时速比恒定、非同批加工齿轮可以互换等优点,且机床结构相对简单,加工效率较高,易于实现齿面的接触区控制。
     为扩大产形线切齿法的适用范围,使该方法的诸多优点在更大范内得到发挥,本文对产形线切齿法加工准双曲面齿轮的理论与方法进行了深入研究。通过分析准双曲面齿轮的基本几何,在目前常用的描述准双曲面齿轮的几何关系基础上,构造了产形线切齿法所必需的基圆锥与基平面,提出了小轮与大轮产形线的几何关系与运动关系,推导了与基锥相关的几何参数的求解公式,从而建立了产形线切齿法加工准双曲面齿轮的基本原理。
     根据该原理加工生成齿面的过程,本文建立了描述齿面的数学模型,利用空间啮合理论论证了该方法加工的一对准双曲面齿轮齿面能够进行正确的点接触啮合传动,并以此模型为基础,分别建立了已知大轮产形线形状为直线和圆弧线的情况下,加工大、小齿轮各齿面产形线的数学模型。
     为了研究准双曲面齿轮各齿面的切齿加工方案,本文根据产形线切齿法加工螺旋锥齿轮的齿面切削加工原理,分别阐述了产形线为直线、圆弧线以及平面一般曲线的情况下齿面切削区的确定和避免发生过切的手段,并将之推广到准双曲面齿轮,提出了准双曲面齿轮小轮和大轮各齿面的切削区确定方法以及各齿面的切齿加工方案。在此基础上,对加工各齿面所需要的机床运动和结构进行了研究和汇总,提出基于产形线切齿法的用于加工螺旋锥齿轮和准双曲面齿轮的通用型6轴3联动数控机床的结构和运动方案。
     在上述理论研究的基础上,参考一对已知设计参数的Gleason准双曲面齿轮,本文实例计算了各基锥参数和各齿面的切削区,并分别在设定大轮产形线为直线或圆弧线的情况下,计算了小轮和大轮各齿面的产形线方程。采用Matlab在直角坐标系内绘制了各条理论产形线以观察其形状,由于小轮的理论产形线近似于直线或圆弧线,故本文提出了产形线的代用方法并建立了代用误差的评价方法,以便采用产形线为直线或圆弧线的切齿原理和机床加工小轮齿面以提高切齿效率。通过实例计算,验证了本文提出的产形线代用方法能够将代用误差控制在齿面弹性变形的范围内,从而表明其可行性。
     对于以圆弧线代用的小轮产形线,直接计算而来的代用圆弧半径通常不是整数,不利于机床刀具系列化以简化机床配置,故本文提出了对代用产形线半径进行圆整优化的方法。对于小轮产形线采用圆弧线代用,特别是小轮左、右齿面均采用圆弧线代用的情况下,分析齿面预设几何参数的变化对各代用产形线半径的影响,采用曲面拟合及插值求解的方法实现产形线半径的圆整优化。从实例计算结果可以看出,该方法能够将优化后的代用产形线半径残差控制在0.1%以内,且仍可根据需要作进一步的优化,从而表明该方法具有较高的可行性。
     通过本文的研究,使产形线切齿法的适用范围进一步扩展到通常不探讨齿形概念的准双曲面齿轮,为加工机床的研制和进一步计划开展的切齿实验积累了重要的研究资料,同时也为产形线切齿法加工其它类型的齿轮提供了一种新的思路。纵观全文,本论文的创新性研究工作主要有以下几个方面:
     1.在目前常用的准双曲面齿轮几何关系的基础上构建了基锥和基平面,并确定了小轮和大轮产形线间的平面共轭关系,从而使采用产形线切齿法加工准双曲面齿轮成为可能,并提供了基本的条件和要素。
     2.提出了采用产形线切齿法加工螺旋锥齿轮的原理加工准双曲面齿轮各齿面。由于产形线切齿法在螺旋锥齿轮的加工理论和实践上具有更多的理论基础和实践经验,将准双曲面齿轮齿面转化为螺旋锥齿轮的加工方法有利于问题的简化和避免重复研究。
     3.提出了产形线代用方法和代用产形线优化方法。产形线代用的提出可以避免使小轮齿面按照产形线为一般曲线的切齿方案进行加工,有利于发挥产形线切齿法的优势;代用产形线圆整优化方法的提出使得在进一步机床研制过程中系列化圆弧刃刀具半径成为了可能,有利于简化刀具设计和机床配置。
Hypoid gears are widely used to transmit crossed-axis power and motion in vehicles (such as the rear drive-axles of passenger cars and trucks), engineering machineries, ships, aircrafts and other areas. Because of the similarity of the geometrical relationship between hypoid gears and spiral bevel gears, the current methods and machines which are commonly used to manufacture spiral bevel gears can be used to manufacture hypoid gears after calculating and adjusting, and the gear cutting system, which consist of face milling and face hobbing and are used by Gleason Works, is gradually formed. However, the tooth profile curves of spiral bevel gears which are manufactured by face milling or face hobbing are not ideal spherical involutes, so there are theoretical errors on the tooth surfaces. The effects of the error are: (1) transmission ratio is not constant; (2) modification and adjustment of tooth surfaces are complex; (3) designing and manufacturing need to take a longer period; (4) gears can not be interchanged unless in the same batch. Therefore, in order to reduce to effect of the error, the parameters of machine tools and cutting tool need to be modified and improved continuously.
     Based on the generating principle of spherical involute and the theory of conjugated tooth surfaces, we have proposed a new method of cutting involute gears called generating-line method. This new method can be used to process ideal spherical involute spiral bevel gears that the transmission ratio is constant and gears can be interchanged even in different batches. Moreover this method makes the calculation and adjustment of machine tools settings relatively simple, the processing efficient relatively high, and the controlling of tooth contact areas easily.
     In order to expand the applying scope of the generating-line method, this paper researched the theory of manufacturing hypoid gears by this new method. Based on analyzing the basic geometry of hypoid gears, the base cones and base planes which are necessary for generating-line method were established, and the geometrical and kinematical relationships between pinion and gear generating lines were proposed, then the formulas of the geometrical parameters of the base cone were studied. Accordingly the basic principle of manufacturing hypoid gears by generating-line method was built.
     On basis of the process of generating tooth surfaces by this principle, the mathematical model of tooth surfaces was established. Based on the space engagement principle, this paper proved that the pair of tooth surfaces could conjugate exactly in point contact. And then the mathematical model of each side of pinion and gear generating lines which the shape of gear is known as straight line or circular arc was built on basis of the tooth surfaces model.
     In order to study the processing program of cutting each side of hypoid gears, on the basis of the principle of cutting spiral bevel gear tooth surfaces, the author researched the method of determining the cutting areas and avoiding over-cutting in the condition of the generating lines are straight line, circular arc and plane general curve respectively, then promoted this method to hypoid gears, and proposed the method of determining the cutting areas of each side of pinion and gear and the processing program of cutting. And then the author researched and gathered the necessary motion and structure of machine tools, and built a commonly used six-three axis CNC machine tools to manufacture spiral bevel and hypoid gears by generating-line method.
     Based on the theoretical studies mentioned above, reference to a pair of Gleason hypoid gears which the designing parameters were known, the author calculated the base cone parameters, cutting areas of each tooth surfaces of pinion and gear, and calculated the equations of gear generating lines and the theoretical pinion generating lines in the condition of setting the gear generating lines as a straight line or circular arc respectively. Because of the theoretical pinion generating lines which were plotted in Matlab looks approximate straight lines or circular arc, in order to improve the cutting efficiency by using the cutting theory of straight line or circular arc generating lines, the methods of substituting simple curves for the complex theoretical pinion generating lines and estimating the errors of substituting were proposed. As the radius of circular arc substituted generating lines were usually not integer, in order to serialize the cutting tool radiuses and simplify the structure of machine tools, the author proposed an optimizing method of rounding the radiuses of circular arc substituted generating lines. It can be seen from the results of the calculating example: the method of substituting generating lines could control the errors under the area of elastic deformation of tooth surfaces, and the method of optimizing substituted generating lines could control the residual errors less than 1% and could make a further optimization, therefore the methods of substituting and optimizing generating lines were both feasible.
     Through theses studies, the author extended the suitable range of generating-line method to hypoid gears which usually do not have the concept of tooth profile, and accumulated lots of important research data for the further machine tools research and cutting experiments, and also provided a new way to study generating-line method for manufacturing other types of gears. Throughout the full text of this paper, the innovative research works mainly shown in the following areas:
     1. Built the base cones and base plane for hypoid gears based on the commonly used geometrical relationship, and determined the plane conjugated relationship between the generating lines of pinion and gear, therefore the basic conditions and elements of manufacturing hypoid gears by generating-line method were provided
     2. Proposed the method of using the theory of manufacturing spiral bevel gears by generating-line method to process hypoid gears. As the theoretical basis and practical experience of manufacturing spiral bevel gears by generating-line method were much more, transforming hypoid gears cutting process to spiral bevel gears could simplify the problems and avoid redundant researches.
     3. Proposed methods of substituting generating lines and optimization of substituted generating lines. The method of substituting generating lines could avoid cutting the pinion as the generating line was a plane general curve, and would help to play the strengths of generating-line method. The method of rounding optimization of substituted generating lines made the cutting tool radius serialization possible in the further studies of the machine tools, and would help to simplify the design of cutting tools and the configuration of machine tools.
引文
[1] DUDLEY D W. The evolution of the gear art [M]. Washington: American Gear Manufacturers Association, 1969.
    [2] COY J J, TOWNSEND D P, ZARETSKY E V. Gearing [R]. NASA Reference Publication 1152, AVSCOM Technical Report 84-C-15, 1985.
    [3]石凤山,刘恩惠.齿轮基础几何[M].北京:科学出版社, 1978.
    [4]西安交通大学机制教研室齿轮研究组.弧齿锥齿轮和准双曲线齿轮加工调整原理[M].上海:上海科学技术出版社, 1979.
    [5] WU Jun-long, LIU Chia-chang, TSAY Chung-biau, et al. Mathematical model and surface deviation of helipoid gears cut by shaper cutters [J]. Journal of Mechanical Design, 2003, 125(2): 351-355.
    [6] SIMON V. Load distribution in spiral bevel gears [J]. Journal of Mechanical Design, 2007, 129(2): 201-209.
    [7] SIMON V. Influence of tooth errors and misalignments on tooth contact in spiral bevel gears [J]. Mechanism and Machine Theory, 2008, 43(10): 1253-1267.
    [8] SIMON V. Machine-tool settings to reduce the sensitivity of spiral bevel gears to tooth errors and misalignments [J]. Journal of Mechanical Design, 2008, 130(8): 082603.1-082603.10.
    [9] SIMON V. Design and manufacture of spiral bevel gears with reduced transmission errors [J]. Journal of Mechanical Design, 2009, 131(4): 041007.1-041007.11.
    [10] SIMON V. Head-cutter for optimal tooth modifications in spiral bevel gears [J]. Mechanism and Machine Theory, 2009, 44(7): 1420-1435.
    [11]彭福华.渐开线齿轮产形线切齿法[M].长春:吉林科学技术出版社, 2008.
    [12]彭福华.球面渐开线齿形收缩齿制弧齿锥齿轮的切齿方法:中国, 200610017213.0[P]. 2008-04-02.
    [13]杨兆军,彭福华,张学成.球面渐开线齿形弧齿锥齿轮切齿法与机床:中国, 200810051354.3[P]. 2009-03-25.
    [14]彭福华,杨兆军,于立娟.球面渐开线齿形阿基米德螺线齿锥齿轮切齿法与机床:中国, 200810051355.8[P]. 2009-03-25.
    [15]彭福华,呼咏,李春光.收缩齿制球面渐开线齿形斜直齿锥齿轮加工方法:中国, 200810051356.2[P]. 2009-03-25.
    [16]朱孝录.齿轮传动设计手册[M]. 2版.北京:化学工业出版社, 2010.
    [17] WILDHABER E. Basic relationship of hypoid gears I–VII [J]. American Machinist, 1946, 90: 108-111, 131-134, 132-135, 110-114, 150-152, 106-110, 104-106, 122-128.
    [18] BAXTER M L. Basic geometry and tooth contact of hypoid gears [J]. Industrial Mathematics, 1961, 11: 19-42.
    [19] WANG X C, GHOSH S K. Advanced theories of hypoid gears [M]. Amsterdam: Elsevier Science Ltd, 1994.
    [20]徐康林.双曲线齿轮原理[M].上海:科学技术出版社, 1957.
    [21]吴序堂.齿轮啮合原理[M]. 2版.西安:西安交通大学出版社, 2009.
    [22] STADTFELD H J. Advanced bevel gear technology [M]. Rochester, NY: The Gleason Works, 2000.
    [23] KRENZER T J. Face-milling or face-hobbing [S]. AGMA, Technical Paper No. 90 FTM 13, 1990.
    [24] FAN Q, Enhanced algorithms of contact simulation for hypoid gear drives produced by face-milling and face-hobbing processes [J]. Journal of Mechanical Design, 2007, 129(1): 31-37.
    [25] SHIH Yi-pei, FONG Zhang-hua, GRANDLE C Y L. Mathematical model for a universal face hobbing hypoid gear generator [J], Journal of Mechanical Design, 2007, 129(1): 38-47.
    [26] VIMERCATI M. Mathematical model for tooth surfaces representation of face-hobbed hypoid gears and its application to contact analysis and stress calculation [J]. Mechanism and Machine Theory, 2007, 42(6): 668-690.
    [27] GOLDRICH R N. Theory of six axes CNC generation of serial bevel and hypoid gears [R]. Pittsburgh: AGMA Fall Technical Meeting, 1989.
    [28]张威,王太勇,罗珺,等.面向刀倾全展成法的运动学转化简化算法及仿真[J].机械工程学报, 2008, 44(3): 123-129.
    [29] SHIH Yi-pei. Flank correction for spiral bevel and hypoid gears on a six-axis CNC hypoid generator [J]. Journal of Mechanical Design, 2008, 130(6): 062604.1-062604.11.
    [30]张卫青,张明德,郭晓东,等.全数控锥齿轮铣齿机运动控制方法及切齿实验研究[J].中国机械工程, 2009, 20(22): 2733-2737.
    [31] STADTFELD H J. Handbook of bevel and hypoid gears [M]. New York: Rochester Institute of Technology, 1993.
    [32] Gleason Seminar. Spiral bevel and hypoid gear technology update [R]. Beijing:Gleason Corporation, 2007.
    [33] LITVIN F L, GUTMAN Y. Methods of synthesis and analysis for hypoid gear-drives of“formate”and“helixform”, part 1-3 [J]. Journal of Mechanical Design, 1981, 103(4): 83-113.
    [34] LITVIN F L, ZHANG Y, LUNDY M, et al. Determination of settings of a tilted head cutter for generation of hypoid and spiral bevel gears [R]. Chicago: NASA Contractor Report, 1988.
    [35] LITVIN F L, ZHANG Y. Local synthesis and tooth contact analysis of face-milled spiral bevel gear [R]. Washington, DC: NASA Technical Report, 1991.
    [36] SIMON V. FEM stress analysis in hypoid gears [J]. Mechanism and Machine Theory, 2000, 35(9): 1197-1220.
    [37] SIMON V. Load distribution in hypoid gears [J]. Journal of Mechanical Design, 2000, 122(4): 529-535.
    [38] SIMON V. Optimal machine tool setting for hypoid gears improving load distribution [J]. Journal of Mechanical Design, 2001, 123(4): 577-582.
    [39] SIMON V. Optimal tooth modifications in hypoid gears [J]. Journal of Mechanical Design, 2005, 127(4): 646-655.
    [40] FAN Q. Computerized modeling and simulation of spiral bevel and hypoid gears manufactured by gleason face hobbing process [J]. Journal of Mechanical Design, 2006, 128(6): 1315-1327.
    [41] FAN Q, DAFOE R S, SWANGER J W. Higher-order tooth flank form error correction for face-milled spiral bevel and hypoid gears [J]. Journal of Mechanical Design, 2008, 130(7): 072601.1-072601.7.
    [42] FAN Q. Tooth surface error correction for face-hobbed hypoid gears [J]. Journal of Mechanical Design, 2010, 132(1): 011004.1-011004.8.
    [43] FONG Zhang-hua. Mathematical model of universal hypoid generator with supplemental kinematic flank correction motions [J]. Journal of Mechanical Design, 2000, 122(1): 136-142.
    [44] LING Chung-yunn, TSAY Chung-biau. FONG Zhang-hua. Computer-aided manufacturing of spiral bevel and hypoid gears by applying optimization techniques [J]. Journal of Materials Processing Technology, 2001, 114(1): 22-35.
    [45] WANG Pei-yu, Fong ZHANG-hua. Adjustability improvement of face-milling spiral bevel gears by modified radial motion (MRM) method [J]. Mechanism and Machine Theory, 2005, 40(1): 69-89.
    [46] WANG Pei-yu, FONG Zhang-hua. Mathematical model of face-milling spiral bevel gear with modified radial motion (MRM) correction [J]. Mathematical and Computer Modelling, 2005, 41(11-12): 1307-1323.
    [47] WANG Pei-yu, FONG Zhang-hua. Fourth-order kinematic synthesis for face-milling spiral bevel gears with modified radial motion (MRM) correction [J]. Journal of Mechanical Design, 2006, 128(2): 457-467.
    [48] SHIH Yi-pei, FONG Zhang-hua. Flank modification methodology for face-hobbing hypoid gears based on ease-off topography [J]. Journal of Mechanical Design, 2007, 129(12): 1294-1302.
    [49] LIM T C, CHENG Y. A theoretical study of the effect of pinion offset on the dynamics of hypoid geared rotor system [J]. Journal of Mechanical Design, 1999, 121(4): 594-601.
    [50] CHENG Y, LIM T C. Vibration analysis of hypoid transmissions applying an exact geometry-based gear mesh theory [J]. Journal of Sound and Vibration, 2001, 240(3): 519-543.
    [51] CHENG Y, LIM T C. Dynamics of hypoid gear transmission with nonlinear time-varying mesh characteristics [J]. Journal of Mechanical Design, 2003, 125(2): 373-382.
    [52] WANG J, LIM T C, LI M. Dynamics of a hypoid gear pair considering the effects of time-varying mesh parameters and backlash nonlinearity [J]. Journal of Sound and Vibration, 2007, 308(1-2): 302-329.
    [53] VOGEL O, GRIEWANK A, B?R G. Direct gear tooth contact analysis for hypoid bevel gears [J]. Computer Methods in Applied Mechanics and Engineering, 2002, 191(36): 3965-3982.
    [54] ACHTMANN J, B?R G. Optimized bearing ellipses of hypoid gears [J]. Journal of Mechanical Design, 2003, 125(4): 739-745.
    [55] GOSSELIN C, GUERTIN T, REMOND D, et al. Simulation and experimental measurement of the transmission error of real hypoid gears under load [J]. Journal of Mechanical Design, 2000, 122(1): 109-122.
    [56] JIANG Q, GOSSELIN C, MASSETH J. Simulation of Hypoid Gear Lapping [J]. Journal of Mechanical Design, 2008, 130(11): 112601.1-112601.10.
    [57] JIANG Q, GOSSELIN C, MASSETH J. Computer-aided machine setting for lapping optimization [J]. Journal of Mechanical Design, 2009, 131(3): 031003.1-031003.8
    [58]郑昌启.汽车驱动桥齿轮加工技术的发展[J].现代零部件, 2009, (9): 30-34.
    [59]张洪飚,郑昌启. Gleason准双曲面齿轮螺旋成形法切齿计算原理(上)[J]. 1982, (8): 32-38.
    [60]张洪飚,郑昌启. Gleason准双曲面齿轮螺旋成形法切齿计算原理(下)[J]. 1982, (9): 25-29.
    [61]张洪飚,郑昌启.准双曲面齿轮齿坯几何设计[J].重庆大学学报, 1984, (1): 14-19.
    [62]黄昌华,郑昌启,祖正华.准双曲面齿轮副的加载模型实验[J].重庆大学学报, 1991, 14(3): 22-24.
    [63]曾韬.双曲齿轮几何关系在切齿计算中的应用[J].数学的实践与认识, 1985, (4): 16-24.
    [64]曾韬,吕传贵.螺旋锥齿轮和准双曲面齿轮的端面滚齿法[J],机械传动, 1996, (S1): 49-50.
    [65]毛世民,吴序堂.任意指定接触基准点的切齿理论[J].西安交通大学学报, 1985, 19(5): 1-10.
    [66]毛世民,关中民.在TAN-A9机床上加工收缩齿弧齿锥齿轮和准双曲面齿轮[J].西安交通大学学报, 1986, 20(5): 13-21.
    [67]董学朱.准双曲面齿轮切齿调整计算法的改进(一)[J].齿轮, 1985, 9(6): 1-4.
    [68]董学朱.准双曲面齿轮切齿调整计算法的改进(二)[J].齿轮, 1986, 10(1): 40-43.
    [69]董学朱.准双曲面齿轮变性半展成切齿调整计算新方法[J].齿轮, 1987, 11(4): 1-7.
    [70]董学朱.准双曲面齿轮刀倾半展成切齿调整计算新方法[J].齿轮, 1988, 12(2): 1-6.
    [71]董学朱.准双曲面齿轮刀倾全展成切齿调整计算方法[J].齿轮, 1988, 12(5): 1-6.
    [72]董学朱,金志民,叶海建.弧齿锥齿轮和准双曲面齿轮齿面接触区的计算机辅助分析[J].北京农业工程大学学报, 1989, 9(3): 48-57.
    [73]董学朱.弧齿锥齿轮和准双曲面齿轮切齿调整计算新方法[J].北京农业工程大学学报, 1990, 10(1): 16-27.
    [74]魏文军,董学朱.准双曲面齿轮几何参数计算新方法[J].北京农业工程大学学报, 1990, 10(4): 47-52.
    [75]吴荣孝.斜齿准双曲面齿轮简介[J].江苏机械, 1988, (5): 17-22.
    [76]俞维华,刘福利,高业田,等.任意指定计算点的弧齿锥齿轮与准双曲面齿轮的切齿计算原理[J].哈尔滨工业大学学报, 1990, (4): 114-125.
    [77]方宗德,杨宏斌.准双曲面齿轮的优化切齿设计[J].汽车工程, 1988, 20(5): 302-307.
    [78]方宗德,杨宏斌.准双曲面齿轮传动的轮齿接触分析[J].汽车工程, 1998, 20(6): 350-355.
    [79]方宗德,田行斌.准双曲面齿轮有摩擦承载接触分析[J].汽车工程, 1999, 21(3): 184-187.
    [80]方宗德,杨宏斌.准双曲面齿轮弯曲应力过程的精确计算[J].汽车工程, 2000, 22(6): 423-426.
    [81]邓效忠,方宗德,杨宏斌.准双曲面齿轮齿面接触应力过程计算[J].中国机械工程, 2001, 12(12): 1362-1364.
    [82]方宗德,杨宏斌,邓效忠,等. HFT准双曲面齿轮的齿根过渡曲面和干涉、根切检验[J].机械传动, 2002, (1): 38-40.
    [83]万小利,万晓风,梁桂明.采用非零变位设计提高准双曲面齿轮综合性能[J].机械设计, 1995, (10): 50-51.
    [84]万小利,万晓风,江锡卓,等.准双曲面齿轮和螺旋锥齿轮设计的统一算法[J].北京理工大学学报, 1999, 19(2): 167-170.
    [85]邓效忠,孟庆睿,牛嗥.高齿制准双曲面齿轮的根切[J].洛阳工学院学报, 1999, 20(3): 18-21.
    [86]周彦伟,杨宏斌,邓效忠,等.高齿准双曲面齿轮的轮齿加载接触分析[J].中国机械工程, 2002, 13(14): 1181-1183.
    [87]邓效忠,杨宏斌,王军,等.高齿准双曲面齿轮的设计方法与试验研究[J].农业机械学报, 2004, 35(5): 197-200.
    [88]王军,汤黎明,曹雪梅,等.遗传算法在高齿准双曲面齿轮设计中的应用[J].机械传动, 2005, 29(4): 29-30.
    [89]张金良,方宗德,邓效忠.高强度准双曲面齿轮的新设计方法[J].中国机械工程, 2005, 16(5): 389-391.
    [90]张金良,方宗德,邓效忠,等.准双曲面齿轮强度的非对称设计[J].机械科学与技术, 2005, 24(5): 568-569.
    [91]张金良,方宗德,杨建军,等.准双曲面齿轮的小轮粗切过切检验[J].机械科学与技术, 2006, 25(7): 781-783.
    [92] ZHANG Jin-liang, FANG Zong-de, CAO Xue-mei, et al. The modified pitch cone design of the hypoid gear: manufacture, stress analysis and experimental tests [J]. Mechanism and Machine Theory, 2007, 42(2): 147-158.
    [93]张金良,方宗德,曹雪梅,等.准双曲面齿轮的修正节锥设计方法及切齿试验[J].机械工程学报, 2007, 43(9): 185-189.
    [94]李少华,张金良,方宗德.准双曲面齿轮设计分析集成软件系统的研究[J].机械传动, 2007, 31(4): 31-34.
    [95]吴训成,毛世民,吴序堂.点啮合齿面主动设计研究[J].机械工程学报, 2000, 36(4): 70-73.
    [96]吴训成,毛世民,吴序堂.点啮合齿面主动设计理论和方法[J].机械科学与技术, 2000, 19(3): 347-349.
    [97]吴训成,胡宁,陈志恒.准双曲面齿轮点接触齿面啮合分析的理论公式[J].机械工程学报, 2005, 41(6): 81-85.
    [98]吴训成,金海松,罗素云.成形法大轮准双曲面齿轮传动点啮合齿面主动设计与理论检验[J].机床与液压, 2009, 37(12): 31-35.
    [99]吴训成,徐红山.展成法大轮准双曲面齿轮点啮合齿面主动设计[J].机械设计与制造, 2011, (3): 16-18.
    [100]罗月新,毛世民,吴序堂.准双曲面齿轮副几何参数计算新方法[J].机械设计, 2000, (4):11-13.
    [101]苏智剑,吴序堂,毛世民,等.基于齿面参数化表示的准双曲面齿轮的设计[J].西安交通大学学报, 2005, 39(1): 17-20.
    [102]苏智剑,吴序堂.基于计算机数字控制弧齿锥齿轮加工机床的准双曲面齿轮的制造[J].机械工程学报, 2007, 43(5): 57-63.
    [103]张爱梅,肖燕,苏智剑,等.准双曲面齿轮的仿真加工新方法[J].机械科学与技术, 2008, 27(11): 1383-1386.
    [104]熊越东,王太勇,刘富凯,等.准双曲面齿轮数控加工仿真系统设计[J].控制与检测, 2005, (7):43-45.
    [105]韩佳颖,王太勇,李清,等.准双曲面齿轮啮齿仿真与齿面接触分析[J].机械设计, 2010, 27(12): 84-88.
    [106]杨洪成,秦大同,刘恒学.基于坐标测量的准双曲面齿轮齿形精度控制[J].重庆大学学报(自然科学版), 2000, 23(5): 1-3.
    [107]徐华兵,周军辉.数控磨齿机加工准双曲面齿轮[J].现代制造工程, 2003, (8): 22-24.
    [108]蒋瑞挺,周云飞,严思杰.准双曲面齿轮几何参数计算方法的研究[J].机械设计与制造, 2007, (4): 1-3.
    [109]北京齿轮厂.螺旋锥齿轮[M].北京:科学出版社, 1974.
    [110] LEE H W, LEE K O, CHUNG D H. A kinematic investigation of a spherical involute bevel-geared system [J]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2010, 224(6): 1335-1348.
    [111]王裕清,武良臣.弧齿锥齿轮接触区理论与切削过程仿真[M].北京:煤炭工业出版社, 2004.
    [112] TSAI Y C, CHIN P C. Surface geometry of straight and spiral bevel gears [J]. Journal of Mechanisms, Transmissions, and Automation in Design, 1987, 109(4): 443-449.
    [113] AL-DACCAK M J, ANGELES J, GONZáLEZ-PALACIOS M A. The Modeling of Bevel Gears Using the Exact Spherical Involute [J]. Journal of Mechanical Design, 1994, 116(2): 364-368.
    [114]李特文.齿轮啮合原理[M]. 2版.上海:上海科学技术出版社, 1984.
    [115]刘惟信.圆锥齿轮与双曲面齿轮传动[M].北京:人民交通出版社, 1980.
    [116] YANG Zhao-jun, WANG Yan-kun, LI Li-nan, et al. Mathematical model of spiral bevel gears manufactured by generating line method [J]. Advanced Materials Research, 2011, 154-155: 103-108.
    [117] WANG Yan-kun, YANG Zhao-jun, LI Li-nan, et al. The equation of meshing of spiral bevel gears manufactured by generating-line method [J]. The Open Mechanical Engineering Journal, 2011, 5(1): 51-55.
    [118]天津齿轮机床研究所.格利森锥齿轮技术资料译文集,第二分册,格利森锥齿轮设计及计算[M].北京:机械工业出版社, 1983.
    [119]天津齿轮机床研究所.格利森锥齿轮技术资料译文集,第五分册,格利森锥齿轮加工方法及轮齿接触分析[M].北京:机械工业出版社, 1982.
    [120]胡来瑢.空间啮合原理及应用,下册[M].北京:煤炭工业出版社. 1988.
    [121]曾韬.螺旋锥齿轮设计与加工[M].哈尔滨:哈尔滨工业大学出版社, 1989.
    [122]谢华锟.螺旋锥齿轮的开发:用计算机技术淘汰试切法[J].工具展望, 2006, (4):13-16.
    [123]天津齿轮机床研究所.格利森锥齿轮技术资料译文集,第一分册,锥齿轮啮合及加工原理[M].北京:机械工业出版社, 1986.
    [124]郑昌启.弧齿锥齿轮和准双曲面齿轮——啮合原理、齿坯设计、加工调整和齿面分析计算原理[M],北京:机械工业出版社, 1988.
    [125]吴训成,胡宁,陈志恒.准双曲面齿轮几何设计研究[J].机械设计与研究, 2005, 21(1): 44-46.
    [126]吴训成,金海松,罗素云,等.准双曲面齿轮几何结构参数设计研究[J].拖拉机与农用运输车, 2008, 35(2): 52-56.
    [127]吴训成,张若平,张海波,等.准双曲面齿轮几何设计新方法[J].机床与液压, 2009, 37(4): 11-15.
    [128]吴大任,骆家舜.齿轮啮合理论[M].北京:科学出版社, 1985.
    [129]王树人.齿轮啮事理论简明教程[M].天津:天津大学出版社, 2005.
    [130] Litvin F L. Gear geometry and applied theory [M], New Jersey: Prentice Hall, 1994.
    [131]张学成,呼咏,杨兆军.基于齿面发生线的弧齿锥齿轮切齿运动分析[J].北京工业大学学报, 2010, 36(11): 1441-1446.
    [132]李桂娇.球面渐开线齿形弧齿锥齿轮加工所需运动及控制研究[D].长春:吉林大学, 2009.
    [133]范海滨.运用产形线法切削齿面的螺旋锥齿轮设计[D].长春:吉林大学, 2011.
    [134]李冬颖.螺旋锥齿轮铣刀结构设计及其铣削加工过程的仿真分析[D].长春:吉林大学, 2011
    [135]刘付友.数控螺旋锥齿轮铣齿机刀具进给系统的振动分析与研究[D].长春:吉林大学, 2011.
    [136]蔡森叶.球面渐开线斜齿锥齿轮切齿法研究[D].长春:吉林大学, 2011.
    [137]张学成,李春光,李桂娇.弧齿锥齿轮齿面发生线切齿法探讨[J].机械传动, 2009, 33(6): 20-24.
    [138]李建新,杨亚楠,徐东峰.平面与圆锥截交时截交线性质的讨论[J].齐齐哈尔大学学报, 2001, 17(2): 66-68.
    [139]杜君文,邓广敏.数控技术[M].天津:天津大学出版社, 2002.
    [140]机械设计手册编委会.机械设计手册,单行本,齿轮传动[M].北京:机械工业出版社, 2007.
    [141]胡来瑢.空间啮合原理及应用,上册[M].北京:煤炭工业出版社, 1987.
    [142]唐前鹏.轮齿时变啮合弹性变形数值计算方法研究[J].机械工程师, 2008, (9): 137-139.
    [143] KUANG J H, YANG Y T. An estimate of mesh stiffness and load sharing ratio of a spur gear pair [C]// Advancing power transmission into the 21st century; Proceedings of the 6th International Power Transmission and Gearing Conference, Scottsdale, AZ, United States: ASME, 1992: 1-9.