中厚板轧制过程高精度侧弯控制的研究与应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文针对中厚板生产过程中由于不对称因素所引起的侧弯问题,提出了侧弯预测与控制模型,研究了温度预测的在线修正方法、变形抗力自学习方法和影响函数方法,并基于机器视觉技术,开发出集侧弯检测、侧弯预测与侧弯控制的应用软件,在生产现场进行了在线应用,取得良好的效果。研究内容和取得的主要进展如下:
     (1)实现了中厚板生产过程中温度的高精度预测。基于隐式差分方法和有限元方法建立了中厚板轧制过程温度演变模型,确定了在不同传热条件下的换热系数;根据中厚板的生产特点,提出了根据模型预测温度和实测温度的互相检验,获得接近于真实的轧件温度的测量方法,该方法在测量轧件温度的同时,不断的对模型参数进行学习,保证了测量的准确性。
     (2)开发出基于遗传算法的变形抗力自学习系统。中厚板生产过程中,变形抗力模型参数的取值决定了轧制力模型的预测精度,通过对轧制力计算误差的影响因素分析,将遗传算法引入到变形抗力自学习方法中,充分利用遗传算法的空间搜索和优化能力,在实际生产数据中寻找变形抗力参数的最优值。在变形抗力自学习系统的开发过程中,实现了决策变量的选择,编码与解码、适应度评价及终止条件的处理。计算结果表明,这种方法的优化速度和精度能够满足生产要求。
     (3)提出中厚板轧制过程的侧弯预测方法。根据轧制过程中发生侧弯时轧件的运动特点,推导出预测轧件侧弯曲率的理论公式。利用修正后的适应轧件宽度变化的影响函数方法,结合温度模型和轧制力模型,计算轧件断面厚度分布。将影响函数方法与侧弯理论公式相耦合组成侧弯预测模型,可以分析不对称因素对轧件侧弯的影响。
     (4)提出一种轧件塑性系数的在线计算方法。针对塑性系数计算不准确或不稳定的问题,基于轧制理论模型,利用二次曲线拟合生产过程中的塑性曲线,在拟合曲线上求解压下量点处的切线斜率就得到了实际的塑性系数。这种处理方法使塑性系数的计算不依赖于过程计算机,可直接嵌入基础自动化中进行计算,根据轧制力的变化和辊缝的变化,不断的对塑性系数进行修正,提高系统的厚度补偿精度。
     (5)开发出过程控制支撑平台,并实现了在线应用。通过对过程控制系统结构的研究,在分析系统功能需求的基础上,开发出基于通讯进程和模型进程相分离的过程控制支撑平台,该平台封装了过程控制软件中的通讯环节,建立了一个基于事件调度、适合模型的编程、维护和调试的系统架构。该平台已经在多个中厚板的生产线实现了成功应用,极大的提高了过程控制系统的开发效率。
     (6)提出中厚板轧件平面尺寸测量方法。根据中厚板轧件平面尺寸的测量特点,提出测量方案,基于机器视觉技术,以灰度直方图均衡、快速中值滤波、Sobel算子边缘检测、Hough直线检测、采用空间矩方法进行亚像素定位以及8点标定方法为基础,建立了轧件侧弯测量系统,测量结果表明,测量精度可以满足工程要求。
     (7)提出等效轧件的概念,并应用于轧件的侧弯控制。在轧制过程中,轧件本身产生的不对称影响因素可以近似用一个位于轧制中心,带有一定楔形量的等效轧件来代替,对等效轧件实施侧弯控制与对实际轧件的侧弯控制是等效的,这种处理方法统一了不对称影响因素,便于进行计算和控制。
     (8)结合侧弯模型、轧件断面形状计算模型和轧件平面尺寸检测模型,开发出侧弯检测和控制应用软件。实现了轧件侧弯控制的在线应用,将生产过程中的轧件侧弯曲率限制在一定范围内,提高了产品的成材率。
     本文结合我国的中厚板生产过程,对中厚板轧制中的轧件侧弯现象进行了深入研究,开发出具有自主知识产权的侧弯检测与控制软件,对提高我国中厚板生产水平具有重要的意义。
To the camber of rolled pieces problems by asymmetric influencing factors existed in plate production process, this paper puts forward camber prediction and control model, the on line correction method of temperature prediction, the self-learning method of deformation resistance and influence function method were analyzed. The Application software included camber measurement, camber prediction and camber control were developed based on the machine vision technology, and has obtained very good results in the on-line application of production practice.
     (1) The high accuracy prediction of temperature was realized in plate production process. The temperature evolution model of plate production have been built based on implicit difference method and finite element method, and determine the heat transfer coefficients of different conditions. According to the characteristics of plate production, the approach to the real temperature measuring method of rolled pieces were proposed on the basis of the verification each other between prediction and measured temperature. The method constantly study to the model parameters in measuring temperature of rolled pieces, and ensures the measured accuracy.
     (2) The self-learning system of deformation resistance was developed based on genetic algorithm. The model parameters value of deformation resistance determines the prediction accuracy of rolling force model. According to the influencing factors analysis of rolling force calculation error, the genetic algorithm were introduced the self-learning method of deformation resistance, and search the optimal value of deformation resistance on the basic of space exploration and optimization ability of genetic algorithm. The decision variable selection, the coding and decoding, the fitness evaluation and the terminal conditions process were implemented during development process of self-learning system. The results show that the optimization speed and accuracy can meet production requirement.
     (3) A camber predictive method of plate rolling was put forward. The theoretical formulas that predict the camber curvature of rolled piece were derived on the basis of the movement characteristics of rolled piece. In combination of temperature model and rolling force model, the section thickness distributions of rolled piece were calculated by using of improved influence function method for adaption to width variations. The camber predictive model for the improved influence function method coupling with camber theoretical formulas can analyze the effect of asymmetry factors on camber of rolled piece.
     (4) An on-line calculation method of plasticity coefficient was put forward. Based on the rolling theory model, a plasticity coefficient curve was fitted by using conic according to the inaccurate or unstable problems of plasticity coefficient calculation. The plasticity coefficient can be obtained by the tangent slope at reduction amount of conic. The process method does not depend on process control computer, and can be embedded into basic automation system immediately. According to the change of rolling force and roll gap, the plasticity coefficient can be adjusted constantly, and improves the compensation precision of AGC system.
     (5) A supporting platform of process control was developed and was used on-line. According to the research of process control system, a supporting platform of process control, based on the separated structure between communication process and model process, was developed on the basic of the analysis of system functional requirement. The platform encapsulates the communication procedure, and establishes system architecture based on event scheduling, suitable to programming and debugging, it has been applied to plate production line successfully, and greatly promote development efficiency of process control system.
     (6) A measured method of plane dimension was presented for plate rolled piece. A measured scheme was presented on the basic of the measuring characteristic of plane dimension for plate rolled piece. The camber measuring system, based on machine vision technology including gray histogram equilibrium, fast median filter, Sobel operator edge detection, Hough line detection, sub-pixel edge location using spatial moment and eight point's calibration method, is established. The measuring results show that the measuring accuracy can meet the project requirements.
     (7) The concept of equivalent rolled piece was given, and applied to the camber control of rolled piece. The asymmetry factor can be replaced by using an equivalent rolled piece, which is located in rolling centerline, and has a certain amount wedge. The camber control way between actual and equivalent rolled piece is the same. The process way unifies asymmetry factor, and carries out calculation and control conveniently.
     (8) The Application software of camber detection and control was developed on the basic of camber model, section shape calculation model and plane dimension measuring model. The software implements on-line application of camber control, and can restricts the camber curvature of rolled piece in a certain scope, and improves finishing product rate.
     Under the background of the development of plate rolling in our country, this dissertation carried the analysis of camber phenomenon of plate rolling. The camber detection and control software for plate mill was developed, and it improves the plate production level of our country.
引文
1. 孙本荣,王有铭,陈瑛.中厚钢板生产[M].北京:冶金工业出版社,1993,1-13.
    2. 中国材料发展现状及迈入新世纪对策咨询项目—钢铁材料咨询报告,2000.
    3. 宋元力,黎在云,牟艳.现代宽厚板厂计算机控制系统[J].宝钢技术,1999,(3):40-44.
    4. 朱敏之.国外厚板生产工艺技术的进步[J].宽厚板,2000,6(3):39-42.
    5. 张燕燕.厚板轧制新工艺与新技术的采用[J].轧钢,1998,15(6):40-43.
    6. Shin S C, Park Y H. Building the 21st century type plate mill[A].In:Kiuchi M. Proceedings of the 7th International Conference on Steel Rolling (STEEL ROLLING'98)[C]. Chiba:The Iron and Steel Institute of Japan,1998:595-600.
    7. 于世果,李宏图.国外厚板轧机及轧制技术的发展(一)[J].轧钢,1999,16(5):43-46.
    8. 于世果,李宏图.国外厚板轧机及轧制技术的发展(二)[J].轧钢,1999,12(6):29-32.
    9. 八子一了,石原慶明,村上史敏,ほか.福山製铁所厚板压延设備の特色と操業[J].日本钢管技报,1987,(117):32-38.
    10.平井信恒,吉原正典,井上正敏,ほか.高応答·大流量型油压压下装置の操業技术の確立[J].川崎製铁技报,1981,13(3):398-409.
    12.贺达伦,王国栋,刘相华.国外厚板厂获取高成材率采用的新技术[J].轧钢,2001,18(1):38-41.
    13.李连诗.我国轧钢成材率的分析[J].钢铁,1988,23(8):21-26.
    14.罗先德.简述我国中厚板成材率现状与进步[J].轧钢,1999,16(1):42-44.
    15.侯锦,张树堂.提高中厚板成材率的平面形状控制技术[J].钢铁,1984,19(12):40-47.
    17. 韩晰宇.优化坯料结构提高中板成材率[C].中厚板年会论文集(济南)2000:282-286.
    18. 党军.提高中厚板成材率的低成本战略[C].中厚板年会论文集(济南)2002:287-292.
    19.魏天胜.中厚板原料尺寸设计方法的探讨[J].鞍钢技术,1995,(8):11-15.
    20.王国栋,吴国良译,日本钢铁协会编.板带轧制理论与实践[M].北京:中国铁道出版社,1990,107-108.
    23.郝付国,白埃民,张进之.提高中厚板成材率的重要途径[J].钢铁,1997,32(12):38-40.
    24. Horie M, Tomita S, Tanaka T, et al. Basic study of characteristics of mechanical plate crown with non-symmetric work roll crow on work roll shift mill[A]. In:Kiuchi M. Proceedings of the 7th International Conference on Steel Rolling(STEEL ROLLING'98)[C]. Chiba:The Iron and Steel Institute of Japan,1998:606-610.
    25. Yazawa T, Sasaki T, Adachi Y, et al. Flatness control in plate rolling[A]. In:Kiuchi M. Proceedings of the 7th International Conference on Steel Rolling(STEEL ROLLING'98)[C]. Chiba:The Iron and Steel Institute of Japan,1998:611-616.
    27.丁修堃,马博,王贞祥.中厚板平面形状控制中的GM-AGC系统[J].东北大学学报(自然科学版),1998,19(1):8-10.
    28.池田尚弘,坪田一哉,濑川佑二郎,ほか.压下修正(MAS)压延法の原理[J].铁と鋼,1979,65(4):304-309.
    37. Furukawa H, Ueda I, Otake K, et al. Optimal plan view pattern control with hydraulic edger in plate rolling[A]. In:Kiuchi M. Proceedings of the 7th International Conference on Steel Rolling(STEEL ROLLING'98)[C]. Chiba:The Iron and Steel Institute of Japan,1998: 583-588.
    38. 赵宪明,刘相华,王国栋,等.板坯轧制过程化中不对称工艺参数对侧弯的影响[J].钢铁,2003,38(3):25-28.
    39. Toshikazu SHIRAISHI, Haruhiro IBATA. Relation Between Camber and Wedge in Flat Rolling Under Restriction of Lateral Movement[J]. ISIJInternational,1991,31(6):583-587.
    40. Takashi ISHIKAWA. Fundamental Study on Snaking in Strip Rolling. Traction ISIJ[J], 1988,28:485-489.
    41. Nakajima K, Asamura T, Kikuma T, et al. Hot strip crown control by six-high mill[J]. Transactions of ISIJ,1984,24(4):284-289.
    42.梁昆淼.数学物理方法[M].北京:人民教育出版社,1960,240.
    43. [美]V.B.金兹伯格著,姜明东,王国栋等.高精度板带材轧制理论与实践[M].北京:冶金工业出版社,2002.
    45. 王国栋,张树堂.四辊轧机轧辊弹性变形的矩阵计算方法[J].重型机械,1982,(8):9-18.
    46. 赵刚,杨永立.轧制过程的计算机控制系统[M].北京:冶金工业出版社,2002,11-15.
    47. 王廷溥,齐克敏.金属塑性加工学—轧制理论与实践(第2版)[M].北京:冶金工业出版社,2004.
    48. Kazunobu T, Yoshiaki N. Advanced electrical equipment for hot-rolling mills[J]. Mitsubishi Electric ADVANCE,1997, (6):2-4.
    49. Kazuo S. Shigehiko M. Computer Systems for Controlling Steel Plants [J]. Mitsubishi Electric ADVANCE,2000, (12):21-26.
    50. Mitsunori H, Nobuchika F. A Control System for Steel Mills[J]. Mitsubishi Electric ADVANCE,1997, (6):15-17.
    51. Kazuo S, Noriyoshi H. An Industrial Computer System for Iron and Steel Plants[J]. Mitsubishi Electric ADVANCE,1997, (6):11-14.
    52. Romito L, Cozzi A. Developments in automation system design for steelplants[J]. Steel Times International,1995,19(2):43-46.
    53. Wolters H. SMS automation in hot strip mills[J]. M.P.T.1995,18(3):64-71.
    54. Holton L J. Automation enhancements at Dofasco's No.2 hot strip mill[J]. Iron and Steel Engineer,1990,67(1):42-50.
    55. Heesen G J, Burggraaf D H. New process control system of Hoogovens'hot strip mill. Key to improved product quality[J]. Ironmaking and Steelmaking,1991,18(3):190-195.
    56. Samways N L. Modernization at lukens steel:past, present and future[J]. Iron and Steel Engineer,1987,64(8):23-29.
    57. Murphy T M, Johns R L. On-line plate mill process control computer replacement[J]. Iron and Steel Engineer,1993,70(6):23-27.
    58. Evans R D, Anderson D E, Zanni J M, et al. Plate mill automation at U.S. steel, Gary works [J]. Iron and Steel Engineer,1993,70(3):44-48.
    59.张进之.轧钢技术和装备国产化问题的分析与实现[J].冶金信息,2000,(6):22-27.
    60.孙一康.适用于轧钢过程的计算机控制系统[J].中国工程科学,2000,2(1):73-76.
    61.孙一康.带钢热连轧的模型与控制[M].北京:冶金工业出版社,2002,13-28.
    62. Johns R L, Reiner V R, Mengel J D. Hydraulic AGC at Bethlehem's Burns Harbor 160-in. plate mill[J]. Iron and Steel Engineer,1994,71(8):52-57.
    63.杨节.轧制过程数学模型[M].北京:冶金工业出版社,1983,1-2.
    64. Iida N, Miura H, Sato A. Advanced automation on the new plate mill at mizushima works[J]. Iron and Steel Engineer,1978,55(10):34-40.
    65. JISCO 2800mm plate mill technical specification. Davy company 1996.
    66. Angang 4300mm plate mill technical specification. VATECH company 2002.
    67. Jigang 3500mm plate mill technical specification. SIEMENS company 2000.
    68. Bosteel 5000mm plate mill technical specification. SIEMENS company 2002.
    69. 张国斌.工业自动化的发展趋势和成功策略—基于PC的自动化系统[J].自动化博览,2000,(1):30-33.
    70.缪学勤.基于PC的自动化及其应用[J].自动化仪表,2002,23(2):1-5.
    71.汪仁智.Windows NT仍将是工业PC理想的工作平台[J].自动化与仪器仪表,1997,(3):6-9.
    72. Guo R M. Application of PC and LAN for a level 2 setup model of a single-stand reversing mill[J]. Iron and Steel Engineer,1997,74(8):41-46.
    73. Buschmann F, Geisler A, Heimake T, et al. Framework-based software architectures for process automation systems[J]. Annual Reviews in Control, v 24,2000, (24):163-175.
    74.朱铮涛,黎绍发.视觉测量技术及其在现代制造中的应用[J].现代制造工程,2004(4):59-61.
    75.刘继胜,钟良.机器视觉技术在质量检测中的应用[J].现代制造工程,2004(2):99-101.
    76. 唐向阳,张勇,李江有,等.机器视觉关键技术的现状及应用展望[J].昆明理工大学学 报(理工版),2004,29(2):36-39.
    77. S.N. Trika, R.L. Kashyap. Geometric Reasoning for Extraction of Manufacturing Features in Iso-Orented Polyhedrons[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,1994,16(11):1087-1100.
    78. D.M. Tsai, J.J. Chen, J.F. Chen. A Vision System for Surface Roughness Assessment Using Neural Networks[J]. International Journal of Adcanced Manufacturing Technology,1998, 14(6):412-422.
    79. R.B. Jennings, G. Bright. Machine vision and intelligence incorporating motion control[J]. Assembly Automation,1999,19(1):55-58.
    80. M. Fabrice, A.C. Legrand. Machine vision systems in the metallurgy industry[C]. Proceedings of SPIE San Jose,2000:228-237.
    81. F. Lahajnar, S. Kovacic. A machine vision system for the rotational positioning and verification of oil filters[C]. International journal of advanced manufacturing technology, 2003(21):452-459.
    82. Yan Jiajun, De Sam Lazaro, Anthony. Reverse Engineering of Sheet Metal Parts using Machine Vision[C].2003 ASME Design Engineering Technical Conferences and Computers and Information in Engineering Conference[C],2003.
    83. K.David, P.James, G. Robert. Assessment and visualization of machine tool wear using computer vision[J]. The International Journal of Advanced Manufacturing Technology,2006, 28(78):781-791.
    84. M.J.Jackson, G.M. Robinson, L.J.Hyde, et al. Neural image processing of the wear of cutting tools coated with thin films[J]. Journal of Materials Engineering and Performance, 2006,15(2):223-229.
    85. C. Fraga, R.C. Gonzalez, J.A. Cancelas, et al. Camber measurement system in a hot rolling mill[C].39th IAS Annual Meeting,2004.
    86. R.J. Montague, J. Watton, K.J. Brown. A machine vision measurement of slab camber in hot strip rolling[J]. Materials Processing Technology,168:172-180.
    87.刘玠,孙一康.带钢热连轧计算机控制[M].北京:机械工业出版社,1997.
    88. 孙一康.带钢冷连轧计算机控制[M].北京:冶金工业出版社,2002.
    89.汪祥能,丁修堃.带钢冷连轧计算机控制[M].北京:冶金工业出版社,1996.
    90. Ishiii T, Wada S, Miyokawa M, et al., Recent technology in hot strip mill[C]. Proceedings of the 7th International Conference on Steel Rolling, Tokyo, Japan,1998:711-717.
    91.王殿辉.利用神经元网络预测热轧板带力学性能[J].钢铁,1995,30(1):28-31.
    92. 王国栋,刘相华.金属轧制过程人工智能优化[M].北京:冶金工业出版社,2000.
    93.玄光男,程润伟.遗传算法与工程优化[M].北京:清华大学出版社,2004.
    94.邱茂林,马颂德,李毅.计算机视觉中摄像机标定综述[J].自动化学报,2000,26(1):43-45.
    95. W. Faig. Calibration of close-range photogrammetry systems[J]. Mathematical formulation.Photogrammatical Eng.Remote Sensing,1975,41(12):1479-1486.
    96. R.Y. Tsai. A versatile camera calibration technique for high-accuracy 3D machine vision metrology using off-the-shelf TV camera and lenses[J]. IEEE Journal of Automation,1987, 3(4):323-334.
    97. R.M. Haralick. Digital step edges from zero crossing of second directional derivatives[J]. IEEE Trans on PAMI,1984,6(1):58-68.
    98. D. Marr, E. Hildreth. Theory of Edge Detection[C]. London:Proc Roy Soc,1980.
    99. V. Berzins. Accuracy of Laplacian detectors[J]. CVGIP,1984,27(2):195-210.
    100. J. Canny. A Computational approach to edge detection. IEEE Trans on PAMI,1986,8(6): 679-698.
    101. A.J. Tabatai, O.R.Mitchell. Edge Location to Subpixel Values In Digital Imagery[J]. IEEE Trans.Pattern Analysis and Machine Intelligence,1984,6(2):188-201.
    102. E.P. Lyvers, O.R. Mitchell, M.L. Akey, et al. Subpixel Measurement Using a Moment-Based Edge Operator[J]. IEEE Trans.Pattern Analysis and Machine Intelligence,1989,11: 1293-1309.
    103. S. Ghosal, R. Mehrotra. Orthogonal Moment Operator for Subpixel Edge Detection[J]. Pattern Recognition,1993,26(2):295-306.
    104.刘相华.刚塑性有限元及其在轧制中的应用[M].北京:冶金工业出版社,1994.
    105.杨世铭,陶文铨.传热学[M].北京:高等教育出版社,1998,4-7.
    106. Satyanarayana A, Jim S, Biswas. Dynamic modeling of accelerated cooling process using finite element method[J]. American Society of Mechanical Engineers,1994,68(2):663-674.
    107.西尺泰二.铁合金の热力学[J].日本金属学会会报,1973,12(1):35-40.
    109.徐申.中厚板轧制过程中的温度模型[J].甘肃冶金,2000,6(2):13-19.
    110.孙卫华,王国栋,吴国良.带钢热轧过程中轧件横断面上温度场的解析[J].山东冶金,1994,16(4):30-35.
    111.何纯玉,吴迪,赵宪明,等.高速线材生产过程组织性能预测模型仿真[J].钢铁研究学 报,2007,19(6):56-60.
    112.何纯玉,赵宪明,吴迪,等.热轧过程中轧件组织与性能软测量系统的研究[J].东北大学学报(自然科学版),2007,28(1):63-67.
    115.中岛浩衛.压延理论と寸法制御[J].铁と钢,1993,79(3):263-269.
    117.陈国良,王熙法等.遗传算法及应用[M].北京,人民邮电出版社,1996.
    118. W.M.Jenkins. Towards Dtructural Optimization via The Genetic Algorithm[J]. Computer & Structures,1991,40(5):1321-1327.
    119.武广号,文毅,乐美峰.遗传算法及其应用[J].应用力学报,1996,13(2):93-97.
    120.王凌.智能优化算法及其应用[M].北京,清华大学出版社,2001.
    121.王小平,曹立明.遗传算法理论、应用与软件实现[M].西安交通大学出版社,2002.
    122.周明,孙树栋.遗传算法原理及其应用[M].北京,国防工业出版社,1999.
    123.孙一康.带钢热连轧数学模型基础[M].北京:冶金工业出版社,1979,23-38.
    125. Marokh M, Seredynski F. Roll-froce estimateion in plate rolling[J]. Journal of the Iron and Steel Institute,1970,7:695-700.
    126. Sims R B, Wright H. Roll force and torque in hot rolling mills(A comparison between measurement and calculation) [J]. Journal of the Iron and Steel Institute,1963,3:261-265.
    128. Saito Y, Enami T, Tanaka T. The mathematical model of hot deformation resistance with reference to microstructural changes during rolling in plate mill[J]. Transactions ISIJ,1985, 25:1146-1151.
    129.张进之,白埃民.提高中厚板轧机压力预报精度的途径[J].钢铁,1990,25(5):28-37.
    130.孙本荣,赵佩祥,朱荣林,等.控制轧制中板变形抗力的研究[J].钢铁,1986,21(4):30-35.
    131.周纪华,管克智,刘文仲,等.热连轧机轧制压力数学模型[J].钢铁,1992,27(8):45-49.
    132. Hoogen A J, Heesen G J, Hollander F. New approach to predict roll forces in a hot strip mill for small lot sized rolling schedules[C]. The 4th rolling steel conference, B6.1-B6.11.
    133.胡贤磊.中厚板轧机过程控制模型的研究(博士学位论文)[D].沈阳:东北大学,2003.
    135. Shohet K N, Townsend N A. Roll bending methods of crown control in four high plate mills[J]. JISI,1968(11):1088-1093.
    136.王国栋.板形控制和板形理论[M].北京:冶金工业出版社,1986.
    137.胡贤磊,王昭东,刘相华,等.轧辊弹性变形对中厚板辊缝设定的影响[J].东北大学学报(自然科学版),2003,Vo1.27(3):1089-1092.
    138.刘立忠.中厚板轧制的数值模拟及数学模型研究(博士学位论文)[D].沈阳:东北大学,2002.
    139.何纯玉,吴迪,王君,等.中厚板轧制过程计算机控制系统结构的研制[J].东北大学学报(自然科学版),2006,27(2):173-176.
    140.何纯玉,吴迪,王君.S7-400 PLC与过程计算机通讯研究[J].工业控制计算机,2005,8(11):69-71.
    141. OPC Data Access Automation Interface Standard(Version 2.02). The OPC Foundation, Feb 4, 1999.
    142.潘爱民.COM原理与应用[M].北京,清华大学出版社,1999.
    143.郑南宁.计算机视觉与模式识别[M].北京,国防工业出版社,1998.
    144. David A. Forsyth, Jean Ponce. Computer:A Modern Approach[M].北京,电子工业出版社,2004.
    145.冈萨雷斯.数字图像处理(第二版)[M].北京,电子工业出版社,2003.
    146. Juyang Weng, Paul Cohen, Marc Herniou. Camera Calibration with Distortion Models and Accuracy Evaluation[J]. IEEE Transaction on Pattern Analysis and Machine Intelligence, 1992,14(10):965-980.
    147.陆其明DirectShow开发指南[M].北京,清华大学出版社,2003.
    148.李炜,黄心汉,王敏.一种快速Hough变换改进算法及其在图像边缘检测中的应用[J].信号处理,1999,15(2):182-186.
    149.刘亚威,扬丹,张小洪.基于空间矩的亚像素边缘定位技术的研究[J].计算机应用,2003,23(2):47-49.
    150.李长生,张晓明,刘相华,等.轧制过程轧辊磨损数学模型实验研究[J].机械工程学报,2002,38(7):28-30.