气象和生理等因素对甘蓝型油菜产量品质性状影响的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
甘蓝型油菜的产量和品质性状是由植株的基因型和环境条件等多种因素相互作
    用的所决定的。为了明确不同的因素对产量和品质性状的影响,为油菜育种和栽培提
    供理论依据,本文以 2001~2003 两年度参加安徽省油菜区试的品种为研究对象,主
    要研究植株性状、气象因子、生理因素、基因型及病害等对甘蓝型油菜产量和品质的
    影响,摘要如下:
    1.植株性状对产量的影响
     甘蓝型油菜单株产量与株高、一次有效分枝数、二次有效分枝数、主花序有效
    角果数、结角密度、全株有效角果数均呈极显著正相关,其中千粒重、一次有效分枝
    数、全株有效角果数是影响单株产量的主要因素。一次有效分枝数,千粒重,单株角
    果数可作为选育高产品种的重要指标。
    2.气象因子对产量的影响
     苗期、蕾薹期和角果期是影响产量性状的关键生育期,日平均温差、日平均温
    度、降水量、日照时数是影响产量性状的关键气象因子。苗期较大的日平均温差、较
    少的降水、蕾薹期和花期较低的日平均温度、角果期充足的日照、较大的日平均温差
    均有利于提高单株产量。
    3.生物酶活性的变化及其对产量的影响
     SOD、POD 有相同的变化趋势,即苗期和花期酶活性较低,蕾薹期酶活性较高。
    MDA、CAT 也具有相似的变化趋势,即从苗期到花期,MDA 含量和 CAT 活性具有
    不断上升的趋势。NR 活性则表现出苗期较高,蕾薹期和花期较低的特点。Chl 含量
    的变化趋势与 SOD、POD 相同,表现出苗期和花期含量较低,蕾薹期含量较高特点。
    相关分析表明,SOD、POD、CAT 活性与 MDA 含量呈负相关,其中 SOD、POD 活
    性与 MDA 含量呈极显著负相关。SOD、POD、CAT 活性间存在显著或极显著正相关,
    它们在抑制膜脂过氧化作用的过程中具有复杂的协同作用。NR 活性与 MDA 含量呈
    极显著负相关。酶活性与单株产量存在一定的相关性,但相关不显著。蕾薹期的叶片
    蒸腾与小区产量呈显著负相关。
    4.基因型、苗期性状和病害对产量的影响
     通过对安徽省区试品种的多点联合方差分析表明,不同品种的产量间存在显著
    
    
    或极显著差异,而且不同品种对环境条件表现出不同的适应性。选育高产、适应性强
    的品种是提高油菜产量的最主要因素。小区产量与苗期植株的叶片数、叶面积、根茎
    粗、苗鲜重和苗干重均呈正相关,其中与苗鲜重和苗干重呈极显著正相关。油菜菌核
    病是危害我国油菜生产的最主要病害,相关分析表明,油菜的产量与菌核病的病害率、
    病情指数分别呈极显著负相关(r=-0.66361**、r=-0.59512**)。
    5.油菜各品质性状间的相互关系
     芥酸与油酸、亚油酸、棕榈酸呈极显著负相关,与花生稀酸和硫甙呈极显著正
    相关。油酸与亚油酸、棕榈酸呈极显著正相关,与花生稀酸、硫甙呈极显著负相关,
    亚油酸与亚麻酸、棕榈酸呈极显著正相关,与花生稀酸、硫甙呈极显著负相关。亚麻
    酸与棕榈酸、硫甙呈极显著正相关。降低芥酸和花生稀酸等长碳链脂肪酸,可以显著
    提高油酸、亚油酸等不饱和脂肪酸的含量,有利于提高油脂的品质。
    6.生育期、气象因子和基因型对品质性状的影响
     通过对参试品种不同脂肪酸、硫甙的分析表明,不同品种脂肪酸、硫甙含量间
    存在明显的差异。选育优质油菜新品种是改良油菜品质的关键所在。
     角果期是影响油菜脂肪酸和含油量的关键时期,其次是花期和蕾薹期。在角果
    期充足的光照、较高的大于 0℃有效积温有利于棕榈酸、油酸、亚油酸的合成与积累,
    较多的降水和较大的相对湿度可降低亚麻酸的合成与积累,较低的大于 0℃有效积温
    和日平均温度、较短的日照,有利于芥酸的合成与积累,较低的大于 0℃有效积温有
    利于硫甙的生成与积累,较高的温度和较长的日照时数有利于油脂的积累。
    7.酶活性、膜脂过氧化及叶绿素含量与品质性状的关系
     芥酸含量与苗期 NR 活性呈显著正相关,油酸与蕾薹期 SOD 活性呈极显著负相
    关,亚油酸与蕾薹期 MDA 含量呈显著负相关,含油量与蕾薹期 POD、NR 活性呈显
    著或极显著正相关,硬脂酸与花期 MDA 含量呈负相关,与叶绿素含量呈正相关,与
    角果期的 SOD 活性、叶绿素含量呈正相关。
    8.光合生理作用与品质性状的关系
     花生稀酸与苗期叶片蒸腾速率呈显著正相关,含油量与苗期叶片光合速率呈显
    著负相关,棕榈酸与蕾薹期叶片蒸腾速率呈显著负相关,硬脂酸与蕾薹期胞间 CO2
    浓度呈极显著正相关,亚麻酸与角果期的光合速率呈显著负相关。
The yield and quality characters are decided and interacted by genotype, entironment
    and other factors. In order to definitude the effect on yield and quality characters by
    different factors, provide theoretical basis for high yield and quality breeding and
    reasonable cultivating of rapeseed, these experiments was carried out in studying on the
    plant character, genotype, diseases, meteorological factors and physiology mechanism of
    rapeseed leaf and pod from photosynthesis, active oxygen clear system with 20 cultivars
    which took part in regional trial of Anhui province in 2001~2003. The results were as
    follows:
    1. The effect on yield by plant characters
     As the plant yield and plant characters, there were some correlation between the plant
    yield and plant characters, there were significantly positive correlation between plant yield
    and plant height, first branch, second branch, pods of main stem, density of pods and
    number of pods per plant. The 1000-seeds weight, first branch and number of pods per
    plant are the main factors which effect yield of plant. The 1000-seeds weight, first branch
    and number of pods per plant are important targets in high yield breeding.
    2. The effect on yield by meteorological factors
     The relationship between yield and meteorological factors were studied. The result
    showed that seedling period, bud period, pod period are the key periods for rapeseed yield
    improvement. Larger average difference in temperature per day and smaller rainfall in
    seedling period, lower average temperature per day in bud and flower period, ample
    sunlight and larger average difference in temperature per day in pod period are all benefit
    to improve yield of plant.
    3. The change of enzyme activities in rapeseed’s functional leaves and its effected on
    rapeseed yield
     The activities of super-oxide dismutase(SOD), peroxidase(POD) and the content of
    chlorophyll had the same change trend, ie, the activities of SOD and POD were lower in
    seedling and flower period than in bud period, the content of malondialdehyde(MDA) and
    the activities of catalase(CAT) also had the same change trend, MDA and CAT were
    continual increase from seedling to flower period. Analysis of correlation showed that
    there were some correlation between enzyme activity and MDA content in rapeseed’s
    functional leaves and pods. SOD, POD and CAT activity existed negative correlation with
    MDA, especially SOD and POD activity existed extremely significantly negative
    
    
    correlation with MDA. Also, it existed significantly positive correlation or extremely
    significantly positive correlation among the three kinds of enzymes that indicated the
    course that crossed oxidation action restraining lipid peroxidation was comparatively
    complicated synergy. NR activity and MDA content exited extremely significantly negative
    correlation. There were some correlation between yield and enzyme activity, but the
    correlations were not significant. There was extremely significantly negative correlation
    between yield and Tr. in bud period.
    4. The effect on yield by genotype, seedling characters and diseases
     Variance analysis showed that there were significant difference in varieties and the
    rapeseed varieties had different adaptability to entironment. Therefore, selecting high yield
    variety is very important to improve rapeseed yield.
     There were positive correlation between yield and number of leaf, leaf area, width of
    rootstock, fresh weight and dry weight per plant, especially there were significantly
    positive correlation between yield and fresh weight and dry weight per plant.
     Sclerotina sclerotiorum is the most severe disease in China’s rapeseed production.
    Disease plant rate and disease index existed significantly positive correlation with yield.
    5. The relationship between quality characters of rapeseed
     The analysis of correlation indicated that oleic acid, linoleic acid and palmitic acid
    existed extremely significantly negative correlation with erucic acid. Encosenoic acid and
    glu
引文
[1] 王汉中.入世后的中国油菜产业[J].中国油料作物学报,2002;24(2):82~86
    [2] 陈社员,官春云,王国槐等. 基因工程技术与油菜杂种优势利用[J]. 作物研究,2002(3):110~
     111
    [3] 傅廷栋主编. 杂交油菜的育种与利用[M]. 湖北科学技术出版社,2000
    [4] 傅寿仲,唐继宏,戚存扣. 甘蓝型油菜细胞质雄性不育系 MICMS 的选育[J]. 作物学报,1989,
     15(4):305~309
    [5] Bannerot H, Boudidard L, Chupeau Y. Unexpected difficulties met with the radish cytoplasm
     triazine resistance in Brassica napus[J]. Theoretical and Applied Genetics,1987,73:809~814
    [6] Heyn FW. Transfer of restorer genes from Raphanus to cytoplasmic male sterile Brassica napus[J].
     Cruciferae Newslett,1976,1:15~16
    [7] Delourme R.,Foisset N.,Horvais R.,Barret P.,Champagne G.,Cheung W.Y.,Landry B.s.,Renard
     M. Characterisation of the radish introgression carrying the Rfo restorer genes for the Ogu-INRA
     cytoplasmic male sterility in rapeseed (Brassica napus L.) [J]. Theoretical and Applied Genetics,
     1998,97:129~134
    [8] Delourme R,Eber F, Renard M(1995). Breeding double low restorer lines in radish cytoplasmic
     male sterility of rapeseed (Brassic napus L.). Proc 9th Int Rapeseed Cong,Cambridge,UK 1:6~8
    [9] Delourme R,Horvais R,Vall P. et al Double low restored F1 hybrids can be produced with the
     Ogu-INRA CMS in rapeseed CD-RO. Proceedings of 10th International Rapeseed Congress,
     Canberra, Australia,1999
    [10] 陈凤祥,胡宝成,李强生,等. 甘蓝型油菜细胞核雄性不育材料 9012A 的发现与初步研究[J].
     北京农业大学学报,1993,19(增刊):57~61
    [11] 陈凤祥,胡宝成,李成等. 甘蓝型油菜隐性细胞核雄性不育完全保持系选育成功[J]. 中国农
     业科学,1995,28(5):94~95
    [12] 陈凤祥,胡宝成,李成等. 甘蓝型油菜细胞核雄性不育的遗传研究 I.隐性核不育系 9012A 的
     遗传[J]. 作物学报,1998,24(4):431~438
    [13] 刘尊文,彭芝兰,周小平. 甘蓝型油菜光温敏雄性不育两用系 501-8S 的选育[J]. 中国油料作
     物学报,1998,20(1):13~16
    [14] 杨光圣,傅廷栋,马朝芝,等.甘蓝型油菜显性细胞核+波里马细胞质雄性不育三系[J].华中农
     业大学学报,1996,15(3):215~220
    [15] 杨光圣,傅廷栋,马朝芝,等.甘蓝型油菜细胞核+细胞质雄性不育系的研究与利用.IV.隐性细
     胞核+波里马细胞质雄性不育三系的创建[J].作物学报,1997,23(2):144~149
    [16] 官春云,王国槐,赵均田等. 甘蓝型油菜化学杀雄药物、机理和杂种研究[J]. 作物研究,1990,
     4(3):13~19
    [17] Fary M J, Evans E J, Lydiate D J et al. Physiological assessment of apetalous flower and
     50
    
    
    erectophile pods in oil seed rape (Brassic napus)[J]. Journal of Agricultural Science,
     1996,127:193~200
    [18] Mendnam NJ, Ran Mss, Buzza GC. The apetalous flower character as a component of a high
     yielding identype. GCIRC 8th International Rapeseed Congress,Saskatoon,Canada,1990:596~
     600
    [19] 傅寿仲,张洁夫,陈玉卿等. 甘蓝型油菜株型及最优化研究 I. 无花瓣油菜与有花瓣油菜株型
     的比较[J]. 中国油料,1996,18(4):23~27
    [20] Tan Xiaoli et al. Study on the rapeseed of apetalous line in Brassic napus CD-RO. Proceedings of
     10th International Rapeseed Congress, Canberra, Australia,1999
    [21] Stefansson R R,Hougen F W,Downey R K. Note on the isolation of rape plants with oil seed from
     erucic acid[J]. Can J Plant Sci,1961,41:218~219
    [22] 刘后利编著. 油菜遗传育种学[M]. 中国农业大学出版社,2000
    [23] 龙艳,牛应泽. 我国油菜品质育种研究的进展与展望[J]. 四川农业大学学报,2002,20(4):
     372~376
    [24] 傅廷栋. 中国油菜生产和品种改良的现状与前景[J]. 安徽农学通报,2000(1):2~9
    [25] 刘后利主编:油菜的遗传和育种[M].上海科学技术出版社,1985
    [26] 周永明,刘后利.甘蓝型油菜种子中几种主要脂肪酸含量的遗传[J].作物学报,1987;13(1):
     1~10
    [27] 刘定富,刘后利.甘蓝型油菜脂肪酸成分的基因互作形式和效应[J].作物学报,1990;16(3):
     193~198
    [28] 刘定富,刘后利. 甘蓝型油菜芥酸含量的三重测交分析[J].作物学报,1992;18(1):1~7
    [29] 戚存扣,蒲蕙明,傅寿仲.甘蓝型油菜 F2 群体主要脂肪酸含量间的相关与回归分析[J].江苏农
     业学报,1993;9(4):11-15
    [30] 傅寿仲,吕忠进,戚存扣.甘蓝型油菜十八碳烯酸的进一步改良[J].江苏农业学报,1995,11
     (1):16~20
    [31] 周永明,刘后利.甘蓝型油菜种子中硫甙葡萄糖总量的遗传[J].中国油料,1987(1):15~18,28
    [32] 牟同敏,刘后利.甘蓝型油菜种子中硫代葡萄糖甙总量的遗传分析[J].作物学报,1990;16(2):
     97-104
    [33] 孟金陵,刘后利. 连续自交对甘蓝型油菜胚胎发育的影响[J]. 作物学报,1986,(6):79~85
    [34] Lichter R. Induction of haploid plants from isolated pollen of Brassica napus[J]. Plant
     Breeding,1982,105:427~434
    [35] Stringan et al. Quantum summer rape[J]. Can J Plant Sci,1995,75(4):903~904
    [36] 李恂,官春云. 油菜的小孢子培养和双单倍体育种[J]. 作物研究,1994,8(3):1~3
    [37] 刘勇,刘红雨,曾宜正. 甘蓝型油菜小孢子胚状体的诱导和培养[J]. 西南农业学报,1997,
     51
    
    
    10:1~5
    [38] 余凤群,刘后利. 提高甘蓝型油菜小孢子胚状体成苗率的某些因素研究[J]. 作物学报,1997,
     23(2):165~168
    [39] 吴江生,石淑稳,周永明.甘蓝型双低油菜品种华双 3 号的选育和研究[J].华中农业大学学报
     1999,18(1):1-4
    [40] Schenck H R,G Robbelen. Somatic hybrids by fusion of protoplasts from Brassic oleracea and B.
     campestris[J]. Zplanzebzuchtg, 1982,89:278~288
    [41] Heath D W, Earle E D. Synthesis of low linolenic acid rapeseed (Brassia napus. L) through
     protoplast fusion[J]. Euphytica,1997,93(3):339~343
    [42] 刘选明,官春云,李恂. 油菜单倍体植株叶原生质体培养再生植株[J]. 农业生物技术学报,
     1999,7(1):47~50
    [43] Hu J, Quiros C, Arus P, et al. Mapping of a gen determining lionolenic acid concentration in
     rapeseed with DNA-based markers[J]. Theor Appl Genet, 1995,90:258~262
    [44] Jourdren C, Barret P, et al. Identification of RAPD markers liked to the loci controlling erucic acid
     level in rapeseed[J]. Molecular Breeding, 1996, 2: 61~71
    [45] Jourdren C, Barret P, Horvais R, et al. Identification of RAPD markers linked to linolenic acid in
     rapeseed[J]. Euphytica, 1996,90:351-357
    [46] Rajcan J, Kasha K J, Kott L S, et al. Detection of molecular markers associated with linolenic and
     erucic acid levels in spring rapeseed (Brassica napus L.)[J]. Euphytica, 1999,105:173-178
    [47] Thormann C E. Romero J, Mantet J, et al. Mapping loci controlling the concentration of erucic and
     linolenic acids in seed oil of Brassica napus L.[J]. Theor Appl Genet, 1996,93:282-286
    [48] Somers D J, Friesen K R D, Rakow G. Identification of molecular marker associated with linolenic
     acid desaturation in Brassica napus[J]. Theor Appl Genet, 1998,96:897-900
    [49] Tanhuanpaa P K, Vilkki J P, Vilkki H J. Association of a RAPD marker with lonolenic acid
     concentration in the seed oil of rapeseed (B. napus) [J]. Genome, 1995,38(2): 414~416
    [50] Tanhuanpaa P K, Vikki J P, Vikki H J. Mapping of a QTL for oleic acid concentration in spring
     turmip rape (B. rape sspoleifera)[J]. Theor Appl Genet, 1996,92(8):952-956
    [51] Toroser D. RFLP mapping of quantitative trait loci controlling seed aliphatic glucosinolated content
     in oilseed rape[J]. Theor Appl Genet, 1995,91(5):802-808
    [52] 王俊霞,杨光圣,傅廷栋等. 甘蓝型油菜 Pol cms 育性恢复基因的 RAPD 标记[J]. 作物学报,
     2000,26(5):575~578
    [53] 涂金星,郑用琏,傅廷栋. 甘蓝型油菜核不育材料育性基因的 RAPD 标记[J]. 华中农业大学
     学报,1997,16(2):112~117
    [54] 蒋梁材,蒲晓斌 王瑞等. 甘蓝型油菜核不育基因的 RAPD 标记[J]. 中国油料作物学报,2000,
     22(2):1~4
    [55] 沈金雄,陆光远,傅廷栋等. 甘蓝型油菜遗传多样性及其与杂种表现的关系[J]. 作物学报,
     52
    
    
    2002,28(5):622~627
    [56] Chavadej S,Brisson N, McNeil J N, et al. Redirection of tryptophane eads to production of low
     indole glucosinolate canola[J]. Proc Natl Acad Sci USA, 1994, 91:2166~2170
    [57] 林良斌,官春云.植物基因工程与油菜品质改育[J].作物研究,1996;10(1):43-46
    [58] 2001 年 9 月 6 日《农民日报》
    [59] 《科技日报》2002.01.02
    [60] 吴江生,石淑稳,刘后利. 甘蓝型油菜黄籽突变体的遗传研究[J]. 中国油料作物学报,1998,
     20(3):5~9
    [61] 周乐聪. 油菜品种资源对菌核病的抗性鉴定[J]. 中国油料,1994(增刊):69~72
    [62] 陈玉卿,侯庆树,张洁夫等. 芸薹属油菜种质资源抗(耐)菌核病、病毒病的鉴定[J]. 中国
     油料,1993(2):4~7
    [63] 刘澄清,杜德志,黄有菊等. 甘蓝型油菜的抗耐病性及其遗传效应研究[J]. 中国农业科学,
     1991,24(3):43~49
    [64] 刘胜毅. 油菜菌核菌的遗传变异及病原与寄主的相互作用[J]. 中国油料,1994(增刊):95~
     100
    [65] Dickson MH. Breeding for resistance to Sclerotinia Sclerotiorum in Brassica olerocea[J]. Acta
     Horticulture. 1996,407:103~108
    [66] Baswan K S, et al. Inheritance of stem rot in cauliflower[J]. Euphytica, 1991,57:93~96
    [67] 陈玉卿,张洁夫,吕进忠. 甘蓝型油菜无花瓣油菜对菌核病抗(耐)性研究[J]. 江苏农业科
     学,1991(6):10~13
    [68] 胡宝成,檀华蓉. 甘蓝型油菜细胞质雄性不育系对菌核病的抗(避)、耐病性研究[J]. 华中农
     业大学学报,1996,15(2):127~131
    [69] 费维新,李强生,吴新杰等. 利用栽培措施控制油菜菌核病的研究[J]. 中国油料作物学报,
     2002;24(3):47~49
    [70] Zhenghua Chen,Lanlan Wang,Haiyan Lan,et al. Obtaining new Sclerotia-resistance lines of rape
     by genetic engineering. Proceedings of 10th International Rapeseed Congress,Canberra,Australia,
     1999
    [71] 朱耕如. 油菜花角期气候浅析[J]. 中国油料,1987(3):68~72
    [72] 余兆海.气候条件对油菜产量的影响[J].中国农业科学,1981(5):64~70
    [73] 赵合句. 优质油菜高产栽培与利用[M]. 北京:金盾出版社,1998
    [74] 张友贵,王兆林. 从气候条件对油菜产量及品质影响看新疆油菜的合理布局[J]. 新疆农业科
     学,1982(6):12~14
    [75] 韩锦峰,董钻. 作物生物化学[M].北京:中国农业出版社,1995
    [76] 沈惠聪,江宇. 甘蓝型油菜种子主要脂肪酸气象生态效应及数学模型的研究[J]. 浙江农业大
     学学报,1990,16(1):69~76
     53
    
    
    [77] McCord JM,Fridovich I. Superoxide dismutase: An enzymic function for erythrocuprein[J]. J. Biol
     Chem. 1969,244: 6049-6052
    [78] Elstner EF. Oxygen activation and oxygen toxicity[J]. Ann Rev Plant Physiol, 1982,33:73-79
    [79] Smirnoff N. The role of active Oxygen in the response of plants to water deficit and descation[J].
     New Phytol, 1993,125:27-58
    [80] 郑荣梁. 生物学自由基[M]. 北京:高等教育出版社,1992
    [81] 童富淡,胡家恕,陈进红等. 不同育秧方式对早稻叶片 SOD 活性、电解质渗透率和发根力的
     影响[J]. 浙江农业大学学报,1997,23(6)682~686
    [82] 潘瑞炽,豆志杰,叶庆生. 茉莉酸甲脂对水分胁迫下花生幼苗 SOD 活性和膜脂过氧化作用的
     影响[J]. 植物生理学报,1995,21(3):221~228
    [83] 孔祥瑞. 自由基及其分子生物学研究进展[J]. 生物科技动态,1984(4):11~18
    [84] Fridovich I. The biology of oxygen radicals[J]. Science,1978,201:875~880
    [85] 田延亮,蔡梓林,季明芳 油菜超氧化物歧化酶活性及其同工酶的研究[J]. 中国油料,1988(1):
     31~35
    [86] 刘道宏. 植物叶片的衰老[J].植物生理学通讯,1983(2):14~15
    [87] 胡宝成,李强生,赵仁渠等. 花期去叶对甘蓝型杂交油菜经济性状和品质性状的影响[J]. 安
     徽农业科学,1991(3):235-238
    [88] 张桂兰,苗以农,韩梅等. 大豆 SOD 及其与大豆品质的关系[J]. 中国油料,1993(1):30-32
    [89] 熊秋芳,刘胜毅,李合生等. 抗、感菌核病油菜品种几种酶活性对草酸处理的响应[J]. 华中
     农业大学学报,1998,17(1):10-13
    [90] 吴岳轩,曾富华,王荣臣. 杂交水稻对白叶枯病诱导抗性与细胞内防御酶系统的初步研究[J].
     植物病理学报,1996,26(2):127-131
    [91] 李星华,陈宛妹,李增禄. 大豆抗、感病毒病品种过氧化物酶同工酶的初步比较研究[J]. 大
     豆科学,1991,10(2):149-152
    [92] 杨广东,郭庆萍. 低温对青椒幼苗过氧化物酶和超氧物歧化酶活性的影响[J]. 山西农业科学,
     1998,26(4):44-47
    [93] 陈贻竹,帕特森. 低温对植物叶片 SOD、CAT、H2O2 的影响[J]. 植物生理学报,1988,14(4):
     323~328
    [94] 张明科,孙艳,史继华. 黄瓜耐冷性鉴定指标的初步探讨[J]. 陕西农业科学,1998(6):20~
     22
    [95] 张泽煌,黄碧琦,陈钟佃等. 低温胁迫对茄子的伤害及茄子抗寒机理[J].福建农业学报,2000,
     15(1):40~42
    [96] 杨暹,关佩聪. 干旱胁迫与菜心叶片活性氧代谢的研究[J]. 华南农业大学学报,1998,19(2):
     81-85
    [97] 陈少吁. 膜质氧化对植物细胞伤害[J]. 植物生理通讯,1991,27(2):84
     54
    
    
    [98] 段咏心,李松泉,傅家瑞等. 钙对延缓杂交水稻叶片衰老的作用机理[J]. 杂交水稻,1997,
     12(6):23-25
    [99] Dhindsa R.S,Plumb-dhindsa PL,Reld D.M. Leaf senescence and lipid peroxidation: Effect of some
     phythohormones, and scavengers of free radicals and singlet oxygen[J]. Plant Physiol,
     1982,56:453-457
    [100]Zhirov VK,Merzlyck MN. Peroxidation of membrane lipids in cold resistant plant under condition
     of injury caused by freezing temperatures[J]. Sov Plant Physiol (englr Transl),1982,29:794~800
    [101]中国农业科学院油料作物研究所. 三熟油菜大壮苗移栽技术及其生物学基础[J]. 湖北农业科
     学,1977(9):17~21
    [102]田廷亮等. 油菜硝酸还原酶与硝态氮含量关系的初探[J]. 中国油料,1985(2):53~54
    [103]黄永菊,赵合句,李培武. 杂交油菜生理特性的初步研究[J]. 湖北农业科学,1994(6):4~
     8
    [104]潘瑞炽,董愚得. 植物生理学[M]. 高等教育出版社,1990
    [105]张文明,王昌初,姚大年. 籽粒状况对油菜种子活力的影响[J]. 种子,1999(3):28-29
    [106]国家技术监督局. 农作物种子检验规程 GB/T3543-1995[M]. 中国标准出版社,1995
    [107]张宪政,陈凤玉,王荣富主编:植物生理学实验技术[M]. 辽宁科学技术出版社,1994
    [108]沈惠聪,江宇. 甘蓝型油菜种子主要脂肪酸气象生态效应及数学模型的研究. 浙江农业大学
     学报,1990,16(1):69~76
    [109]安彩泰,孙万泉. 甘蓝型油菜杂种优势和亲子间相关分析[J]. 中国油料,1986(1):8-10
    [110]胡虹文. 甘蓝型油菜 12 种主要性状与产量的关系[J].中国油料,1997;19(3):10-11,14