杨树无性系微纤丝角的变异及其与材性的关系
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文阐述了木材微纤丝角的概念及其与木材性质的关系,介绍了微纤丝角的测定方法、变异规律及影响微纤丝角变化的主要因素,分析了微纤丝角研究的发展趋势,并在此基础上对苗期11个无性系、7个无性系的林分及造林密度、修枝处理和立地条件3种处理的杨树微纤丝角、木材密度、纤维形态与纤维素含量进行了研究,并得结果如下:
     (1)苗期11个杨树无性系木材微纤丝角的变异达到极显著水平,微纤丝角变化在13°~30°之间;无性系木材纤维长度变化范围在618.88~858.84um之间,平均值为690.42um,纤维长度差异达极显著水平;纤维宽度在21~28um之间,35杨(P.deltoids CL'36/66')最大(27.04um),四季杨(P.deltoids×P.nigra cv.Chile)最小(21.31um);维素含量差异不显著,纤维素含量变化范围为41.4~47.4%。
     (2)7个无性系杨树胸径处前6、8、11年的微纤丝角、纤维长度差异不显著,微纤丝角平均值为17.836°。11年时比前6年下降了17.5%,7个无性系微纤丝角大小排序为:1-72杨>I-69杨>南林-351>南林-1388>南林-895>南林-447>南林-95。微纤丝角在年轮间差异显著,并且变异以第6年轮为界限。7个无性系胸径处木材密度、纤维宽度和纤维素含量差异显著。I-72杨与南林-447和南林-95木材密度差异显著,南林-95与其它无性系差异较大;纤维宽度南林-95、南林-895较小而I-69杨和南林-1388较大;纤维素含量南林-95、南林-895、南林-447与南林-351、I-69杨、I-72杨、南林-1388差异达显著水平。
     (3)杨树微纤丝角、木材密度、纤维长度、纤维宽度和纤维素含量胸径处变异规律为:生长前期也即幼龄期(1~4R)微纤丝角逐渐增大,而当到达一定年龄(4~6R)后,微纤丝角随着年轮的增加而逐渐减小,直至一定年龄后又趋于稳定;第1年轮处木材密度最小,从髓心向外以曲线形式缓慢增大;胸径处纤维长度、纤维宽度和纤维素含量从髓心到树皮都为显著的增加。
     杨树微纤丝角、木材密度、纤维长度和纤维宽度纵向变异规律为:杨树微纤丝角的最大值出现在树木基部,并随树高的增加而减小,到树高6m以后基本变得稳定,但还有进一步平缓下降的趋势;从树干基部向上木材密度存在随树木高度的增加而逐渐增大的均势,测定发现木材密度最小值出现在地径处,最大值出现在3.6m的高度;纤维长度在同一年轮内不同高度均是树干基部最小,随树高的增加纤维长度逐渐增加,到5.6m左右达到最大,以后持续保持至17.6m左右又开始下降,即纤维长度在树干基部和树梢处总是较小,而在这两者之间保持在一个较为稳定的范围内波动;纤维宽度在树干基部到9.6m的范围内较大,而超过9.6m后开始减小。这说明树木生理年龄是影响纤维形态的一个主要因子。
     (4)对7个杨树无性系木材性质的分析表明,微纤丝角与树木年龄间存在显著的多项式(R~2=0.8263)和指数式(R~2=0.8069)回归关系,微纤丝角与树高主要存在多项式(R~2=0.616)的回归关系。纤维长度与年轮间存在极显著的直线型(R~2=0.8979)、多项式(R~2=0.9828)、对数式(R~2=0.9682)和乘幂式(R~2=0.9737)回归关系。纤维素含量与年轮间存在极显著的对数式
    
    (R’二0.8168)、多项式(R’二0.0.8630)、乘幂式(R‘二0.8178)的回归关系。
     以树高、生长年轮为自变量,以微纤丝角为因变量进行二元回归分析得方程为:
     y=22.557056—0.264541XI—0.751337X2
    经检验,回归方程,回归系数及相关系数(RI一一0。4480,RZ一一0.4845)均达到极显著水
    平。
     ()以微纤丝角的变异、木材密度的变化和纤维形态的变化将杨树元性系幼龄材与成
    年材的界限界定为第6年轮。树干中央部分(l-6R)的微纤丝角和木材密度低且变化急剧不
    稳定,纤维长度逐渐增长构成所谓的幼龄材,树干外围(>6以微纤丝角达到最大并开始下
    降,木材密度高且相对均一,纤维长度变得稳定构成所谓的成熟材。选育或预测杨树材质
    时,以6年生以上的木材性质来衡量是较为合理的。
     的乃 杨不同林分密度间微纤丝角、纤维长度的差异不显著,但随着林分密度的增大
    微纤丝角有减小的趋势。4种密度处理中,年轮间微纤丝角的变异达到显著水平,微纤丝
    角随年轮的增加而减小。纤维长度之间差异不显著,几种处理中3mx4m在纤维长度方面
    是较好的,纤维长度变幅为663.73-1416.6urn;年轮间纤维长度差异显著,并且随着年轮
    的增加差异逐渐减小。351杨不同林分密度间木材密度、纤维宽度和纤维素含量的差异显
    著。纤维宽度3mx4m处理好于其它,年轮间纤维宽度差异显著,幼龄期*一R)与其它年轮
    差异明显显著。纤维素含量4mx4m与其它处理差异较大。年轮间纤维素含量差异显著,
    且前4年轮与其它年轮间差异最大。树木生长前期*刁)纤维素含量呈逐渐上升趋势,而
    过了这一阶段年轮内纤维素含量变化开始变得不稳定,这说明林分密度对树木的影响是从
    定植第5年后才开始的。
     OI*9杨不同强度的修枝措施对木材微纤丝角、纤维长度、木材密度和纤维素含量的
    影响均未达到显著水平,但修枝后早晚材间微纤丝角差异减小。微纤丝角、纤维长度、木
    材密度和纤维?
Based on the information, the concept of microfibril angle, the relationship between microfibril angle and wood properties, the methodology for measuring microfibril angle, variation dynamics of microfibril angle, the factors affecting microfibril angle variation and future research prospects are discussed. In order to strength the competition capacity and oriental cultivation, more effort is devoted to the genetic improvement and cultivation of tree species, so as to make the timber production combining with demand of end products to wood properties in wood industry. Based on the review of related references, the temporal and spatial variation of microfibril angles and wood properties for 11 one-year-old poplar clones and 7 mature (more than 11 years old) poplar clones, the effects of planting densities, pruning intension and site conditions on microfibril angle and wood properties (wood densities, fiber length, fiber width and cellulose contents), and the relationship between microfibril angle and wood pro
    perties were studied in the paper, and the main conclusions are drawn as follows:
    1. There exists significant variation in microfibril angles and fiber length among 11 seedling poplar clones, microfibril angle varies from 13°to 30°and fiber length varies from 618.88um to 858.54um with the average 690.42um. Fiber width varies from 21um to 28um with the widest occurring in clone 35(P. deltoids CL'36/66') with 21 um, the least in siji (P. deltoidsx.P. nigra cv. Chile) with 21.3um. Significant differences have not been observed in cellulose contents in 11 one-year-old poplar clones and it varied from 41.4% to 47.4%.
    2. The results of variation analysis indicated that there were no significant differences in microfibril angles and fiber length within 6, 8 11 years old at breast height among 7 maturate poplar clones. The average of microfibril angle is 17.84° in 11 years old in 7 clones and it decreases 17.5% within 11 than in 6 years old. It can be ordered I-72> I-69> NL-351> NL-1388>NL-895>NL-447>NL-95 in averages of microfibril angles in 7 poplar clones within 11 years old. Significant differences were observed in wood density, fiber width and cellulose contents at breast height in 7 poplar clones. There exist notable difference between 1-72, NL-447, and NL-95 in wood density. It showed that the widest fiber occurred in 1-69 and NL-1388, the least fiber occurred in NL-95 and NL-895. There exist significant differences between NL-95, NL-895, NL-447 and NL-351, 1-69, 1-72, NL-1388 in cellulose contents.
    
    
    
    
    3. The spatial variation pattern of microfibril angle, wood density, fiber length, fiber width and cellulose contents are as follows:
    From pith to bark: The microfibril angle gradually increases from pith to 4-5 rings, after reach the largest in 4~5 rings, it start declining from pith to bark, and then it would be stable to a certain ring. Wood density was the least in the first ring and increased gradually from pith to bark. Fiber length, fiber width and cellulose contents were significantly increased from pith to bark.
    Within a single tree: Microfibril angle was lager at base of trees and decreased with the increase of height, and maintained stabilization over 6m height within trees. There existed an increasing trend in wood density from the base to tree top. The least occurred in the base, and the largest wood density occurred at 3.6m of the tree. Fiber length varies as "inverted saddle pattern" from base to tree top in one growth ring. The least fiber length occurred at base of trees and gradually increased with the increase of height, and fiber length reached the longest about 6m. The longest fiber would be stable to 17.6m, then it become declining. Fiber width was wider bellow 9.6m, it would be decreased beyond 9.6m in the tree.
    4. It proved from analysis of wood properties that there exist significant polynomial (R2=0.8263) and index (R2=0.8069) regression relationship between microfibril angle and growth rings; and polynomial
引文
[1] Cave I.D., Walker J.C.F. Stiffness of wood in fast-grown plantation softwoods: the influence of microfibril angle[J]. Forest Products of Journal, 1994,44(5): 43~48.
    [2] 成俊卿主编.木材学[M].北京:中国林业出版社 1985.
    [3] 阮锡根,尹思慈,孙成志.应用x射线衍射—(002)衍射弧法—测定木材纤维次生壁的微纤丝角[J].林业科学,1982,18(1):64~69.
    [4] Walker J.C.F., Butterfield B.G. The important of micorifibril angle for the processing industries[J]. New Zealand Journal of Forestry Science, 1995,40(4): 34~40.
    [5] Hirabawa Y., Yamashita K., Fujisawa Y. etc. The effects of S_2 microfibril angles and density on MOE in Sugi tree logs[A]. 1998,PP 312~322 In: Butterfield B, G, (Ed), microfibril angle in wood [C]. Chritchurch, New Zealand.
    [6] 郭德荣.人工林红松纤维丝角变异与管胞长度和拉伸强度的关系[J].东北林业大学学报.1982,10(2):39~47.
    [7] Saka. S.Relationship between microfibrillar angles and lignin content in the S_2 layer of softwood tracheids [J]. Cellulose chemistry and technology, 1987,21 (3): 225~231.
    [8] Boyd J.D., Intepretation of X—Ray Diffractograms of Wood for assessments of microfibril angle in fiber cell walls [J]. Wood Sci.and Technol. 1977,11:93.
    [9] Barber N.F.The anisotiopic shrinkage of wood— a theoretical model[J]. Holzforschung 1964,18(5): 146.
    [10] 王明庥等.林业遗传良种学[M].北京:中国林业出版社 2001.
    [11] 王明庥,黄敏仁,阮锡根.黑杨派无性系木材形状的遗传改良.南京林业大学学报,1989,13(3):9~15.
    [12] Donaldson L.A. and Burdon R.D. Clonal variation and repeatability of microfibril angle in Pinus radiata[J]. New Zealand Journal of Forestry Science, 1995,25(2): 164~174.
    [13] Donaldson L.A. Micorifibril angle—its influence on wood properties, and prospects for improvement in Radiata Pine [A]. 1995, Wood Quality Workshop 95. FRI BULLETIN NO.201[C]. Edited by Ken Klitscher, Dave Cown, Lloyd Donaldson. November, New Zealand Forest Research Institute Ltd, Rotorue.
    [14] Donaldson L.A. Within- and between-tree variation in micorifibril angle in Pinus radiada [J]. New Zealand Journal Science, 1992,22(1): 77~86.
    [15] Donaldson L.A. Effect of physiological age and site on micorifibril angle in pinus radiata [J]. IAWA Journal, 1996,17(4): 421~429.
    [16] Hirakawa Y. Yamashita K.Fujisawa Y. etc. The effects of S_2 microfibril angle and density on MOE in Sugi tree logs[A]. Pp312~322 In: Butterfield B.G. (Ed.), "microfibril angle in wood"[C]. 1998, Christchurch, New Zealand.
    [17] Cowdrey D.R. and Preston R.D. Elasticity and mirofibril angle in the wood of Sika spruce[a]. Proc. of the Royal Soc[C]. 1996, B 166(1004): 245~272.
    
    
    [18] Sent, J.F, B.A. Bendtsen and W.L. Galligan Weak wood, fast-grow frees make problem timber[J]. Journal of Forestry. 1985,83(8):477~484.
    [19] 鲍甫成,江泽慧.中国主要人工林树种木材性质[M].北京:中国林业出版社 1998,30~36.
    [20] 孙成志,尹思慈.十种国产针叶树材管胞次生壁纤丝角的测定[J].林业科学,1980,(4):302~303.
    [21] Washuaen, P. Ades etc.al. Ralationship between density, shrinkage, extractives content and microfibril angle in tension wood from three provenances of 10-year-old Eucalyptus globulus Labill[J]. Holzforschung, 2001,2(55):176~182.
    [22] Sueanne Stuart and Robert Evans. X-ray diffraction estimation of the micorifibril angle variation in Eucalypt wood[J]. Appita Vol. 1995,48(3): 197~200.
    [23] Yamamoto H.Okuyama T. Yashida, M. Mothod of determing the mean microfibril angle of wood over a wide range by the improved Cave's method Mohuzai Gakkaishi[J]. Wood Res. Soc, 1993,39(4):375~381.
    [24] Willie P. Abasolo, Masoto Yoshida, Hiroyuki, Yamamoto and Iakashi okayama Microfibril angle determination of rattan fibers and its influnce on the properties of the cane[J]. Holzforschung, 2000,4(54): 437~442.
    [25] 费本华,江泽慧,阮锡根.银杏木材微纤丝角及其生长轮密度相关模型的建立[J].木材工业,2000,14(3):13~15.
    [26]刘盛全.刺楸木材微纤丝角与组织比量的变异研究[J].安徽农业大学学报,1996,23(2):186~190.
    [27] 孙成志,谢国思.泡桐属木材的微纤丝角和结晶度[J].木材工业,1987,1(2):24~28.
    [28] 刘盛全,江泽慧,鲍甫成.人工林杨树木材性质与生长培育关系的研究[J].林业科学,2001,37(2):90~96.
    [29] Domaldson L.A. Variation in micorifibril angle among three genetic group of Pinus radiata[J]. New Zealand Journal of Forestry Science, 1993,23(1): 90~99.
    [30] Bonham V.A. and Barnatt J.R. Fibre length and microfibril angle in silver birch[J]. Holzforschung, 2001,2(55): 159~162.
    [31] 费本华.X射线衍射法测定铜钱树木材微纤丝角及其变异的研究[J].安徽农业大学学报,1995,3:262~265.
    [32] 刘一星,吴玉章.火炬松木材材性变异的规律[J].东北林业大学学报,1999,27(5):29~34.
    [33] 阮锡根,王婉华,潘彪.应力木纤丝角的研究[J].林业科学,1993,29(6):534~536.
    [34] Shuler, C.E., Markstrom and M.G. Ryan. Figril angle in young-growth ponderosa pine as related to site index, dbh, and location in tree[J]. USDA For. Serv. Research note RM. 1989,492.
    [35] Lichtenegger H. Reiterer A. Stanzl-Tschegg S. Variation of Cellulose Microfibril Angles in Softwoods and Hardwoods—A Possible Strategy of Mechanical Optimization[J]. Journal of Structural Biology, 1999,3 (128): 257.
    
    
    [36] 方升佐,徐锡增.杨树超短轮伐期经营的生产力及材性的研究[J].林业科学,1996,32(4):334~341.
    [37] 曹福亮.林分密度对南方型杨树木材性质的影响[A].吕士行等主编,杨树定向培育技术[C].北京:中国林业出版社.p148~151.
    [38] Herman M.Dutilleul P, Avella-Shaw T Growth rate effects of Intra-ring Trajactives of Microfibril Angle in Norway Sprune (Pica abies) [J]. IAWA Journal, 1999,20(1):3~21.
    [39] 尹泰龙等.人工落叶松林间伐效益的研究[J].林业科学,1987,23(4):475—480.
    [40] Megraw R.A. Wood quality factors in loblolly pine—The influence of tree age, position in tree and cultural practice on wood specific gravity, fibril length, and fibril angle[M]. GA: Atlanta, Tappi Press, 1985.
    [41] Markstrom D.C.et al. Wood properties of immature Pondersa Pine after thinning[J]. Forestry Products Journal, 1983,33(4): 33~36.
    [42] 柴修武.林地施肥对Ⅰ—214杨木材性质的影响[J].林业科学研究,1991,4(3):297~301.
    [43] Lindstrom H. Basic densities in Norway spruce, Part·. A literature review[J]. Wood Fiber Science, 1996, 28(1): 15~27.
    [44] 徐有明.油松株内幼龄材与成熟材材性的比较研究[J].木材工业,1992,6(3):44~48.
    [45] 鲍甫成,江泽慧,刘盛全.人工林杨树材性与生长轮年龄和生长速度关系的模型[J],林业科学,1999,35(1):77~82.
    [46] 李坚,刘一星.人工林杉木幼龄材与成熟材的界定及早期预测[J].东北林业大学学报,1999,27(4):24~28.
    [47] Koubaa A., Hernandez R.E., Beaudoin M., etc. The effects of S_2 microfibril angle and density on MOE in Sugi tree logs[A]. 1998, PP 312~322 In: Butterfield B.G. (Ed.), Microfibril angle in wood[C]. Christchurch, New Zealand.
    [48] 刘盛全.刺楸木材基本密度的变异研究[J].林业科技通讯,1996,10:9~11.
    [49] Johansson K. Influence of initial spacing and tree class on the basic density of Picea abies[J]. Scand. J.For. Res. 1993,(8): 18~27.
    [50] 惠大丰,姜长鉴.统计分析系统SAS软件实用教程[M].北京航天航空大学.1996.
    [51] 卞学喻,韩一凡.杨树纸浆材优良无性系选育方法的研究[A].王世绩主编,杨树研究进展[C].中国林业出版社,1995.p91~96.
    [52] 洑香香,杨文忠,方升佐.木材微纤丝角研究的现状和发展趋势[J].南京林业大学报,2002,26(6):83~87.
    [53] 朱教君,姜凤歧,曾其蕴.杨树林带木材纤维长度变化规律及其在经营中的应用[J].林业科学,1994,30(1):50~56.
    [54] 朱蕙方,李新时.数种速生树种的木材纤维形态及其化学成分的研究[J].林业科学,1962,(4):235~267.
    [55] 柴修武.中林28中林46和115杨的材性分析[J].林业科技通讯,1993(1):19~22.
    [56] 骆秀琴,文小明,管宁.木材材性株内径向变异模式初探 Ⅳ.17个欧美杨无性系木材密
    
    度径向变模式的研究[J].林业科学,1997,33(1):75~82.
    [57] 曹福亮,吕士行,徐锡增等.杨树短轮伐期经营木材制浆性能的研究[A].吕士行等主编,杨树定向培育技术[C].北京:中国林业出版社.64~72.
    [58] 朱教君,姜凤歧,曾其蕴.杨树林带木材纤维长度变化规律及其在经营中的应用[J].林业科学,1994,30(1):50~56.
    [59] 姜景明,孙海菁,吕本树.火炬松木材基本密度的株内变异[J].林业科学,1999,12(1):97~102.
    [60] 徐有明,唐万鹏.荆州引种火炬松木材基本密度的变异[J].东北林业大学学报,1999,27(4):33~37.
    [61] 文小明,骆秀琴,管宁.木材材性株内径向变异模式初探Ⅲ.种植密度对湿地松、火炬松木材密度径向变异模式的影响[J].林业科学,1996,32(6):536~542.
    [62] 费本华.铜钱树木材基本密度变化的研究[J].林业科技通讯,1993,12:8~10.
    [63] 李坚等.生物木材学[M].哈尔滨:东北林业大学出版社,1993.
    [64] 文小明,骆秀琴,管宁.木材材性株内径向变异模式初探Ⅱ.七个加勒比松种源木材密度径向变异模式的研究[J].林业科学,1996,32(5):460~469.
    [65] Dickson R.L. and Walker J.C.F. Pines growing commodities or designer trees[J]. Commonwealth Forestry Review, 1997,76(4):273~279.
    [66] 方升佐,徐锡增,严相林.修枝强度和季节对杨树人工林生长的影响[J].南京林业大学学报,2000,24(6):6~10.
    [67] 黄冶,袁玉峰,孔红娃.修枝对红松人工林林木生长和木材力学性质的影响[J].东北林业大学学报,2002,30(1):76~77.
    [68] Park S.. Saiki H.. Harada H. Structure of branch in Akamatsu (Pinus densiflora Sieb. Et Zucc.).Ⅱ.Wall structure of branch tracheids[J]. Memories of the Collage of Agriculture Kyoto Unicersity 1980,115:33~44.
    [69] 北京造纸研究所.造纸工业化学分析[M].北京:轻工业出版社 1975.
    [70] 姜笑梅,许明坤,黄东森.木材材性株内径向变异模式的研究初探.Ⅴ.15个欧美杨无性系木材纤维长度的径向变异模式的研究[J].林业科学,1997,33(2):168~175.
    [71] Ben&sen B.A., Senft J. Mechanical and anatomical properties in individual growth rings of plantation —grown eastern cottonwood and loblolly pine[J]. Wood and Fiber Sci., 1986,18(1):23~38.