悬挂链聚氨酯及其复合体系的阻尼与分子松弛行为
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于具有可调控的软硬段,聚氨酯被广泛用于制备高性能阻尼材料。从分子动力学角度,深入研究聚氨酯的链结构、相形态与阻尼性能之间的关系,对于阻尼材料高性能化的实现,具有重要的理论价值和实际意义。
     本文在聚氨酯主链上引入悬挂链,对聚氨酯的结构与性能进行调控。考察了悬挂链长度、基团种类、硬段类型及含量、纳米粒子引入等因素对聚氨酯阻尼行为的影响,并通过动态力学分析(DMA)、宽频介电谱(BDRS)等手段,系统研究了体系在不同条件下的弛豫行为。论文得到了以下主要研究结果:
     1)通过扩链剂方法,成功合成了含不同悬挂链的TDI型聚氨酯,考察了悬挂链链长、极性及含量对微相分离、阻尼行为的影响。研究发现,随悬挂链链长增大,微相分离程度减小,氢键作用减弱,玻璃化转变温度(%)降低,Tg及Tg以上的内耗因子(tanδ)增大,阻尼温域(tanδ>0.5)变宽。借助BDRS,考察了悬挂链对分子松弛行为的影响。结果表明,引入悬挂链后,链段α松弛移向高频,材料脆性下降,与氢键相关的Ⅰ过程(高温低频区域)消失,Maxwell-Wagner-Sillars(MWS)界面极化过程加快。悬挂链链长一定时,增大悬挂链的极性(引入酯基),可使微相分离程度加剧,硬段间氢键作用增强,链段Tg升高,链段松弛、MWS界面极化过程变慢,脆性增加。
     2)基于MDI型聚氨酯比TDI型聚氨酯具有更规整的结构,合成了含悬挂链的MDI型聚氨酯。研究了其链长、极性对聚氨酯阻尼性能及介电弛豫的影响,并讨论了其与TDI型聚氨酯的分子松弛行为之间的差异。结果表明,与TDI型悬挂链聚氨酯相比较,MDI型具有较低的tanδ值。Ⅰ过程随长悬挂链的引入而消失,而当长悬挂链中引入酯基时,硬段间的氢键作用加强,Ⅰ过程重新出现,且其活化能随悬挂链的引入而降低。
     3)采用互穿网络共聚的方法,制备了聚氨酯/环氧互穿网络聚合物(PU/EPIPN),考察了悬挂链长度、含量及基团等因素对PU/EP IPN阻尼行为及力学性能的影响。结果表明,悬挂链的引入可显著提高PU/EP体系的最大损耗因子(tanδmax),但阻尼温域宽窄强烈依赖于微相分离程度。悬挂链含量同样显著影响PU/EP体系的阻尼性能,tanδ峰的峰宽和强度均随悬挂链含量增加而增大。与受悬挂链含量影响相比,PU/EP体系力学性能受悬挂链长度影响较小
     4)采用原位插层聚合法,制备了含悬挂链和不含悬挂链的PU/PMMA/LDH纳米复合材料,考察了填料含量和悬挂链对纳米复合材料的阻尼及分子弛豫行为的影响。结果表明,当PU/PMMA/LDH中不含悬挂链时,低含量剥离态LDH使PU/PMMA/LDH体系tanδmax增大,而插层态的LDH (LDH含量>1wt%)则使复合体系的Tg升高、tanδmax降低。α介电松弛强度与LDH分散状态有关,随LDH含量的变化先增大后减小。此外,当PU/PMMA/LDH中含悬挂链时,随着LDH含量增加,高温橡胶态平台的内耗值升高。LDH与悬挂链显著拓宽了阻尼温域,且具协同效应;同时,Tg升高,链段松弛变慢,α介电松弛强度增大且分布变宽。LDH片层间的平均距离变短,MWS极化过程随LDH含量增加而加
It is well-known that polyurethane with tuned soft and hard segments can be used as damping material. In order to obtain polyurethane damping materials with high-performance, it is necessary to investigate the relationship between the chain structure-morphology-damping properties for polyurethanes. In addition, the research of.molecular relaxation behavior is helpful for us to give a reasonable interpretation at the molecular level.
     In this work, the stucture of polyurethanes was controlled by introducing dangling chain into backbone network. The effect of dangling chains with different graded lengths, functional groups, types and contents of hard segment and the introduction of nanofillers on molecular dynamics of polyurethanes was probed by a combination of dynamic mechanical analysis (DMA) and broadband dielectric relaxation spectroscopy (BDRS). The main research contents and results are given as follows:
     1) The TDI-based polyurethanes with different dangling chain were successfully synthesized by using dangling chain extender, and the effect of dangling chains on phase-separated microstructure, damping property and molecular dynamics for polyurethanes was investigated. The value of loss factors (tan δ) near and above Tg increase with increasing dangling chain length, which results in a broader damping temperature range (tan δ>0.5). Tg shifts to a lower temperature and segmental dynamics becomes faster with increasing dangling chain length due to the weakened hydrogen bonds interactions and the decreased degree of micro-phase separation. Moreover, long dangling chains also cause the index of dynamic fragility (m) of polyurethanes to decrease.I process associated with hydrogen bonding is absent and MWS processes become faster after longer dangling chains are introduced into polyurethanes. The increased polarity of dangling chains through introducing ester groups slows down the segmental dynamics and MWS processes, while it increases the value of m and the degree of microphase-separation.
     2) The dangling chain polyurethanes based MDI with regular structure were successfully synthesized. The effect of dangling chains length and polarity on damping property and molecular dynamics for polyurethanes was investigated, and the dynamics was discussed by comparison polyurethanes based MDI and TDI. It is found that MDI based-polyurethanes has lower value of tan δthan that of TDI based-polyurethanes. The long dangling chain makes I process absent. However,I process re-emerges owing to the strengthened hydrogen bonding, and its activation energy decreases with introducing ester group to dangling chain.
     3) A series of novel polyurethane (PU)/epoxy resin (EP) graft interpenetrating polymer network (IPN) composites with dangling chains were prepared. The effects of the dangling chain lengths, content, and groups on the damping properties and mechanical properties were investigated. The introduction of dangling chains significantly increase the tanδ peak value of PU/EP IPNs. However, the damping temperature range depends on the degree of microphase separation. The width and intensity of the tan δ peaks of PU/EP IPNs increase with the increased dangling chain content. The mechanical properties (tensile strength and elongation at break) are significantly affected not only by the dangling chain length but by the dangling chain content.
     4) A series of layered double hydroxides (LDH) filled polyurethane/poly(methyl methacrylate)(PU/PMMA) with/without dangling chain were synthesized by using methyl methacrylate in-situ intercalative polymerization. The effect of the contents of LDH and dangling chain on the damping and molecular dynamics of PU/PMMA was investigated. In the case of PU/PMMA without dangling chain, the value of tanδ eak for PU/PMMA/LDH nanocomposites increase with the increase of LDH content. However, when LDH content is higher than1.0wt%, intercalated LDH layers reduce molecular mobility of polymer matrix and result in lower value of tan δ peak and higher Tg than those of pure PU/PMMA. The dielectric strength of a-relaxation depending on the content and dispersed state of LDH increase firstly and then decrease with increasing LDH content. In the case of PU/PMMA with dangling chain, a plateau with a high tan δ value above Tg significantly broaden the damping temperature range, which is ascribed to the synergy between the dangling chain and LDH sheets. It is found that the dynamic a process slows down and Tg shifts to high temperature with increasing LDH content. In addition, The MWS processes become more faster with increasing the LDH contents due to the smaller mean distance d between the exfoliated LDH layers.
引文
[1]Oertel G, Abele L. Polyurethane handbook:chemistry, raw materials, processing, application, properties[M]. Macmillan:Hanser Publishers. Distributed in USA by Scientific and Technical Books,1985.
    [2]Hepburn C. Polyurethane elastomers[M]. London:Applied Science Publishers, 1982.
    [3]徐培林,张淑琴,化工.聚氨酯材料手册[M].北京:化学工业出版社,2002.
    [4]Petrovic ZS, Ferguson J. Polyurethane elastomers[J]. Progress in polymer science,. 1991,16:695-836.
    [5]朱吕民.聚氨酯合成材料[M].江苏:江苏科学技术出版社,2002.
    [6]Nashif AD, Jones DI, Henderson JP. Vibration damping[M]. Wiley New York et al., 1985.
    [7]Marsh ER, Slocum AH. An integrated approach to structural damping[J]. Precision engineering,1996,18:103-109.
    [8]王建华,罗陈雷,.杨伟,杨鸣波.聚氨酯阻尼材料研究进展[J].工程塑料应用,2002,30:51-53.
    [9]邓建国,王建华,贺传兰.聚氨酯阻尼材料研究进展[J].聚氨酯工业,2001,16:1-4.
    [10]丁国芳,石耀刚,张长生,王建华.丁基橡胶阻尼材料阻尼行为的研究[J].功能材料,2004,35.
    [11]Harrell Jr L. Segmented polyurethans. Properties as a funcation of segment size and distribution[J]. Macromolecules,1969,2:607-612.
    [12]Shi M, Zheng J, Huang Z, Qin Y. Synthesis of polyurethane pre-polymers and damping property of polyurethane/epoxy composites[J]. Advanced Science Letters,2011,4:740-744.
    [13]黄微波,战凤昌.聚氨酯阻尼材料动态力学性能的研究[J].高分子材料科学与工程,1992,8:42-48.
    [14]Menard KP. Dynamic mechanical analysis:a practical introduction[M]. CRC press,2008.
    [15]Akay M. Aspects of dynamic mechanical analysis in polymeric composites[J]. Composites Science and Technology,1993,47:419-423.
    [16]Manikandan Nair K, Thomas S, Groeninckx G. Thermal and dynamic mechanical analysis of polystyrene composites reinforced with short sisal fibres[J]. Composites Science and Technology,2001,61:2519-2529.
    [17]Heijboer J. Modulus and damping of polymers in relation to their structure[J]. British Polymer Journal,1969,1:3-14.
    [18]Murayama T. Dynamic mechanical analysis of polymeric material[M]. Elsevier Scientific Pub. Co.,1978.
    [19]Heijboer J. Molecular origin of relaxations in polymers[J]. Annals of the New York Academy of Sciences,1976,279:104-116.
    [20]Roland CM, Ngai KL. Segmental relaxation and molecular structure in polybutadienes and polyisoprene[J]. Macromolecules,1991,24:5315-5319.
    [21]钱保功.高聚物的转变与松弛[M].科学出版社,1986.
    [22]王雁冰,黄志雄,张联盟.DMA在高分子材料研究中的应用[J].国外建材科技,2004,25:25-27.
    [23]Chang M-CO, Thomas D, Sperling L. Group contribution analysis of the damping behavior of homopolymers, statistical copolymers, and interpenetrating polymer networks based on acrylic, vinyl, and styrenic mers[J]. Journal of Polymer Science Part B:Polymer Physics,1988,26:1627-1640.
    [24]Fradkin D, Foster J, Sperling L, Thomas D. A Quantitative determination of the damping behavior of acrylic based interpenetrating polymer networks[J]. Rubber Chemistry and Technology,1986,59:255-262.
    [25]Fay JJ, Thomas DA, Sperling LH. Evaluation of the area under linear loss modulus-temperature curves[J]. Journal of Applied Polymer Science,1991, 43:1617-1623.
    [26]刘光烨,赵娟.复合阻尼材料的研究进展[J].塑料科技,2010,38:98-102.
    [27]Petrovic ZS, Javni I. The effect of soft-segment length and concentration on phase separation in segmented polyurethanes[J]. Journal of Polymer Science Part B:Polymer Physics,1989,27:545-560.
    [28]Petrovic ZS, Guo A, Javni I, Cvetkovic I, Hong DP. Polyurethane networks from polyols obtained by hydroformylation of soybean oil[J]. Polymer International, 2008,57:275-281.
    [29]Garrett JT, Runt J, Lin JS. Microphase separation of segmented poly(urethane urea) block copolymers[J]. Macromolecules,2000,33:6353-6359.
    [30]Garrett JT, Siedlecki CA, Runt J. Microdomain morphology of poly(urethane urea) multiblock copolymers[J]. Macromolecules,2001,34:7066-7070.
    [31]Xu M, MacKnight WJ, Chen CHY, Thomas EL. Structure and morphology of segmented polyurethanes:1. Influence of incompatability on hard-segment sequence length[J]. Polymer,1983,24:1327-1332.
    [32]Castagna AM, Pangon A, Choi T, Dillon GP, Runt J. The Role of soft segment molecular weight on microphase separation and dynamics of bulk polymerized polyureas[J]. Macromolecules,2012,45:8438-8444.
    [33]Zdrahala R, Gerkin R, Hager S, Critchfield F. Polyether-based thermoplastic polyurethanes. I. Effect of the hard segment content[J]. Journal of Applied Polymer Science,1979,24:2041-2050.
    [34]Voda A, Beck K, Schauber T et al. Investigation of soft segments of thermoplastic polyurethane by NMR, differential scanning calorimetry and rebound resilience[J]. Polymer testing,2006,25:203-213.
    [35]文庆珍,龚沈光,朱金华,赵培仲.聚氨酯阻尼材料的结构设计及其动态力学性能的研究[J].海军工程大学学报,2006,18:40-44.
    [36]Barick AK, Tripathy DK. Preparation and characterization of carbon nanofiber reinforced thermoplastic polyurethane nanocomposites[J]. Journal of Applied Polymer Science,2012,124:765-780.
    [37]Mackintosh AR, Pethrick RA, Banks WM. Dynamic characteristics and processing of filler polyurethane elastomers for vibration damping applications [J]. Proceedings of the Institution of Mechanical Engineers Part L-Journal of Materials-Design and Applications,2011,225:113-122.
    [38]Sun J, Li H, Song Y, Zheng Q, He L, Yu J. Nonlinear stress relaxation of silica filled solution-polymerized styrene-butadiene rubber compounds[J]. Journal of Applied Polymer Science,2009,112:3569-3574.
    [39]Trakulsujaritchok T, Hourston DJ. Damping characteristics and mechanical properties of silica filled PUR/PEMA simultaneous interpenetrating polymer networks[J]. European Polymer Journal,2006,42:2968-2976.
    [40]Wang T, Chen S, Wang Q, Pei X. Damping analysis of polyurethane/epoxy graft interpenetrating polymer network composites filled with short carbon fiber and micro hollow glass bead[J]. Materials & Design,2010,31:3810-3815.
    [41]Wu G, Gu J, Zhao X. Preparation and dynamic mechanical properties of polyurethane-modified epoxy composites filled with functionalized fly ash particulates[J]. Journal of Applied Polymer Science,2007,105:1118-1126.
    [42]Chen Q, Ge H, Chen D, He X, Yu X. Investigation on damping behavior and morphology of polyurethane/polymethacrylates and polyacrylates interpenetrating polymer networks[J]. Journal of Applied Polymer Science,1994, 54:1191-1197.
    [43]胡聪,姜志国,杜卫超,刘军,李效玉.含受阻酚侧链的聚氨酯阻尼性能研究[J].聚氨酯工业,2009,24:10-13.
    [44]宋颖薇.聚氨酯弹性体的阻尼结构设计与性能研究[硕士学位论文][D].北京化工大学,2008.
    [45]Senake Perera MC, Ishiaku US, Mohd. Ishak ZA. Characterisation of PVC/NBR and PVC/ENR50 binary blends and PVC/ENR50/NBR ternary blends by DMA and solid state NMR[J]. European Polymer Journal,2001,37:167-178.
    [46]Chern YC, Hsieh KH, Hsu JS. Interpenetrating polymer networks of polyurethane cross-linked epoxy and polyurethanes[J]. Journal of Materials Science,1997,32:3503-3509.
    [47]Chern YC, Tseng SM, Hsieh KH. Damping properties of interpenetrating polymer networks of polyurethane-modified epoxy and polyurethanes[J]. Journal of Applied Polymer Science,1999,74:328-335.
    [48]Corsaro RD, Sperling LH. Sounds and vibration damping with polymers[M]. 1990.
    [49]Fay JJ, Murphy CJ, Thomas DA, Sperling LH. Effect of morphology, crosslink density, and miscibility on interpenetrating polymer network damping effectiveness[J]. Polymer Engineering & Science,1991,31:1731-1741.
    [50]Hill DJT, Perera MCS, Pomery PJ. Dynamic mechanical properties of homopolymers and interpenetrating networks based on diethylene glycol-bis-allyl carbonate[J]. Polymer,1998,39:5075-5083.
    [51]Hourston D, Zia Y. Semi-and fully interpenetrating polymer networks based on polyurethane-polyacrylate systems. Ⅱ. Polyurethane-poly (methyl acrylate) semi-interpenetrating polymer networks[J]. Journal of Applied Polymer Science, 1983,28:3745-3758.
    [52]Hourston D, Zia Y. Semi-and fully interpenetrating polymer networks based on polyurethane-polyacrylate systems. Ⅲ. Polyurethane-poly (methyl acrylate) semi-interpenetrating polymer networks[J]. Journal of Applied Polymer Science, 1983,28:3849-3857.
    [53]Hourston D, Zia Y. Semi-and fully interpentrating polymer networks based on polyurethane-polyacrylate systems. Ⅳ. Grafted semi-interpenetrating polymer networks[J]. Journal of Applied Polymer Science,1984,29:629-635.
    [54]Hourston D, Zia Y. Semi-and fully interpenetrating polymer networks based on polyurethane-polyacrylate systems. Ⅵ. Polyurethane-poly (methyl acrylate-co-ethyl acrylate) semi-interpenetrating polymer networks[J].Journal of Applied Polymer Science,1984,29:2963-2967.
    [55]Qin CL, Cai WM, Cai J, Tang DY, Zhang JS, Qin M. Damping properties and morphology of polyurethane/vinyl ester resin interpenetrating polymer network[J]. Materials chemistry and physics,2004,85:402-409.
    [56]Qin CL, Zhang JS, Tang DY, Cai WM. Studies of synthesis technics based on polyurethane/poly (ethyl methacrylate) IPN curing at room temperature[J]. Journal of Natural Science of Heilongjiang University,2003,20:96-99.
    [57]Chiu HT, Chiu SH, Wu JH. Study on mechanical properties and intermolecular interaction of silicone rubber/polyurethane/epoxy blends [J]. Journal of Applied Polymer Science,2003,89:959-970.
    [58]Chen S, Wang Q, Pei X, Wang T. Dynamic mechanical properties of castor oil-based polyurethane/epoxy graft interpenetrating polymer network composites[J]. Journal of Applied Polymer Science,2010,118:1144-1151.
    [59]Chen S, Wang Q, Wang T, Pei X. Preparation, damping and thermal properties of potassium titanate whiskers filled castor oil-based polyurethane/epoxy interpenetrating polymer network composites[J]. Materials & Design,2011, 32:803-807.
    [60]Chern Y, Hsieh K, Hsu J. Interpenetrating polymer networks of polyurethane cross-linked epoxy and polyurethanes[J]. Journal of Materials Science,1997, 32:3503-3509.
    [61]Chern Y, Tseng S, Hsieh K. Damping properties of interpenetrating polymer networks of polyurethane-modified epoxy and polyurethanes[J]. Journal of Applied Polymer Science,1999,74:328-335.
    [62]Zhang H, Wang B, Li H, Jiang Y, Wang J. Synthesis and characterization of nanocomposites of silicon dioxide and polyurethane and epoxy resin interpenetrating network[J]. Polymer International,2003,52:1493-1497.
    [63]李永清,朱锡,石勇.高性能阻尼高聚物体系分子设计研究进展[J].化学推进剂与高分子材料,2007,5:17-21.
    [64]Cushman WB, Thomas GB. Acoustic attenuation and vibration damping materials. Google Patents; 1995.
    [65]Kireitseu M, Hui D, Tomlinson G. Advanced shock-resistant and vibration damping of nanoparticle-reinforced composite material[J]. Composites Part B: Engineering,2008,39:128-138.
    [66]Trakulsujaritchok T, Hourston D. Damping characteristics and mechanical properties of silica filled PUR/PEMA simultaneous interpenetrating polymer networks[J]. European Polymer Journal,2006,42:2968-2976.
    [67]时原.聚乙烯基吡咯烷酮的分子运动和电荷存储现象研究[硕士学位论文][D].中国科学技术大学,2009.
    [68]Pissis P, Fragiadakis D, Kanapitsas A, Delides K. Broadband dielectric relaxation spectroscopy in polymer nanocomposites[J]. Macromolecular Symposia,2008, 265:12-20.
    [69]Williams G. Polymer dynamics and broadband dielectric Spectroscopy[M]. New Polymeric Materials:American Chemical Society; 2005. p.268-281.
    [70]Frohlich H. Theory of dielectrics[M]. Clarendon Press Oxford,1958.
    [71]Kremer F, Schonhals A. Broadband dielectric spectroscopy[M]. Springer,2003.
    [72]Havriliak S, Havriliak SJ. Dielectric and mechanical relaxation in materials: analysis, interpretation, and application to polymers[M]. Hanser Munich,1997.
    [73]Sorathia UA, Yeager WL, Dapp TL. Polyurethane-epoxy interpenetrating polymer network acoustic damping material. Google Patents; 1994.
    [74]Karabanova LV, Boiteux G, Seytre G et al. Semi-interpenetrating polymer networks based on polyurethane and poly(2-hydroxyethyl methacrylate): Dielectric study of relaxation behavior[J]. Journal of Non-Crystalline Solids, 2009,355:1453-1460.
    [75]Pissis P, Georgoussis G, Bershtein VA, Neagu E, Fainleib AM. Dielectric studies in homogeneous and heterogeneous polyurethane/polycyanurate interpenetrating polymer networks[J]. Journal of Non-Crystalline Solids,2002,305:150-158.
    [76]Potolinca V, Buruiana E, Oprea S. Dielectric behavior of polyurethane and polyurethane-urea elastomers with pyridine moieties in the main chain[J]. Journal of Polymer Research,2013,20:1-9.
    [77]Wartewig S, Helmis G, Apekis L et al. Physical and chemical network effects in polyurethane elastomers physics of polymer networks[M]. Springer Berlin/ Heidelberg; 1992. p.144-150.
    [78]Yu X, Gao G, Wang J, Li F, Tang X. Damping materials based on polyurethane/polyacrylate IPNs:dynamic mechanical spectroscopy, mechanical properties and multiphase morphology[J]. Polymer International,1999, 48:805-810.
    [79]Cristea M, Ibanescu S, Cascaval CN, Rosu D. Dynamic mechanical analysis of polyurethane-epoxy interpenetrating polymer networks[J]. High Performance Polymers,2009,21:608-623.
    [80]Fragiadakis D, Gamache R, Bogoslovov RB, Roland CM. Segmental dynamics of polyurea:Effect of stoichiometry[J]. Polymer,2010,51:178-184.
    [81]Georgoussis G, Kyritsis A, Pissis P et al. Dielectric studies of molecular mobility and microphase separation in segmented polyurethanes[J]. European Polymer Journal,1999,35:2007-2017.
    [82]Kalini A, Gatos KG, Karahaliou PK, Georga SN, Krontiras CA, Psarras GC. Probing the dielectric response of polyurethane/alumina nanocomposites[J]. Journal of Polymer Science Part B:Polymer Physics,2010,48:2346-2354.
    [83]Musteata VE, Filip D, Vlad S, Macocinschi D. Dielectric relaxation of polyurethane biocomposites[J]. Optoelectronics and Advanced Materials-Rapid Communications,2010,4:1187-1192.
    [84]Psarras GC, Gatos KG, Karger-Kocsis J. Dielectric properties of layered silicate-reinforced natural and polyurethane rubber nanocomposites[J]. Journal of Applied Polymer Science,2007,106:1405-1411.
    [85]Raftopoulos KN, Pandis C, Apekis L et al. Polyurethane-POSS hybrids: Molecular dynamics studies[J]. Polymer,2010,51:709-718.
    [86]Sakamoto WK, Kanda DHF, de Assis Andrade F, Das-Gupta DK. Dielectric relaxation of vegetable-based polyurethane[J]. Journal of Materials Science, 2003,38:1465-1470.
    [87]Zhang Q, Zhu D, Su F, Xie Y, Ma Z, Shen J. Structure-property investigations with dielectric study on phosphorylcholine-based polyurethane[J]. Journal of Biomedical Materials Research Part A,2012,100A:1868-1876.
    [88]Czech P, Okrasa L, Mechin F, Boiteux G, Ulanski J. Investigation of the polyurethane chain length influence on the molecular dynamics in networks crosslinked by hyperbranched polyester[J]. Polymer,2006,47:7207-7215.
    [89]Okrasa L, Zigon M, Zagar E, Czech P, Boiteux G. Molecular dynamics of linear and hyperbranched polyurethanes and their blends[J]. Journal of Non-Crystalline Solids,2005,351:2753-2758.
    [90]Fragiadakis D, Runt J. Molecular dynamics of segmented polyurethane copolymers:Influence of soft segment composition[J]. Macromolecules,2013, 46:4184-4190.
    [91]Oprea S. Effect of the hard-segment structure on the dielectric relaxation of crosslinked polyurethanes[J]. Journal of Applied Polymer Science,2011, 119:2196-2204.
    [92]Lu H, Nutt S. Restricted relaxation in polymer nanocomposites near the glass transition[J]. Macromolecules,2003,36:4010-4016.
    [93]Vo LT, Anastasiadis SH, Giannelis EP. Dielectric study of poly(styrene-co-butadiene) composites with carbon black, silica, and nanoclay[J]. Macromolecules,2011,44:6162-6171.
    [94]Greco A, Timo A, Maffezzoli A. Development and characterization of amorphous thermoplastic matrix graphene nanocomposites[Jj. Materials,2012,5:1972-1985.
    [95]Kripotou S, Pissis P, Savelyev YV, Robota LP, Travinskaya TV. Polymer dynamics in polyurethane/clay nanocomposites studied by dielectric and thermal techniques[J]. Journal of Macromolecular Science, Part B,2010,49:86-110.
    [96]Fragiadakis D, Pissis P, Bokobza L. Modified chain dynamics in poly(dimethylsiloxane)/silica nanocomposites [J]. Journal of Non-Crystalline Solids,2006,352:4969-4972.
    [97]Fragiadakis D, Pissis P, Bokobza L. Glass transition and molecular dynamics in poly(dimethylsiloxane)/silica nanocomposites [J]. Polymer,2005,46:6001-6008.
    [98]Wang Q, Chen S, Wang T, Zhang X. Damping, thermal, and mechanical properties of polyurethane based on poly (tetramethylene glycol)/epoxy interpenetrating polymer networks:effects of composition and isocyanate index[J]. Applied Physics A,2011,104:375-382.
    [99]Kishi H, Kuwata M, Matsuda S, Asami T, Murakami A. Damping properties of thermoplastic-elastomer interleaved carbon fiber-reinforced epoxy composites[J]. Composites Science and Technology,2004,64:2517-2523.
    [100]Cuve L, Pascault JP, Boiteux G, Seytre G. Synthesis and properties of polyurethanes based on polyolefine:1. Rigid polyurethanes and amorphous segmented polyurethanes prepared in polar solvents under homogeneous conditions[J]. Polymer,1991,32:343-352.
    [101]Petrovic ZS. Polyurethanes from vegetable oils[J]. Polymer Reviews,2008, 48:109-155.
    [102]Ferrer MCC, Babb D, Ryan AJ. Characterisation of polyurethane networks based on vegetable derived polyol[J]. Polymer,2008,49:3279-3287.
    [103]Lee Y-L, Sung P-H, Liu H-T, Chou L-C, Ku W-H. Dangling polymer networks: Glass transition of PU elastomers[J]. Journal of Applied Polymer Science,1993, 49:1013-1018.
    [104]Yamazaki H, Takeda M, Kohno Y, Ando H, Urayama K, Takigawa T. Dynamic viscoelasticity of poly(butyl acrylate) elastomers containing dangling chains with controlled lengths[J]. Macromolecules,2011,44:8829-8834.
    [105]Andrady AL, Llorente MA, Sharaf MA et al. Model networks of end-linked polydimethylsiloxane chains. XII. Dependence of ultimate properties on dangling-chain irregularities[J]. Journal of Applied Polymer Science,1981, 26:1829-1836.
    [106]Erman B, Mark JE. Structures and properties of rubberlike networks[M]. Oxford University Press New York,1997.
    [107]Runt JP, Fitzgerald JJ. Dielectric spectroscopy of polymeric materials: fundamentals and applications[M]. Washington:DC:American Chemical Society, 1997.
    [1]Carme Coll Ferrer M, Babb D, Ryan AJ. Characterisation of polyurethane networks based on vegetable derived polyol[J]. Polymer,2008,49:3279-3287.
    [2]Kong XH, Narine SS. Sequential interpenetrating polymer networks produced from vegetable oil based polyurethane and poly(methyl methacrylate)[J]. Biomacromolecules,2008,9:2221-2229.
    [3]Narine SS, Kong XH, Bouzidi L, Sporns P. Physical properties of polyurethanes produced from polyols from seed oils:I. Elastomers[J]. Journal of the American Oil Chemists Society,2007,84:55-63.
    [4]Oprea S, Potolinca VO. The influence of the chemical structure on the dielectric behavior of triazine derivative-based polyurethane-urea elastomers[J]. Designed Monomers and Polymers,2013,16:47-55.
    [5]Dusek K, Dugkova-Smrckova M, Fedderly JJ, Lee GF, Lee JD, Hartmann B. Polyurethane networks with controlled architecture of dangling chains[J]. Macromolecular Chemistry and Physics,2002,203:1936-1948.
    [6]Erman B, Mark JE. Structures and properties of rubberlike networks[M]. Oxford University Press New York,1997.
    [7]Lee Y-L, Sung P-H, Liu H-T, Chou L-C, Ku W-H. Dangling polymer networks: Glass transition of PU elastomers[J]. Journal of Applied Polymer Science,1993, 49:1013-1018.
    [8]Yamazaki H, Takeda M, Kohno Y, Ando H, Urayama K, Takigawa T. Dynamic viscoelasticity of poly(butyl acrylate) elastomers containing dangling chains with controlled lengths[J]. Macromolecules,2011,44:8829-8834.
    [9]Zlatanic A, Lava C, Zhang W, Petrovic ZS. Effect of structure on properties of polyols and polyurethanes based on different vegetable oils[J]. Journal of Polymer Science Part B:Polymer Physics,2004,42:809-819.
    [10]Xu YJ, Petrovic Z, Das S, Wilkes GL. Morphology and properties of thermoplastic polyurethanes with dangling chains in ricinoleate-based soft segments[J]. Polymer,2008,49:4248-4258.
    [11]Zlatanic A, Petrovic ZS, Dusek K. Structure and properties of triolein-based polyurethane networks[J]. Biomacromolecules,2002,3:1048-1056.
    [12]Petrovic ZS. Polyurethanes from vegetable oils[J]. Polymer Reviews,2008, 48:109-155.
    [13]Oprea S, Potolinca O, Oprea V. Dielectric properties of castor oil cross-linked polyurethane[J]. High Performance Polymers,2011,23:49-58.
    [14]Jin X, Zhang S, Runt J. Dielectric studies of poly(ethylene oxide)/poly(styrene-co-p-hydroxystyrene) blends:Influence of hydrogen bonding on the dynamics of amorphous blends[J]. Macromolecules,2003, 36:8033-8039.
    [15]Masser KA, Zhao HQ, Painter PC, Runt J. Local relaxation behavior and dynamic fragility in hydrogen bonded polymer blends[J]. Macromolecules,2010, 43:9004-9013.
    [16]Czech P, Okrasa L, Boiteux G, Mechin F, Ulanski J. Polyurethane networks based on hyperbranched polyesters:Synthesis and molecular relaxations[J]. Journal of Non-Crystalline Solids,2005,351:2735-2741.
    [17]Lee HK, Fragiadakis D, Martin D, Milne A, Milne J, Runt J. Dynamics of uniaxially oriented elastomers using broadband dielectric spectroscopy[J]. Macromolecules,2010,43:3125-3127.
    [18]Fragiadakis D, Runt J. Microstructure and dynamics of semicrystalline poly(ethylene oxide)-poly(vinyl acetate) blends[J]. Macromolecules,2010, 43:1028-1034.
    [19]Georgoussis G, Kyritsis A, Pissis P et al. Dielectric studies of molecular mobility and microphase separation in segmented polyurethanes[J]. European Polymer Journal,1999,35:2007-2017.
    [20]Raftopoulos KN, Pandis C, Apekis L et al. Polyurethane-POSS hybrids: Molecular dynamics studies[J]. Polymer,2010,51:709-718.
    [21]Vallance MA, Yeung AS, Cooper SL. A dielectric study of the glass transition region in segmented polyether-urethane copolymers[J]. Colloid and Polymer Science,1983,261:541-554.
    [22]Jimenez ML, Arroyo FJ, van Turnhout J, Delgado AV. Analysis of the dielectric permittivity of suspensions by means of the logarithmic derivative of its real part[J]. Journal of Colloid and Interface Science,2002,249:327-335.
    [23]van Turnhout J, Wubbenhorst M. Analysis of complex dielectric spectra. Ⅱ: Evaluation of the activation energy landscape by differential sampling[J]. Journal of Non-Crystalline Solids,2002,305:50-58.
    [24]Wubbenhorst M, van Turnhout J. Analysis of complex dielectric spectra. I. One-dimensional derivative techniques and three-dimensional modelling[J]. Journal of Non-Crystalline Solids,2002,305:40-49.
    [25]Cascaval C, Rosu D, Rosu L, Ciobanu C. Thermal degradation of semi-interpenetrating polymer networks based on polyurethane and epoxy maleate of bisphenol A[J]. Polymer testing,2003,22:45-49.
    [26]Lee HS, Wang YK, Hsu SL. Spectroscopic analysis of phase separation behavior of model polyurethanes[J]. Macromolecules,1987,20:2089-2095.
    [27]Yu W, Zhang D, Du M, Zheng Q. Role of Graded Length Side Chains up to 18 Carbons in Length on the Damping Behavior of Polyurethane/epoxy Interpenetrating Polymer Networks[J]. European Polymer Journal,2013.
    [28]Xu Y, Petrovic Z, Das S, Wilkes GL. Morphology and properties of thermoplastic polyurethanes with dangling chains in ricinoleate-based soft segments [J]. Polymer,2008,49:4248-4258.
    [29]Sears JK, Darby JR. The technology of plasticizers[J].1982.
    [30]Castagna AM, Fragiadakis D, Lee H, Choi T, Runt J. The role of hard segment content on the molecular dynamics of poly(tetramethylene oxide)-based polyurethane copolymers[J]. Macromolecules,2011,44:7831-7836.
    [31]Masser KA, Runt J. Dynamics of polymer blends of a strongly interassociating homopolymer with poly(vinyl methyl ether) and poly(2-vinylpyridine)[J]. Macromolecules,2010,43:6414-6421.
    [32]Capaccioli S, Ngai KL, Shinyashiki N. The Johari-Goldstein β-Relaxation of water[J]. The Journal of Physical Chemistry B,2007,111:8197-8209.
    [33]Marion JB, Thornton ST. Classical dynamics of particles and systems[M]. Saunders College Pub.,1995.
    [34]Fragiadakis D, Gamache R, Bogoslovov RB, Roland CM. Segmental dynamics of polyurea:Effect of stoichiometry[J]. Polymer,2010,51:178-184.
    [35]Cerveny S, Alegria A, Colmenero J. Universal features of water dynamics in solutions of hydrophilic polymers, biopolymers, and small glass-forming materials[J]. Physical Review E,2008,77:031803.
    [36]Georgoussis G, Kyritsis A, Bershtein VA, Fainleib AM, Pissis P. Dielectric studies of chain dynamics in homogeneous semi-interpenetrating polymer networks[J]. Journal of Polymer Science Part B:Polymer Physics,2000, 38:3070-3087.
    [37]Kremer F, Schonhals A. Broadband dielectric spectroscopy[M]. Springer,2003.
    [38]Santangelo PG, Roland CM. Molecular weight dependence of fragility in polystyrene[J]. Macromolecules,1998,31:4581-4585.
    [39]Wu J, Huang G, Qu L, Zheng J. Correlations between dynamic fragility and dynamic mechanical properties of several amorphous polymers[J]. Journal of Non-Crystalline Solids,2009,355:1755-1759.
    [40]Qin Q, McKenna GB. Correlation between dynamic fragility and glass transition temperature for different classes of glass forming liquids[J]. Journal of Non-Crystalline Solids,2006,352:2977-2985.
    [41]Longster G, Walker E. Effect of permanent dipoles on the cohesive energy and solvent action of some highly polar substances[J]. Transactions of the Faraday Society,1953,49:228-233.
    [42]Agapov AL, Wang YY, Kunal K, Robertson CG, Sokolov AP. Effect of polar interactions on polymer dynamics[J]. Macromolecules,2012,45:8430-8437.
    [43]Van Krevelen DW, Te Nijenhuis K. Properties of polymers:their correlation with chemical structure; their numerical estimation and prediction from additive group contributions [M]. Access Online via Elsevier,2009.
    [44]Castagna AM, Pangon A, Choi T, Dillon GP, Runt J. The role of soft segment molecular weight on microphase separation and dynamics of bulk polymerized polyureas[J]. Macromolecules,2012,45:8438-8444.
    [45]Okrasa L, Zigon M, Zagar E, Czech P, Boiteux G. Molecular dynamics of linear and hyperbranched polyurethanes and their blends[J]. Journal of Non-Crystalline Solids,2005,351:2753-2758.
    [46]Van Beek L. Dielectric behaviour of heterogeneous systems[J]. Progress in dielectrics,1967,7:69-114.
    [47]North AM, Pethrick RA, Wilson AD. Dielectric properties of phase separated polymer solids:1. Styrene-butadiene-styrene triblock copolymers[J]. Polymer, 1978,19:913-922.
    [48]Hayward D, Pethrick RA, Siriwittayakorn T. Dielectric studies of heterogeneous phase polymer systems:poly (ethylene oxide) inclusions in polycarbonate-a model system[J]. Macromolecules,1992,25:1480-1486.
    [49]Pongkitwitoon S, Hernandez R, Weksler J, Padsalgikar A, Choi T, Runt J. Temperature dependent microphase mixing of model polyurethanes with different intersegment compatibilities[J]. Polymer,2009,50:6305-6311.
    [50]Andrady AL, Llorente MA, Sharaf MA et al. Model networks of end-linked polydimethylsiloxane chains. XII. Dependence of ultimate properties on dangling-chain irregularities[J]. Journal of Applied Polymer Science,1981, 26:1829-1836.
    [51]Oprea S. Effect of the hard-segment structure on the dielectric relaxation of crosslinked polyurethanes [J]. Journal of Applied Polymer Science,2011, 119:2196-2204.
    [52]Ning L, De-Ning W, Sheng-Kang Y. Crystallinity and hydrogen bonding of hard segments in segmented poly(urethane urea) copolymers[J]. Polymer,1996, 37:3577-3583.
    [53]Lu Y, Larock RC. Soybean-oil-based waterborne polyurethane dispersions: Effects of polyol functionality and hard segment content on properties[J]. Biomacromolecules,2008,9:3332-3340.
    [1]Li Y, Kang W, Stoffer JO, Chu B. Effect of hard-segment flexibility on phase separation of segmented polyurethanes[J]. Macromolecules,1994,27:612-614.
    [2]Javni I, Zhang W, Petrovic ZS. Effect of different isocyanates on the properties of soy-based polyurethanes[J]. Journal of Applied Polymer Science,2003, 88:2912-2916.
    [3]Monteavaro LL, da Silva EO, Costa APO, Samios D, Gerbase AE, Petzhold CL. Polyurethane networks from formiated soy polyols:synthesis and mechanical characterization[J]. Journal of the American Oil Chemists'Society,2005, 82:365-371.
    [4]John J, Bhattacharya M, Turner RB. Characterization of polyurethane foams from soybean oil[J]. Journal of Applied Polymer Science,2002,86:3097-3107.
    [5]Christenson C, Harthcock M, Meadows M et al. Model MDI/butanediol polyurethanes:Molecular structure, morphology, physical and mechanical properties[J]. Journal of Polymer Science Part B:Polymer Physics,1986, 24:1401-1439.
    [6]Mol GL. Simultaneous thermogravimetry and mass spectrometry in polymer characterization[J]. Thermochimica Acta,1974,10:259-268.
    [7]Desai S, Thakore I, Sarawade B, Devi S. Effect of polyols and diisocyanates on thermo-mechanical and morphological properties of polyurethanes[J]. European Polymer Journal,2000,36:711-725.
    [8]Bonart R, Morbitzer L, Hentze G. X-ray investigations concerning the physical structure of cross-linking in urethane elastomers II. Butanediol as chain extender[J]. Journal of Macromolecular Science, Part B:Physics,1969, 3:337-356.
    [9]Bonart R. X-ray investigations concerning the physical structure of cross-linking in segmented urethane elastomers[J]. Journal of Macromolecular Science, Part B: Physics,1968,2:115-138.
    [10]Pandya MV, Deshpande DD, Hundiwale DG. Effect of diisocyanate structure on viscoelastic, thermal, mechanical and electrical properties of cast polyurethanes[J]. Journal of Applied Polymer Science,1986,32:4959-4969.
    [11]Runt JP, Fitzgerald JJ. Dielectric spectroscopy of polymeric materials: fundamentals and applications[M]. Washington:DC:American Chemical Society,1997.
    [12]Raftopoulos KN, Pandis C, Apekis L et al. Polyurethane-POSS hybrids: Molecular dynamics studies[J]. Polymer,2010,51:709-718.
    [13]Brunette C, Hsu S, MacKnight W. Hydrogen-bonding properties of hard-segment model compounds in polyurethane block copolymers[J]. Macromolecules,1982, 15:71-77.
    [14]Senich G, MacKnight W. Fourier transform infrared thermal analysis of a segmented polyurethane[J]. Macromolecules,1980,13:106-110.
    [15]Pongkitwitoon S, Hernandez R, Weksler J, Padsalgikar A, Choi T, Runt J. Temperature dependent microphase mixing of model polyurethanes with different intersegment compatibilities[J]. Polymer,2009,50:6305-6311.
    [16]Fragiadakis D, Runt J. Molecular dynamics of segmented polyurethane copolymers:Influence of soft segment composition[J]. Macromolecules,2013, 46:4184-4190.
    [17]Hernandez R, Weksler J, Padsalgikar A et al. A comparison of phase organization of model segmented polyurethanes with different intersegment compatibilities[J]. Macromolecules,2008,41:9767-9776.
    [1]Chung D. Review:Materials for vibration damping[J]. Journal of Materials Science,2001,36:5733-5737.
    [2]Yu X, Gao G, Wang J, Li F, Tang X. Damping materials based on polyurethane/polyacrylate IPNs:dynamic mechanical spectroscopy, mechanical properties and multiphase morphology [J]. Polymer International,1999, 48:805-810.
    [3]Clemitson I. Castable polyurethane elastomers[M]. CRC Press,2010.
    [4]Harrell Jr L. Segmented polyurethans. Properties as a funcation of segment size and distribution[J]. Macromolecules,1969,2:607-612.
    [5]Corsaro RD, Sperling LH. Sound and vibration damping with polymers[M]. ACS Publications,1990.
    [6]Klempner D, Berkowski L, Frisch K, Hsieh K, Ting R. Interpenetrating polymer networks for vibration attenuation[J]. Rubber World,1985,192:16-20.
    [7]Xie HQ, Zhang CX, Guo JS, Klempner D, Sperling LH, Utracki LA. Interpenetrating Polymer Networks[M].1994.
    [8]Petrie EM. Epoxy adhesives formulations [J]. Mc Grow-Hill,2006.
    [9]Sperling L, Mishra V. The current status of interpenetrating polymer networks[J]. Polymers for Advanced Technologies,1996,7:197-208.
    [10]Raymond MP, Bui V. Epoxy/castor oil graft interpenetrating polymer networks[J]. Journal of Applied Polymer Science,1998,70:1649-1659.
    [11]Corsaro RD, Sperling LH. Sounds and vibration damping with polymers[M]. 1990.
    [12]Yamada N, Shoji S, Sasaki H et al. Developments of high performance vibration absorber from poly (vinyl chloride)/chlorinated polyethylene/epoxidized natural rubber blend[J]. Journal of Applied Polymer Science,1999,71:855-863.
    [13]Lee YL, Sung PH, Liu HT, Chou LC, Ku WH. Dangling polymer networks: Glass transition of PU elastomers[J]. Journal of Applied Polymer Science,1993, 49:1013-1018.
    [14]Yamazaki H, Takeda M, Kohno Y, Ando H, Urayama K, Takigawa T. Dynamic viscoelasticity of poly(butyl acrylate) elastomers containing dangling chains with controlled lengths[J]. Macromolecules,2011,44:8829-8834.
    [15]Wang Q, Chen S, Wang T, Zhang X. Damping, thermal, and mechanical properties of polyurethane based on poly (tetramethylene glycol)/epoxy interpenetrating polymer networks:effects of composition and isocyanate index[J]. Applied Physics A,2011,104:375-382.
    [16]Chen S, Wang Q, Pei X, Wang T. Dynamic mechanical properties of castor oil-based polyurethane/epoxy graft interpenetrating polymer network composites[J]. Journal of Applied Polymer Science,2010,118:1144-1151.
    [17]Sears JK, Darby JR. The technology of plasticizers[J].1982.
    [18]Van Krevelen DW, Te Nijenhuis K. Properties of polymers:their correlation with chemical structure; their numerical estimation and prediction from additive group contributions[M]. Access Online via Elsevier,2009.
    [19]Noland J, Hsu N, Saxon R, Schmitt J. Compatible high polymers:Poly (vinylidene fluoride) blends with homopolymers of methyl and ethyl methacrylate[J]. Adv Chem Ser,1971,99:15.
    [20]Marion JB, Thornton ST. Classical dynamics of particles and systems[M]. Saunders College Pub.,1995.
    [21]Cristea M, Ibanescu S, Cascaval CN, Rosu D. Dynamic mechanical analysis of polyurethane-epoxy interpenetrating polymer networks[J]. High Performance Polymers,2009,21:608-623.
    [22]Seymour RW, Estes GM, Cooper SL. Infrared studies of segmented polyurethan elastomers. I. Hydrogen bonding[J]. Macromolecules,1970,3:579-583.
    [23]Senich G, MacKnight W. Fourier transform infrared thermal analysis of a segmented polyurethane[J]. Macromolecules,1980,13:106-110.
    [24]Brunette CM, Hsu SL, MacKnight WJ. Hydrogen-bonding properties of hard-segment model compounds in polyurethane block copolymers[J]. Macromolecules,1982,15:71-77.
    [25]Lee HS, Wang YK, Hsu SL. Spectroscopic analysis of phase separation behavior of model polyurethanes[J]. Macromolecules,1987,20:2089-2095.
    [26]Cascaval C, Rosu D, Rosu L, Ciobanu C. Thermal degradation of semi-interpenetrating polymer networks based on polyurethane and epoxy maleate of bisphenol A[J]. Polymer testing,2003,22:45-49.
    [27]Qin C-L, Cai W-M, Cai J, Tang D-Y, Zhang J-S, Qin M. Damping properties and morphology of polyurethane/vinyl ester resin interpenetrating polymer network[J]. Materials chemistry and physics,2004,85:402-409.
    [28]Fradkin D, Foster J, Sperling L, Thomas D. A Quantitative determination of the damping behavior of acrylic based interpenetrating polymer networks[J]. Rubber Chemistry and Technology,1986,59:255-262.
    [29]Fay JJ, Murphy CJ, Thomas DA, Sperling LH. Effect of morphology, crosslink density, and miscibility on interpenetrating polymer network damping effectiveness[J]. Polymer Engineering & Science,1991,31:1731-1741.
    [30]Chang M-CO, Thomas D, Sperling L. Group contribution analysis of the damping behavior of homopolymers, statistical copolymers, and interpenetrating polymer networks based on acrylic, vinyl, and styrenic mers[J]. Journal of Polymer Science Part B:Polymer Physics,1988,26:1627-1640.
    [1]Novak BM. Hybrid nanocomposite materials-between inorganic glasses and organic polymers[J]. Advanced Materials,1993,5:422-433.
    [2]LeBaron PC, Wang Z, Pinnavaia TJ. Polymer-layered silicate nanocomposites:an overview[J]. Applied clay science,1999,15:11-29.
    [3]Ash BJ, Siegel RW, Schadler LS. Mechanical behavior of alumina/poly (methyl methacrylate) nanocomposites[J]. Macromolecules,2004,37:1358-1369.
    [4]Tien Y, Wei K. High-tensile-property layered silicates/polyurethane nanocomposites by using reactive silicates as pseudo chain extenders[J]. Macromolecules,2001,34:9045-9052.
    [5]宋晓艳,张玉清,张杰,李俊贤.聚氨酯弹性体/蒙脱土纳米复合材料的合成与性能[J].高分子学报,2004,5:640-644.
    [6]段雪,张法智.插层组装与功能材料[M].化学工业出版社,2007.
    [7]Hussain F, Hojjati M, Okamoto M, Gorga RE. Review article:polymer-matrix nanocomposites, processing, manufacturing, and application:an overview[J]. Journal of composite materials,2006,40:1511-1575.
    [8]Jancar J, Douglas J, Starr FW et al. Current issues in research on structure-property relationships in polymer nanocomposites[J]. Polymer,2010, 51:3321-3343.
    [9]Nikaj E, Stevenson-Royaud I, Seytre G, David L, Espuche E. Dielectric properties of polyamide 6-montmorillonite nanocomposites [J]. Journal of Non-Crystalline Solids,2010,356:589-596.
    [10]康升红,费广涛,田兴友,郑康,张献.PET/SiO2纳米复合材料的内耗研究[J].高分子学报,2010,3:010.
    [11]Nakayama H, Wada N, Tsuhako M. Intercalation of amino acids and peptides into Mg-Al layered double hydroxide by reconstruction method[J]. International journal of pharmaceutics,2004,269:469-478.
    [12]Hua-Kang F, Wei-Juan Y, Meng-Ying L, Ji H, Miao D, Qiang Z. Preparation of Layered Double Hydroxide/Carbon Nanotubes Composite and Its Dispersion in Organic Solvents[J]. Chemical Journal of Chinese Universities-Chinese,2013, 34:538-544.
    [13]Wang Q, Zhang X, Wang CJ, Zhu J, Guo Z, O'Hare D. Polypropylene/layered double hydroxide nanocomposites[J]. Journal of Materials Chemistry,2012, 22:19113-19121.
    [14]kumar Allada R, Navrotsky A, Berbeco HT, Casey WH. Thermochemistry and aqueous solubilities of hydrotalcite-like solids [J]. Science,2002,296:721-723.
    [15]Yao K, Song M, Hourston D, Luo D. Polymer/layered clay nanocomposites:2 polyurethane nanocomposites[J]. Polymer,2002,43:1017-1020.
    [16]Guo S, Zhang C, Peng H, Wang W, Liu T. Structural characterization, thermal and mechanical properties of polyurethane/CoAl layered double hydroxide nanocomposites prepared via in situ polymerization[J]. Composites Science and Technology,2011,71:791-796.
    [17]Peeterbroeck S, Alexandre M, Jer6me R, Dubois P. Poly (ethylene-co-vinyl acetate)/clay nanocomposites:Effect of clay nature and organic modifiers on morphology, mechanical and thermal properties [J]. Polymer Degradation and Stability,2005,90:288-294.
    [18]Riva A, Zanetti M, Braglia M, Camino G, Falqui L. Thermal degradation and rheological behaviour of EVA/montmorillonite nanocomposites [J]. Polymer Degradation and Stability,2002,77:299-304.
    [19]王辉,包永忠,黄志明,翁志学.聚氯乙烯/纳米水滑石复合材料的形态与力学性能[J].高分子学报,2005.
    [20]Hedvig P. Dielectric spectroscopy of polymers[M]. Hilger Bristol,1977.
    [21]Schonhals A, Goering H, Costa FR, Wagenknecht U, Heinrich G. Dielectric properties of nanocomposites based on polyethylene and layered double hydroxide[J]. Macromolecules,2009,42:4165-4174.
    [1]LeBaron PC, Wang Z, Pinnavaia TJ. Polymer-layered silicate nanocomposites:an overview[J]. Applied clay science,1999,15:11-29.
    [2]Krishnamoorti R, Vaia RA, Giannelis EP. Structure and dynamics of polymer-layered silicate nanocomposites[J]. Chemistry of Materials,1996, 8:1728-1734.
    [3]Krishnamoorti R, Vaia RA. Polymer nanocomposites[J]. Journal of Polymer Science Part B:Polymer Physics,2007,45:3252-3256.
    [4]Gong Z, Gong J, Yan X, Gao S, Wang B. Investigation of the effects of temperature and strain on the damping properties of polycarbonate/multiwalled carbon nanotube composites[J]. The Journal of Physical Chemistry C,2011, 115:18468-18472.
    [5]Lipatov YS, Fabulyak F. Relaxation processes in the surface layers of polymers at the interface[J]. Journal of Applied Polymer Science,1972,16:2131-2139.
    [6]Wang Q, Zhang X, Wang CJ, Zhu J, Guo Z, O'Hare D. Polypropylene/layered double hydroxide nanocomposites[J]. Journal of Materials Chemistry,2012, 22:19113-19121.
    [7]Tien Y, Wei K. High-tensile-property layered silicates/polyurethane nanocomposites by using reactive silicates as pseudo chain extenders[J]. Macromolecules,2001,34:9045-9052.
    [8]Purohit PJ, Wang D-Y, Emmerling F, Thunemann AF, Heinrich G, Schonhals A. Arrangement of layered double hydroxide in a polyethylene matrix studied by a combination of complementary methods[J]. Polymer,2012,53:2245-2254.
    [9]Purohit PJ, Huacuja-Sanchez JsE, Wang D-Y et al. Structure-property relationships of nanocomposites based on polypropylene and layered double hydroxides[J]. Macromolecules,2011,44:4342-4354.
    [10]Duan X, Evans DG. Layered double hydroxides [M]. Springer,2006.
    [11]Trakulsujaritchok T, Hourston DJ. Damping characteristics and mechanical properties of silica filled PUR/PEMA simultaneous interpenetrating polymer networks[J]. European Polymer Journal,2006,42:2968-2976.
    [12]Messersmith PB, Giannelis EP. Synthesis and characterization of layered silicate-epoxy nanocomposites [J]. Chemistry of Materials,1994,6:1719-1725.
    [13]Kanapitsas A, Pissis P, Kotsilkova R. Dielectric studies of molecular mobility and phase morphology in polymer-layered silicate nanocomposites[J]. Journal of Non-Crystalline Solids,2002,305:204-211.
    [14]Schonhals A, Goering H, Costa FR, Wagenknecht U, Heinrich G. Dielectric properties of nanocomposites based on polyethylene and layered double hydroxide[J]. Macromolecules,2009,42:4165-4174.
    [15]Starr FW, Schr(?)der TB, Glotzer SC. Molecular dynamics simulation of a polymer melt with a nanoscopic particle[J]. Macromolecules,2002, 35:4481-4492.
    [16]Bershtein VA, Fainleib AM, Pissis P et al. Polycyanurate-organically modified montmorillonite nanocomposites:structure-dynamics-properties Relationships[J]. Journal of Macromolecular Science, Part B,2008,47:555-575.
    [17]Runt JP, Fitzgerald JJ. Dielectric spectroscopy of polymeric materials: fundamentals and applications[M]. Washington:DC:American Chemical Society,1997.
    [18]Cerveny S, Alegria A, Colmenero J. Universal features of water dynamics in solutions of hydrophilic polymers, biopolymers, and small glass-forming materials[J]. Physical Review E,2008,77:031803.
    [19]Fragiadakis D, Gamache R, Bogoslovov RB, Roland CM. Segmental dynamics of polyurea:Effect of stoichiometry[J]. Polymer,2010,51:178-184.
    [20]Pandis C, Logakis E, Kyritsis A et al. Glass transition and polymer dynamics in silver/poly (methyl methacrylate) nanocomposites[J]. European Polymer Journal, 2011,47:1514-1525.
    [21]Kalini A, Gatos KG, Karahaliou PK, Georga SN, Krontiras CA, Psarras GC. Probing the dielectric response of polyurethane/alumina nanocomposites[J]. Journal of Polymer Science Part B:Polymer Physics,2010,48:2346-2354.
    [22]Psarras GC, Gatos KG, Karger-Kocsis J. Dielectric properties of layered silicate-reinforced natural and polyurethane rubber nanocomposites[J]. Journal of Applied Polymer Science,2007,106:1405-1411.
    [23]Van Beek L. Dielectric behaviour of heterogeneous systems[J]. Progress in dielectrics,1967,7:69-114.
    [24]Hedvig P. Dielectric spectroscopy of polymers[M]. Hilger Bristol,1977.
    [25]Bohning M, Goering H, Fritz A et al. Dielectric study of molecular mobility in poly(propylene-graft-maleic anhydride)/clay nanocomposites[J].Macromolecules, 2005,38:2764-2774.