热电厂能量利用与节能技术改造研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以节能减排理念为指导,对青岛市某热电厂热电联产系统生产过程中的能量分级利用状况进行全面分析,科学评定系统能量损失分布,为实施系统节能改造提供依据。通过能量利用分析得出,该热电厂在供暖季节的全厂总热效率较高,平均在74%以上,而在非供暖季节,全厂总热效率急剧下降,最低时只有42.1%。
     本文主要运用热力学第一定律和第二定律,根据热电厂记录的运行数据,定量计算全年每个月份的各项主要热经济评价指标和热电厂主要用能部位的能量损失,获得能量损失的关键部位是冷源损失。其中,7月份冷源损失占总的能量的百分数为58.1%,12月份冷源损失占总的能量的百分数为23.8%。针对热电厂夏季凝汽器真空降低,导致发电量减少的问题,完成热电厂冷端系统内凝汽器和冷却塔技术改造方案的理论研究与节能经济性论证。凝汽器内换热铜管改为不锈钢多向扰流强化换热管,增强了换热管的换热效果和抗腐蚀能力。冷却塔内采用PVC "S"波点滴薄膜式填料装置,增加了淋水面积,增强了冷却塔的冷却效果。
     基于热电厂原来的热电联产系统,设计了采用溴化锂吸收式制冷机组的热电冷联产系统方案。夏季利用热电厂供热机组的抽(排)汽为热源,制取7℃左右的冷媒水集中制冷,增加了夏季热负荷和热化发电量,提高了热电厂夏季的热经济性,同时又节省了空调用电,降低电网负荷的峰谷差,提高电网经济性。夏季若实施热电冷三联产,系统总热效率将达到79.6%,较原来7月份热电联产系统的总热效率提高36.5%,系统的-次能节约率为45.8%。
Based on the guidance of energy conservation and environmental protection ideas, a comprehensive analysis of energy cascade utilization is made. The analysis is about the combined heat and power (CHP) system in the production process of a thermal power plant in Qingdao City. The energy loss distribution of the CHP system is scientifically evaluated, which provides the basis for the energy saving and reformation of the system. Through the analysis of energy utilization, a conclusion is drawed that the total thermal efficiency of the whole thermal power plant is relatively high in the heating season, averagely more than 74%; however, not in the heating season, the total thermal efficiency of the whole plant declined sharply, with only 42.1% at the minimum.
     According to the operation data recorded of the thermal power plant, the first and second laws of thermodynamics are used to quantitatively calculate the major thermal and economic indexs of the twelve months. The energy loss quantity of the main energy using site in the thermal power plant is also calculated. On the basis of these, the key energy loss site is found, which is in the cold-end. The cold-end energy loss is 58.1% of the total energy in July, and that is 23.8% of the total energy in December. In the condenser, stainless steel heat-transfer enhancement tubes with multidirectional turbulent flow takes the place of brass tubes, enhancing the heat transfer effectiveness and corrosion resistance. In the cooling tower, PVC "S" wave ripple splash packings are used, which increase splashing water area and enhance the cooling effect of cooling tower.
     In summer, the generated power reduces at a result of lower condenser vacuum. In order to solve the problem, an improving technical program about the condenser and cooling tower in the cold end is proposed. The program's argumentation on energy saving and economic efficiency is studied. Based on the original cogeneration system, a combined cooling, heating and power (CCHP) system with the lithium bromide absorption chiller is designed. In summer, the CCHP system uses the extracting and exhausting steam of heating unit as heat source to make about 7℃coolant water in concentrated cooling district. This increases heat load and the power generation capacity in summer, also improves the thermal economy. At the same time, the air-conditioning electric power consumption is saved and the difference between peak and valley power load is reduced. Grid economy is improved meanwhile. If the CCHP system is applied in summer, the total thermal efficiency of the system will reaches 79.6%, which is increased by 36.5% in comparison of the CHP system in July. The primary energy saving rate reaches 45.8%.
引文
1.李崇祥.节能原理与技术[M].西安:西安交通大学出版社,2004.3.
    2.李荫堂.环境保护与节能[M].西安:西安交通大学出版社,2000.
    3.王汝武.电厂节能减排技术[M].北京:化学工业出版社,2008.3.
    4. Blakely PR, Harward P. Energy efficiency analysis of a food processing plant. Mechanical Engineering Report PME 94/08, School of Engineering, The University of Auckland. New Zealand.1994:2-20.
    5. Fawkes SD, Jacques JK, Linnell C, Watkins AA. Practical modeling of micro combined heat and power applications for local authority district heating schemes. Int. J. Energy Res.1998, 12:611-629.
    6. Ong'iro A, Isemt Ugural V, Al Tweed AM, Lajeunesse G. Thermodynamic simulation and evaluation of a steam CHP plant using ASPEN Plus. Applied Thermal Engineering.1996, 16(13):263-271.
    7. Baughn JM, Kerwin RA. A Comparison of the predicted and measured thermodynamic performance of a gas turbine cogeneration system. Trans. ASME, J. Engng Gas Turbine Power.1987,109:32-37.
    8. Witzani M, Pechtl P. Modeling of cogeneration power plants on time dependent power demands of the consumer. In Proceedings of the 1995 ASME Cogen Turbo Power Conference, Vienna, Austria.1995,8:23-25(American Society of Mechanical Engineers, New York).
    9. O'Brien JM, Bansal PK. Modeling of cogeneration systems Part 2:development of a quasi-static cogeneration model (steam turbine cogeneration analysis). Proceedings of the Institution of Mechanical Engineers(Part A).2000,214:125-143.
    10. O'Brien JM, Bansal PK. Modeling of cogeneration systems Part 3:application of steam turbine cogeneration analysis to Auckland Hospital cogeneration utility system. Proceedings of the Institution of Mechanical Engineers(Part A).2000,214:227-241.
    11. Puttgen HB, MacGregor PR. Optimum scheduling procedure for cogeneration small power producing facilities. IEEE Transactions on Power Systems.1989,4(3):957-964.
    12.康艳兵,张建国,张扬.我国热电联产集中供热的发展现状,问题与建议[J].中国能源,2008,30(10):8-11.
    13.王振铭.我国热电联产的新发展[J].电力技术经济,2007,19(2):47-48.
    14.杨玉军.我国热电联产的发展趋势[J].中国能源,2004,26(10):31-33.
    15.孔祥强.基于燃气内燃机和吸附制冷机的微型冷热电联供系统研究[D].上海:上海交通大学,2005.
    16.谭中翔.热电联产对电厂经济效益的影响[J].中国电力,2000,(2):18-20.
    17.黄振光.热电联产四大社会效益的述评[J].广东电力,2001,(10):29-31.
    18.钟史明,刘龙海.大中型热电联产机组与背压机组匹配抽凝机组选型方案的建议[J].热电技术,2008,(3):7-11.
    19.葛莉瑶.热电联产系统性能评价及案例分析[D].北京:华北电力大学,2005.
    20.忻祎.燃气—蒸汽联合循环电厂热电联产的优化配置[D].上海:上海交通大学,2007.
    21.丁立新.电厂锅炉原理[M].北京:中国电力出版社,2008.
    22.朱铠强,芮新红.循环流化床锅炉设备及系统[M].北京:中国电力出版社,2004.
    23.卢啸风.大型循环流化床锅炉设备与运行[M].北京:中国电力出版社,2006.
    24. J. Seeber, G. Scheffknecht. Utilization of High Sulphur Coals in CFB. Proceedings of 16th International Conference on Fluidized Bed Combustion,2001,5:13-16.
    25. J. R. Grace, A. A. Avidan, T. M. Knowlton. Circulating Fluidized Beds. Published by Blackie Academic & Professional, New York, USA.1997.
    26.沈维道,蒋智敏,童钧耕.工程热力学[M].北京:高等教育出版社,2001.
    27.郑体宽.热力发电厂[M].北京:中国电力出版社,2000.
    28.顾昌.热电联产的热经济性分析[J].中国能源,1994,(3):31-34.
    29. V. Havelsky. Energetic efficiency of generation systems for cobined heat,cold and power production. International Journal of Refrigeration,1999, (22):479-485.
    30.吕沥锋,王培红,金旭英.供热机组热化发电率算法研究[J].汽轮机技术,2002,44(4):210-212.
    31.顾燕萍,王培红,吴占松.热化发电率与热电联产节煤量的关系[J].2008,37(9):5-8.
    32.金宏亮,郭恩霞.负荷率与热电厂的经济效益[J].能源研究与利用,1997,(5):8-12.
    33.王东,杨冬梅,李颜颐.小型热电联产系统的热效率分析[J].节能,2008,(1):41-44.
    34.奚士光,吴味隆,蒋君衍.锅炉及锅炉房设备[M].北京:中国建筑工业出版社,1995.
    35.洪向道.中小型热电联产工程设计手册[M].北京:中国电力出版社,2006.
    36.贺平,孙刚.供热工程[M].北京:中国建筑工业出版社,2006.
    37.秦曾煌.电工学[M].北京:高等教育出版社,1999.
    38.马芳礼.电厂热力系统节能分析原理[M].北京:水利电力出版社,1992.
    39.钟史明,等.热电联产的节能分析[J].区域供热,2004,(5):2-6.
    40.李心刚,谢东梅,陈军等.热电厂给水及供热系统的节能[J].华北电力大学学报(自然科学版),2007,34(2):104-106.
    41.靳智平,王毅林.电厂汽轮机原理及系统[M].北京:中国电力出版社,2006.
    42.沈士一,庄贺庆,康松等.汽轮机原理[M].北京:中国电力出版社,1992.6.
    43.齐复东,贾树本.电站凝汽设备和冷却系统[M].北京:水利电力出版社,1990.
    44.付文锋.大型火电机组冷端优化研究[D].北京:华北电力大学,2007.
    45.温媚.电厂汽轮机冷端系统及冷却塔热力性能研究[D].北京:北京交通大学,2009.6.
    46. Miodrag Stojakovic, Novica Vasiljevic, Steam Power Plant Efficiency Enhancement by Means of "Cold-End" Optimization During Exploitation. Proceedings of the American Power Conference,1995,57(2):560-565.
    47. Robert Burger. Cooling Towers, the Overlooked Energy Conservation Machine. Proceedings of the American Power Conferences,1994,56(2):1085-1092.
    48.李保亮.火电机组冷端系统运行经济性分析及性能优化[D].北京:华北电力大学,2006.
    49.杨世铭,陶文铨.传热学[M].北京:高等教育出版社,1998.
    50.潘继红,田茂诚.管壳式换热器的分析与计算[M].科学出版社,1996.
    51.赵振国.冷却塔[M].北京:中国水利水电出版社,2001.
    52.徐跃芹,屠珊.火电厂自然通风冷却塔性能研究[J].汽轮机技术,2005,10(5):357-359.
    53. Jamee-Ur-Rehman Khan, Bilal Ahmed Qureshi, Syed M. Zubair. A comprehensive design and performance evaluation study of counter flow wet cooling tower. International Journal of Refrigeration,2004,27(8):914-923.
    54. M. S. Soylemez. On the optimum performance of forced draft counter flow cooling tower. Energy Conversion and Management,2004,45:2335-2341.
    55.张洪伟.分布式能源冷热电联产系统的热经济性研究[D].武汉:华中科技大学,2005.
    56.秦鹏,林中达,等.热电冷联产系统节能性分析[J].暖通空调,2004,34(8):108-112.
    57.丰防震.分布式冷热电联产系统应用于建筑节能的技术经济分析[J].能源工程,2006,(6):69-72.
    58.孔祥强,李瑛,王如竹,等.基于吸附制冷的微型冷热电联供系统实验研究[J].工程热物理学报,2006,27(1):5-8.
    59.张晓晖,陈效孺.溴化锂吸收式制冷机在热电联产机组应用的节能分析[J].热力发电,2006,35(1):1-6.
    60.朱成章.从热电联产走向冷热电联产[J].国际电力,2000,(2):10-16.
    61.严俊杰,黄锦涛,何茂刚.冷热电联产技术[M].北京:化学工业出版社,2006.1.
    62.张清滨摘译.欧洲第一套冷热电三联产机组简介[J].工程设计CAD与智能建筑,2001,11:77.
    63. D.W. Wu, R.Z. Wang. Combined cooling, heating and power:A review. Progress in Energy and Combustion Science,2006,32(5):459-495.
    64. Maidment G G, Tozer R M. Combined cooling heat and power in supermarkets. Applied Thermal Engineering,2002,22(6):653-665.
    65. Wang RZ. Performance improvement of absorption cooling by heat and mass recovery operation. International journal of refrigeration,2001,24(7):602-611.
    66.朱宏清,张长江.热电冷联供系统设计探讨[J].制冷与空调,2007,7(1):100-104.
    67.江丽霞,金红光,蔡睿贤.冷热电三联供系统特性分析与设计优化研究[J].工程热物理学报,2002,6(23):21-24.
    68.孔祥强,王如竹,李瑛等.微型冷热电联供系统的优化运行[J].上海交通大学学报,2008,42(3):365-369.
    69.陆耀庆.实用供热空调设计手册[M].北京:中国建筑工业出版社,2005,8.