二茂铁和铁铁类水滑石催化的非均相Fenton反应机理及其降解亚甲基蓝基础研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纺织印染废水是处理难度最大的工业废水之一。用于纺织工业的助剂超过2000种,其中超过20%的纺织废水被直接排放到水体中。水体中含有大量的无机盐(例如硫酸铜)和表面活性剂,这些印染助剂来源于印染过程中的晕染和固色阶段。纺织废水因其对人体和生物具有毒害作用被视为水污染的重要来源,其特点是透光度低、毒性大、COD含量高,严重阻碍了水生生物的光合作用。
     高级氧化技术(Advanced oxidation processes,AOPs)是一类可高效处理有机废水的绿色方法。Fenton技术是高级氧化技术的一种,传统的Fenton体系由Fe2+和过氧化氢组成。在酸性条件下,Fe2+可催化过氧化氢分解产生羟基自由基。羟基自由基有很高的氧化性,仅次于氟原子,可以无选择的氧化水体中的有机物。pH为0时,其氧化电位为2.78V,pH为14时,其氧化电位为1.9V。羟基自由基还可使键能低于H-O(109kCal/mol)的化学键断裂,夺取C原子或其他原子上连接的氢原子使有机物分解,是一种强氧化性的自由基。Fenton具有反应速度快,设备简单,所使用的过渡金属催化剂环境友好等特点,但其弊端是铁盐消耗量大,反应后产生大量的污泥,造成二次污染,反应过程中所使用的催化剂难于回收重复利用。为解决传统Fenton的上述弊端,非均相Fenton体系应运而生。
     非均相Fenton技术是水处理领域研究的热点问题之一。它为解决传统Fenton技术中存在的催化剂不易回收、反应后产生铁泥造成二次污染以及pH适用范围小等工程应用核心问题提供了有效的途径。已有广泛研究聚焦在使用负载型催化剂催化的非均相Fenton体系上,但通常反应速率较慢,需要引入超声、紫外光等外部能量的辅助。为解决负载型催化剂活性组分负载量低、及活性组分溶出的问题,本研究提出以二茂铁和铁铁水滑石为催化剂的非均相Fenton体系。二茂铁具有良好的氧化还原可逆特性、催化特性和稳定性,且具有电子给受体结构和刚性骨架;铁铁水滑石具有较大的比表面积、稳定的层状结构,且制造简单,成本低廉,其骨架结构中的二价铁和三价铁在Fenton体系中均有较好的催化能力,二者均可作为非均相Fenton体系的优良催化剂。研究取得的创新性成果和结论如下:
     (1)证明了二茂铁具有氧化还原可逆性,可高效催化过氧化氢分解产生羟基自由基,进而构建了新型Fc/Fenton反应体系。最佳工艺条件是pH=3,二茂铁浓度为0.372g/L,30。C,[H202]/[MB]=3.16.反应120min后,染料可完全脱色,此时,其矿化率为63.75%。
     (2)提出并证实了Fc/Fenton反应降解MB的机理及途径。Fc/Fenton反应降解MB的反应活化能为82.708kJ/mol。随着亚甲基蓝的降解,溶液的pH降低,并测得了苯并噻唑。亚甲基蓝在Fc/Fenton体系中沿三条途径同时降解:亚甲基蓝脱氯后,沿两条途径降解:一是剩余结构发生去甲基化反应,而后C-N和S-C键断裂,并脱氨基,经过草酸和苯并噻唑后彻底降解;二是剩余结构中C-N键断裂,S发生氧化,然后脱除甲基和氨基,生成苯磺酸和苯酚后彻底降解;三是部分羟基和磺酸基连接到亚甲基蓝上生成大分子化合物。最终,这些中间产物完全降解为CO2和H2O。
     (3)明确了常见无机盐类及表面活性剂类印染助剂对Fc/Fenton降解MB的影响规律。低浓度CuSO4和PVA的加入对亚甲基蓝的降解有促进作用,反之,NaCl、Na2S、Na2SO4、Na2CO3、SDBS和Tween-80的加入对亚甲基蓝的降解有抑制作用。
     (4)探索出了强化Fc/Fenton降解MB效率的两条途径:加入低浓度草酸和分批投加H2O2对亚甲基蓝的降解均有促进作用。
     (5)载二茂铁树脂对水中亚甲基蓝及共存亚甲基蓝和铜离子的吸附作用机理及规律。二茂铁的负载极大的提高了亚甲基蓝在树脂上的饱和吸附量,将应用的pH范围拓宽到了2-12。二茂铁改性树脂能有效地同时吸附去除水体中的亚甲基蓝和铜离子,且该吸附过程为物理吸附。反应的最佳条件时pH=4-5。
     (6)研制出了可高效催化分解过氧化氢产生羟基自由基的铁铁类水滑石型非均相催化剂,构建了新型非均相FeFe-LDH/Fenton体系。亚甲基蓝在该体系中的降解效果表明:铁铁水滑石具有高效性和稳定性,其催化活性随制备过程中的[Fg2+]/[Fe3+]增加而增强。反应的最佳pH为3,且增加铁铁水滑石的用量对体系中亚甲基蓝的降解有促进作用。
     (7)推导出了FeFe-LDH/Fenton降解机理。随着亚甲基蓝的降解,溶液的pH呈下降趋势,并发现了亚甲基蓝降解的新产物—苯并噻唑,DL-正亮氨酸和Pleiocarpamine。推导出了亚甲基蓝沿着三条途径同时降解:亚甲基蓝首先脱去氯原子和甲基,然后剩余结构中的不同位置的C-N和S-C发生断裂,一是产生苯酚和DL-正亮氨酸;二是生成草酸和苯并噻唑;三是DL-正亮氨酸脱氨基后的产物与苯并噻唑在甲醛的作用下生成Pleiocarpamine。
Textile and dyeing wastewaters are important sources of the refractory organic wastewaters. More than2000chemicals (dyes and agents) are used in textile industry, and20%of these are discharged in textile industrial effluents without pretreatment. Large amounts of inorganic salts (such as copper sulfate) and surfactants exist simultaneous with dyes in water, which come from the processes of the solidation of color and uniform the blooming. Textile effulents with low penetrations, high toxicity. and high COD has been focused on, not only for toxic to human beings but also for the resistant of photosynthesis.
     Advanced oxidation processes (AOPs) have been considered a green efficient method, coping with organics in wastewater. Fenton is a kind of AOPs, consisting of Fe2+species and hydrogen peroxide. Under acidic conditions, H2O2can be catalyzed decompose, generating hydroxyl radicals(-OH), which is the most oxidizing chemical species except fluorine atoms. Hydroxyl radical is such a powerful species for the non-selectively in water to oxidize organics, and the oxidation potential has been estimated as2.78and1.90V at pH0and14. respectively. Hydroxyl radicals can also abstract one hydrogen atom from hydrocarbons and other organic substrates, under the condition that the hydrogen bond to be broken has bond energy lower than109kcal/mol. which is the energy of the H-O bond energy.-OH is considered a general oxidant which is able to attack any kind of organics. Fenton is considered a benignity process, with a minimum dosage of reagents used and all transition metals used in Fenton process were environmental friendly, but with drawbacks of the comsumption of a large amount of Fe salts, iron sludge generated after the reaction as a kind of second pollution. Also, catalyst used in Fenton is hard to be recovered and reused, leading to a waste of reagents. Heterogeneous Fenton established using solid catalyst is a promising alternative to solve or minimize these problems in traditional Fenton system.
     Heterogeneous Fenton has been focused on for waterwater treatment. It is effect in dissolving the disadvantages of traditional Fenton, such as the impossible of the recycling of catalysts, generation of iron sludge, and small pH window. Heterogeneous Fenton catalyzed by metal loaded catalysts has already been focused on, but with drawbacks of slow reaction rate and the introduction of extra energies, such as sonic, ultraviolet. In this study, Ferrocene(Fc) and FeFe-LDH were occupied as catalyst to establish new heterogeneous Fenton systems. Fc which possesses electron donor-acceptor conjugated structure is of good oxidation redox character, catalytic activity and stability. FeFe-LDH with layered structure is of large surface area, and it can be easily prepared. The ferrous and ferric ion in FeFe-LDHs is of good catalytic activity. Thus, both Fc and FeFe-LDH can be used as catalyst to establish heterogeneous Fenton processes. The main research contents and conclusions are listed as follows:
     (1) Fc was verified to be of good reversible redox characteristic, and H2O2can be catalyzed to decompose, forming hydroxyl radicals(-OH), effectively. Based on the characters of Fc mentioned above, Fc was occupied to establish the new heterogeneous Fenton-Fc/Fenton. The optimal condition was determined to be pH3,0.372g/L Fc,23.58mmol/L H2O2at30℃。100%discoloration was reached at120min, with63.75%COD removed.
     (2) Mechanism of Fc/Fenton reaction and the degradation pathways of Methylene Blue was proposed, and the reaction active energy was determined to be82.708kJ/mol. pH decreased as MB degraded and Benzothiazole was detected. MB degraded in three pathways simultaneously:Cl was first removed from MB, and the the residual structure decomposed in two ways:oxalic acid and benzothiazole generated after the removal of methyl and the broken of C-N and S-C Benzenesulfonic acid and phenol generated after the broken of C-N in residual structure, the oxidation of S and the removal of methyl and amino; macromolecular compounds generated as the connection of-OH and-SO3to the residual structure. Finally, all the intermediates were oxidized to CO2and H2O.
     (3) The effects of inorganics including NaCl, Na2S, Na2SO4, Na2CO3, CUSO4and surfactants including PVA, SDBS and Tween-80on the efficiency of Fc/Fenton was investigated. The results indicated that the degradation of MB in Fc/Fenton was accelerated with the addition of low concentrations of CUSO4and PVA, but resisted with the addition of NaCl, Na2S. Na2SO4, Na2CO3, SDBS and Tween-80.
     (4) Two methods were proposed in order to enhance the efficiency of Fc/Fenton. The results indicated that the degradation of MB can be accelerated with the presence of low concentraitons of Oxalic acid or adding H2O2in multi-steps.
     (5) The mechanisms of the adsorptive removal of MB and the simultaneous adsorptive removal of MB and Cu2+on to ferrocene mofied cation exchange resin(FMCER) were proposed. The adsorption capacity of MB was improved a lot and the pH window for the adsorption of MB onto resin was expanded from2-4to2-12. MB and Cu2+in water can be removed effectively using FMCER. The adsorption of MB and Cu2+on FMCER were physicosorptive, and4-5is optimum.
     (6) FeFe-LDH, which can catalyzed the decompositon of H2O2to from·OH was synthesized, was used as catalyst to establish a new kind of heterogeneous Fenton. The degradation of MB in FeFe-LDH/Fenton indicated that FeFe-LDH is of good stability and high efficiency. The catalysis activatity was improved as the [Fe2+]/[Fe3+] increased in preparation. The optimal condition was pH3, and the degradation of MB can be accelerated by increasing the dosage of FeFe-LDH.
     (7) Mechanism of the degradation of MB in FeFe-LDH/Fenton process was proposed. pH of solution decreased as MB degraded, and Pleiocarpamine. DL-Norleucine and Benzothiazole that have rarely been detected previously were observed. MB decomposed through three pathways simultaneously. Cl and methyl were first removed from MB, and then C-N and S-C in the residual structure broken: phenol and DL-Norleucine generated; oxalic acid and benzothiazole generated; DL-Norleucine reacted with benzothiazole after-NH3been removed, to from pleiocarpamine.
引文
[1]刘维城.我国城市水污染控制技术经济政策[J].给水排水,1999,25(10):1-4.
    [2]Fu B, Zhuang X, Jiang G, etal. Environmental problems and challenges in china[J]. Environmental Science & Technology,2007,41(22):597-7602.
    [3]Dong Y, Liu Y, Chen J. Will urban expansion lead to an increase in future water pollution loads?-a preliminary investigation of the Haihe river basin in northeastern China[J]. Environmental Science and Pollution Research, 2014,DOI:10.1007/s11356-014-2620-6.
    [4]中华人民共和国环境保护部科技标准司.环境保护技术发展报告(2008版).北京:中国环境科学出版社,2009年第一版.
    [5]Schwarzenbach R P, Escher B I, Fenner K, et al. The Challenge of Micropollutants in Aquatic Systems[J]. Science,2006,313(25):1072-1077.
    [6]代广辉,刘舰.赵笑时.化工企业水资源紧缺原因及对策[J].科技信息2010(18):326-327.
    [7]张志鹏,方卫.试论环境保护对经济发展的促进作用[J].生产力研究2013(8):24-26.
    [8]Fisher-Vanden K, Olmstead S. Moving pollution trading from Air to water: Potential, problems, and prognosis[J]. The journal of Economic Perspectives, 2013.27(1):147-171.
    [9]于艳,宗小华.浅谈我国水资源管理中存在的问题及对策[J].科技与企业,2013(9):148-148.
    [10]Liu J, Diamond J. China's environment in a globalizing word[J]. Nature,2005, 435(30):1179-1186.
    [11]田利明.入世后我国染料工业的发展概况[J].印染,2004,30(10):43-47.
    [12]毛燕芳.印染废水处理概况与研究进展[J],上海水务,2012.28(4):31-34.
    [13]Tunay O, Kabdasli I, Eremektar G, et al. Color removal from texitile Waste water[J]. Water Science and Technology.1996,34(11):9-16.
    [14]胡卫强.印染废水治理的现状及未来[J].农业与技术,2012,32(5):183-184.
    [15]曲晶心,陈均志.空气吹脱法脱除废水中二甲胺的影响因素研究[J].水处理技术,2009(12):88-90.
    [16]Lee J W, Choia S P, Thiruvenkatacharib R, et al. Submerged microfiltration membrane coupled with alum coagulation/powdered activated carbon adsorption for complete decolorization of reactive dyes[J]. Water Research,2006,40(3): 435-444.
    [17]Barredo S, Alcaina M, Iborra M. Study of the UF process as pretreatment of NF membrances for textile wastewater reuse[J]. Desalination,2006,200:745-747.
    [18]张自杰.排水工程[M].北京:中国建筑工业出版社,2000年.
    [19]孙建兵,李雪莲,倪吾钟.炭化污泥吸附染料的性能及其在处理印染废水中的应用[J].环境工程学报,2011,5(6):1278-1282.
    [20]范明霞,皮科武,龙毅,袁颂东.吸附法处理焦化废水的研究进展[J].环境科学与技术,2009,32(4):102-106.
    [21]曾君丽,邵友元,易筱筠.含铬电镀废水的处理技术及其发展趋势[J].东莞理工学院学报,2011,18(5)89-93.
    [22]孟范平,易怀昌.各种吸附材料在印染废水处理中的应用[J].材料导报,2009,23(7):69-73.
    [23]Emad N, Stephen J, Gavin M. Adsorption of basic dyes from aqueous solution onto activated carbons[J]. Chemical Engineering Journal,2008,135:174-184.
    [24]Baskaralingam P, Pulikesi M, Elango D, et al. Adsorption for acid dye onto organobentonite[J]. Journal of Hazardous Materials,2006,128(2-3):138-144.
    [25]王湖坤,任静.吸附-氧化联合法处理印染废水的研究[J].印染助剂,2008,25(2):28-30.
    [26]王代芝.絮凝沉降/粉煤灰吸附法处理印染废水[J].印染助剂2009,26(4):32-34.
    [27]陈孟林,宿程远,王全喜,等.吸附-催化氧化再生法处理印染废水的试验研究[J].工业水处理,2010,30(9):46-49.
    [28]芦春梅,李增文,姜桂兰.活性秸秆碳素吸附-化学氧化法在印染废水处理中的应用研究[J].工业水处理,2005,25(5):56-58.
    [29]Mahmoodi N, Arami M. Decolorization and aromatic ring degradation kinetics of Direct Red 80 by UV oxidation in the presence of hydrogen peroxide utilizing TiO2 as a photocatalyst[J]. Chemical Engineering Journal,2005,11(12):191-196.
    [30]Goloba V, Vinderb A. Simonic M. Efficiency of the coagulation/flocculation method for the treatment of dye bath effluents[J]. Dyes and Pigments, 2005,67:93-97.
    [31]Wang X, Gu X, Lin D, et al. Treatment of acid rose dye containing wastewater by ozonizing biological aerated filter[J]. Dyes and Pigments.2007,74(3):736-740
    [32]李雅婕,王平.生物技术在印染废水处理工艺中的应用[J].工业水处理,2006,26(5):14-17.
    [33]Shannon M A, Bohn P W, Elimelech M. et al. Science and technology for water purification in the coming decades[J]. Nature,2008,452(20):301-310.
    [34]曹国名,盛梅.刘勇弟.高级氧化-生化组合工艺处理难降解有机废水研究进展[J].化工环保,2010.30(1):1-7.
    [35]Stefan M I, Hoy A R, Bolton J R. Kinetics and mechanism of the degradation and mineralization of acetone in dilute aqueous solution sensitized by the UV photolysis of hydrogen peroxide[J]. Environmental Science & Technology Letters,1996,30(7):2382-2390.
    [36]Buxton G V, Greenstock C L. Helman W P, et al. Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (HO·/O-) in aqueous solution[J]. Journal of Physical and Chemical Reference Data.1988,17:513-886.
    [37]Acero J L, Benitez F J. Real F J, et al. Degradation of phydroxyphenylacetic acid by photo assisted Fenton reaction[J]. Water Science and Technology,2001,44(5): 31-38.
    [38]Ince N H, Tezcanli G. Treatability of textile dye-bath effluents by advanced oxidation:preparation for reuse[J]. Water Science and Technology,1999,40(1): 183-190.
    [39]Feng J Y, Hu X J, Yue P L. Effect of initial solution pH on the degradation of Orange II using clay-based Fe nanocomposites as heterogeneous photo-Fenton catalyst[J]. Water Research.2006,40:641-646.
    [40]Glaze W H, Kang J W. The chemistry of water treatment processes involving ozone, hudrogen peroxide and ultraviolet radiation[J]. Ozone-Science & Engine-ering,1987,9(4):335-352.
    [41]Stefan H B, Esther O, Sabine G, et al. New evidence against hydroxyl radiacals as reactive intermediates in the thermal and photochemical enhanced Fenton reactions[J]. The Journal of Physical Chemistry A.1998,102(28):5542-5550.
    [42]Wu Z C, Zhou M H, Wang D H. Synergetic effects of anodic-cathodic electro-catalysis for phenol degradation in the presence of iron(Ⅱ)[J]. Chemosphere, 2002,48(10):1089-1096.
    [43]Fockedey E, Lierde A V. Coupling of anodic and cathodic reactions for phenol electro-oxidation using three-dimensional electrodes[J]. Water Research,2002, 36(16):4169-4175.
    [44]Vilhunen S, Sillanpaa M. Recent developments in photochemical and chemical AOPs in water treatment:a mini-review[J]. Reviews in Environmental Science and Bio/Technology,2010,9(4):323-330.
    [45]Pignatello J J, Oliveros E, Mackayc A. Advanced oxidation processes for organic contaminant destruction based on the fenton reaction and related chemistry[J]. Critical Reviews in Environmental Science and Technology,2006,36(1):1-84.
    [46]Moraes J E F, Quina F H, Nascimento C C A O, et al. Treatment of Saline Wastewater Contaminated with Hydrocarbons by the Photo-Fenton Process[J]. Environmental Science & Technology.2004.38(4):1183-1187.
    [47]张德莉,黄应平,罗光福,等Fenton及photo-Fenton反应研究进展[J].环境化学,2006,25(2):121-127.
    [48]Sellia E. Synergistic effects of sonolysis combined with photocatalysis in the degradation of an azo dye[J]. Physical Chemistry Chemical Physics,2002.4: 6123-6128.
    [49]Fenton H J. Oxidation of tartaric acid in the presence of iron[J]. Journal of the Chemical Society, Transactions,1894,65:899-910.
    [50]Sehura Y, Martinez F, Melero J A. Effective pharmaceutical wastewater degradation by Fenton oxidation with zero-valent iron[J]. Applied Catalysis B: Environmental,2013,136-137:64-69.
    [51]Walling C. Fenton's reagent revised[J]. Accounts of Chemical Research,1975.8: 125-131
    [52]Zazo J A, Casas J A, Mohedano A F, et al. Chemical pathway and kinetics of phenol oxidation by Fenton's reagent[J]. Environmental Science & Technology. 2005,39(23):9295-9302.
    [53]Tsai T T, Kao C M. Treatment of petroleum-hydrocarbon contaminated soils using hydrogen peroxide oxidation catalyzed by waste basic oxygen furnace slag[J]. Journal of Hazardous Materials,2009,170(1):466-472.
    [54]Utset B, Garcia J, Casado J, et al. Repalcement of H2O2 by O2 in Fenton and photo-Fenton reactions[J]. Chempsphere,2000,41 (8):1187-1192.
    [55]Rodriguez M L, Timokhin V 1, Contreras S, et al. Rate equation for the degradation of nitrobenzene by'Fenton-like'reagent[J]. Advances in Environm-ental Research,2003,7(2):583-595.
    [56]Lu M C, Chen J N, Chang C P. Oxidation of dichlorvos with hydrogen peroxide using ferrous ions as catalyst[J]. Journal of Hazardous Materials,1999,65(3): 277-288.
    [57]Ma J H. Song W J, Chen C C, et al. Fenton degradation of organic compounds promoted by dyes under visible irradiation[J]. Environmental Science & Technology,2005,39(15):5810-5815.
    [58]Fan X Q. Hao H Y, Shen X X, et al. Removal and degradation pathway study of sulfasalazine with Fenton-like reaction[J]. Journal of Hazardous Materials,2011, 190(1-3):493-500.
    [59]He Z Q, Gao C, Qian M Q, et al. Electro-Fenton Process Catalyzed by Fe3O4 Magnetic Nanoparticles for Degradation of C.I. Reactive Blue 19 in Aqueous Solution:Operating Conditions, Influence, and Mechanism[J]. Industrial Engine-ering & Chemistry Research. DOI:10.1021/ie403947b
    [60]Michael B F, Kara L. N. Inactivation of Escherichia coli by Polychromatic Simulated Sunlight:Evidence for and Implications of a Fenton Mechanism Involving Iron, Hydrogen Peroxide, and Superoxide[J]. Applied and Environm-ental Microbiology, DOI:10.1128/AEM.02419-13
    [61]Luo M, Lv L, Deng G, et al. The mechanism of bound redical formation and degradation pathway of Acid Orange Ⅱ in Fenton-like Co2+-HCO3- system[J]. Applied Catalysis A:General,2014.469:198-205.
    [62]Neyens E, Baeyens J. A review of classic Fenton's peroxidation as an advanced oxidation technique[J]. Journal of Hazardous Materials,2003,98(1-3):33-50.
    [63]Hsueh C L, Huang Y H, Wang C C. Photoassisted fenton degradation of nonbiodegradable azo-dye (Reactive Black 5) over a novel supported iron oxide catalyst at neutral pH. Journal of Molecular Catalysis A:Chemical,2006,245 (1-2):78-86.
    [64]Kang S F, Liao C H, Po S T. Decolorization of textile wastewater by photo-fenton oxidation technology[J]. Chemosphere,2000,41(8):1287-1294.
    [65]Fernandez J, Bandara J, Lopez A. Photoassisted Fenton Degradation of Nonbiodegradable azo dye (Orange Ⅱ) in Fe-Free solution mediate by cation transfer membranes[J]. Langmuir,1999,15(1):185-192.
    [66]Duesterberg C K, Mylon S E, Waite T D. pH effect on Iron-catalyzed oxidation using Fenton's reagent[J]. Environmental Science & Technology,2008,42(22): 8522-8527.
    [67]Sontakke S, Modak J, Madras G. Effect of inorganic ions, H2O2 and pH on the photocatalytic inactivation of Escherichia coli with silver impregnate combustion synthesized TiO2 catalyst[J]. Applied Catalysis B:Environmental, 2011,106(3-4):453-459.
    [68]Wang Q, Gao B Y, Wang Y. Effect of pH on Humic acid removal performance in Coagulation-Ultrafiltration process and the subsequent effects on Chlorine decay[J]. Separation and Purification Technology,2011,80(3):549-555.
    [69]Daud N K, Hameed B H. Acid Red 1 dye decolorization by heterogeneous Fenton-like reaction using Fe/kaolin catalyst[J]. Desalination,2011,269(1-3): 291-293.
    [70]Heckert E, Seal S, Self W. Fenton-like reaction catalyzed by the rare earth inner transition metal cerium[J]. Environmental Science & Technology,2008,42(13): 5014-5019.
    [71]Sugawara T, Kawashima N, Murakami T N. Kinetics study of Nafion degradation by Fenton reaction[J]. Journal of Power Sources.2011,196(5):2615-2620.
    [72]Nguyen T D, Phan N H, Do M H, et al. Magnetic Fe2MnO4(M:Fe, Mn) activated carbons:Fabrication, characterization and heterogeneous Fenton Oxidation of methyl orange[J]. Journal of Hazardous Materials,2011,185(2-3):653-661.
    [73]Chen J, Zhu Z. Catalytic degradation of orange Ⅱ by UV-Fenton with hydroxyl-Fe-pillared bentonite in water[J]. Chemosphere,2006,65(7): 1249-1255.
    [74]Feng J, Hu X, Yue P L. Discoloration and mineralization of orange Ⅱ by using a bentonite clay-based Fe nanocomposite film as a heterogeneous photo-Fenton catalyst[J]. Water Research,2005,39(1):89-96.
    [75]Wang Y, Zhao H, Li M, et al. Magnetic ordered mesoporous copper ferrite as a heterogeneous Fenton catalyst for the degradation of imidacloprid[J]. Applied Catalysis B:Environmental,2014,147:534-545.
    [76]郑展望,雷乐成,邵振华,等UV/Fenton反应体系Fe2+固定化技术及催化反应工艺研究[J].高校化学工程学报,2004,18(6):739-744.
    [77]Navalon S, Miguel M, Martin R, et al. Enhancement of the catalytic activity of supported gold nanoparticles for the Fenton reaction by light[J]. Journal of the American Chemical Society,2011,133(7):2218-2226.
    [78]Navalon S, Martin R, Alvaro M, et al. Gold on diamond nanoparticles as a highly efficient Fenton catalyst[J]. Angewandte Chemie International Edition,2010,49 (45):8403-8407.
    [79]Zhong Y, Liang X, He Z, et al. The constraints of transition substitutions (Ti, Cr, Mn, Co and Ni) in magnetite on its catalytic activity in heterogeneous Fenton and UV/Fenton reaction:From the perspective of hydroxyl radical generation[J]. Applied Catalysis B:Environmental,2014,150-151:612-618.
    [80]王红琴,刘勇健.非均相Fenton和非均相UV-Fenton体系中甲基橙降解动力学[J].环境工程学报.2012,6(10):3673-3678.
    [81]Soon A N, Hameed B H. Heterogeneous treatment of synthetic dyes in aqueous media using Fenton and photo-assisted Fenton process[J]. Desalination,2011, 269(1-3):1-16.
    [82]张亚平,韦朝海,吴超飞,等.光Fenton反应的Ce-Fe/Al2O3催化剂制备及性能表征[J].中国环境科学,2006,26(3):320-323.
    [83]杨春维,王栋,王坤,等.非均相Fenton反应催化剂的制备及其催化性能[J].化工环保,2011,31(6):557-560.
    [84]由波.非均相Fenton体系处理不同结构活性染料废水的研究[J].黑龙江科技信息,2011,(25)41-41.
    [85]尹玉玲,肖羽堂,朱莹佳.电Fenton法处理难降解废水的研究进展[J].水处理技术,2009,35(3):5-9.
    [86]张淑娟,陈啸剑,吴婉娥,王煊军.微波强化Fenton降解偏二甲肼废水[J].含能材料,2013,21(4):455-459.
    [87]李章良,黄建辉,郑盛春.超声-Fenton联用技术深度处理皮革综合废水生化出水[J].环境工程学报,2013,7(6):2038-2044.
    [88]杜瑛珣,杜瑛娜,傅翔,苏雅玲.光-Fenton-生物联用技术处理难降解废水研究进展[J].化工进展,2010,29(7)1:1343-1349.
    [89]赵超.异相photo-Fenton光催化降解有机污染物[D].华中师范大学,2007.
    [90]Stepnicka P. Ferrocenes:ligands, materials and biomolecule. The Atrium. Southern Gate, Chichester:John Wiley & Sons Ltd.,2008.
    [91]Fouda M F R, Abd-Elzaher M M, Abdelsamaia R A, et al. On the medicinal chemistry of ferrence[J]. Applied Organometallic Chemistry,2007,21(8):613-625.
    [92]Ba Herjee S M, Marzouk M I, Aazab M E, et al. The electrochemistry of some ferrocene derivatives:redox potential and substituent effects[J]. Applied oranometallic Chemistry,2003,17(5):291-297.
    [93]Colacot T J, Hosmane N S. Organometallic Sandwich Compounds in Homogeneous Catalysis:An Overview. Zeitschrift fur anorganische und allgemeine Chemie[J],2005,631(13-14):2659-2668.
    [94]Amer W A, Wang L, Amin A M, et al. Recent progress in the synthesis and applications of some Ferrocene derivatives and Ferrocene-based polymer. Journal of Inorganic and organometallic polymers and materials,2010,(20):605-615.
    [95]郁章玉,齐丽云,秦梅,等.甲苯-乙醇介质中二茂铁催化分解过氧化氢机理的探讨[J].应用化学,2004,21(1):41-43.
    [96]Pena L A. Seidl A J. Cohen L R. Hoggard P E. Ferrocene/ferrocenium ion as a catalyst for the photodecomposition of chloroform[J]. Transition Metal Chemistry,2009.34(2):135-141
    [97]Cunnane V J, Geblewicz G, Schiffrin D J. Electron and ion transfer potentials of ferrocene and derivatives at a liquid-liquid interface[J]. Electrochimica Acta. 2005,40(18):3005-3014.
    [98]刘媛.层状双金属氢氧化物的合成和应用[J].化工时刊,2005,19(12):59-62.
    [99]Navalon S, Alvaro M, Garcia H. Heterogeneous Fenton catalysts based on clays, silicas and zeolites[J]. Applied Catalysis B:Environmental.2010,99(1-2):1-26.
    [100]Li F, Duan X. Applications of Layered Double Hydroxides. Layered Double Hydroxides[J]. Structure and Bonding,2006,119:193-223.
    [101]Zhang J. Zhang F Z. Ren L L, et al. Synthesis of layered double hydroxide anionic clays intercalated by carboxylate anions[J]. Materials Chemistry and Physics,2004,85(1):207-214.
    [102]Ruby C, Usman M, Naille S, et al. Synthesis and transformation of iron-based layered double hydroxides[J]. Applied Clay Science,2010,48(1-2):195-202.
    [103]Drissi H, Refait P, GeninJ-MR. The oxidation of Fe(OH)2 in the presence of carbonate ions:Structure of carbonate green rust one[J]. Hyperfine Interactions, 1994,90(1):395-400.
    [104]Hansen H C B, Kragholm B O, Jan S. Evaluation of the free energy of formation of Fe(II)-Fe(Ⅲ) hydroxide-sulphate (green rust) and its reduction of nitrite[J]. Geochimica et Cosmochimica Acta,1994,58(12):2599-2608.
    [105]Hansen H C B, Bender K C. Reduction of nitrate to ammonium by sulphate green rust:activation energy and reaction mechanism[J]. Clay Minerals,1998,33 (1):87-101.
    [106]雷立旭,张卫锋,胡猛.层状复合金属氢氧化物:结构、性质及其应用[J].无机化学学报,2005,21(4):451-463.
    [107]Hoyo C D. Layered double hydroxides and human health:An overview[J]. Applied Clay Science,2007,36(1-3):103-121.
    [108]Radha A V, Kamath P V, Shivakumar C. Mechanism of the anion exchange reactions of the layered double hydroxides (LDHs) of Ca and Mg with A1[J]. Solid State Sciences,2005,7(10):1180-1187.
    [109]Prasanna S V. Kamath P V, Shivakumara C. Synthesis and characterization of layered double hydroxides (LDHs) with intercalated chromate ions[J]. Materials Research Bulletin,2007,42(6):1028-1039.
    [110]姜成春,庞素艳,马军,等.钛盐光度法测定Fenton氧化中的过氧化氧[J].中国给水排水,2006,22(4):88-91.
    [111]孙楚,李绍峰,Craig Williams,陶虎春.钛盐光度法测定O3/H2O2高级氧化系统中的过氧化氢[J].化学工程师,2011,(6):27-31.
    [112]杨春维,王栋,郭建博,郑攀锋.水中有机物高级氧化过程中的羟基自由基检测方法比较[J].环境污染治理技术与设备,2006,7(1):136-141.
    [113]董蓓,颜家保,庄容,何水Fenton试剂·OH生成率的影响因素研究[J].化学工程师,2009,(3):14-16.
    [114]GB11914-89化学需氧量的测定。
    [115]Su C C, Pukdec-Asa M, Ratanatamskul C, Lu M C. Effect of operating parameters on the decoloration and oxidation of textile wastewater by the fluidized-bed Fenton process[J]. Separation and Purification Technology, 2011,(83):100-105.
    [116]姜冉,狄晓威,贺忠翔.光度滴定法测定二茂铁[J].冶金分析2006,26(4):59-61.
    [117]夏立娅,吴广臣.分光光度法连续测定亚铁及总铁含量的研究[J].冶金分析,2004,24(1):327-329.
    [118]Kang Y W, Hwang K Y. Effects of reaction conditions on the oxidation efficiency in the Fenton process[J]. Water Research,2000,34(10):2786-2790.
    [119]Carra I, Casas-Lopez J L, Santos-Juanes L, et al. Iron dosage as a strategy to operate the photo-Fenton process at initial neutral pH[J]. Chemical Enginnering Journal,2013,224:67-74.
    [120]Li W, Zhao S, Qui B, et al. Fast catalytic degradation of organic dye with air and MoO3:Ce nanofibers under room condition[J]. Applied Catalysis B: Environmental,2009,92(3-4):333-340.
    [121]Gosser D K. Cyclic Voltammetry:Simulation and Analysis of Reaction Mechanisms. Wiley,1993.
    [122]邓南圣,吴峰.环境光化学[M].北京:化学工业出版社,2003.
    [123]孙德智,于秀娟,冯玉杰.环境工程中的高级氧化技术[M].北京:化学工业出版社,2002.
    [124]田森林,莫虹,蒋蕾,宁平Fenton实际液相氧化法品化含H2S气体[J].中国环境科学,2008,28(11):1052-1056.
    [125]Yeh C K J, Chen W S, Chen W Y. Production of hydroxyl redicals from the decomposition of hydrogen peroxide catalyzed by various iron oxides at pH7[J]. Practice Periodical of Hazardous, Toxic, and Radioactive Waste Management, 2004,8(3):161-165.
    [126]Yu R, Chen H, Cheng W, et al. Monitoring of ORP, pH and DO in heterogeneous Fenton oxidation using nZVI as a catalyst for the treatment of azo-dye textile wastewater[J]. Journal of Taiwan Institute of Chemical Engineering, http://dx.doi.org/10.1016/j.jtice.2013.09.006
    [127]Wang W, Ma N, Sun S, et al. Redox control of ferrocene-based complexes with systematically extended π-conjugated connectors:switchable and tailorable second order nonlinear optics[J].Physical Chemistry Chemical Physics, 2014,16,4900-4910.
    [128]Ai Z H, Xiao H Y, Mei T, et al. Electro-Fenton degradation of Rhodamine B based on a composite cathode of Cu2O nanocubes and carbon nanocubes[J]. The Journal of Physical Chemistry C,2008,112(31):11929-11935.
    [129]Luo M, Yuan S, Tong M, et al. An integrated catalyst of Pd supported on magneticFe3O4 nanoparticles:Simultaneous production of H2O2 and Fe2+ for efficient electro-Fenton degradation of organic contaminants[J]. Water Research, 2014,48:190-199.
    [130]Wang Q, Tian S, Cun J, Ning P. Degradation of methylene blue using a heterogeneous Fenton process catalyzed by ferrocene[J]. Desalination and Water Treatment,2013,51 (28-30):5821-5830.
    [131]Masomboon N, Ratanatamskul C, Lu M C. Chemical oxidation of 2,6-dimethylaniline in the Fenton process[J]. Environmental Science & Technology, 2009,43(22):8629-8634.
    [132]Kang S F, Liao C H, Hung H P. Peroxidation treatment of dye manufacturing wastewater in the presence of ultraviolet light and ferrous ions[J]. Journal of Hazardous Materials,1999,65(3):317-333.
    [133]Yu R F, Chen H W, Liu K Y, et al. Control of the Fenton process for textile wastewater treatment using artificial neural networks[J]. Journal of Chemical Technology and Biotechnology.2010.85(2):267-278.
    [134]Nie Y L. Hu C, Qu J H, et al. Efficient photodegradation of acid red B by immobilized ferrocene in the presence of UVA and HiO2[J]. Journal of Hazardous Materials,2008,154(1-3):146-152.
    [135]Ji F, Li C, Zhang J, Deng L. Efficient decoloration of dye pollutants with LiFe(Wo4)2 as a reuseable heterogeneous Fenton-like catalyst[J]. Desalination, 2011,269(1-3):284-290.
    [136]Daud N K, Hameed B H. Decolorization of Acid Red 1 by Fenton-like process using rice husk ash-based catalyst[J]. Journal of Hazardous Materials,2010,176 (1-3):938-944.
    [137]张婷,南忠仁,俞树荣,王毅.非均相Fenton催化剂用于降解染料废水的实 验研究进展[J].应用化工,2013,42(10):1910-1912.
    [138]LuoT R. Handbook of bond dissociation energies in organic compounds. Science Press:Beijing,2005.
    [139]奚旦立,马春燕.印染废水的分类、组成及性质[J].印染,2010(14):51-53.
    [140]Hu X J, Frank L Y L, Cheung L M, et al. Copper/MCM-41 as catalyst for photochemically enhanced oxidation of phenol by hydrogen peroxide[J]. Catalysis Today,2001,68(1):129-133.
    [141]Devi L G, Raju K S A, Kumar S G, et al. Photo-degradation of diazodye Bismarck brown by advanced photo-Fenton process-. Influence of inorganic anions and evaluation of recycling efficiency of iron powder[J]. Journal of the Taiwan Institute of Chemical Engineers,2011,42(2):341-349.
    [142]Yanishpolskii V V, Skubiszewska-Zieba J, Leboda R, et al. Methylene Blue sorption equilibria on hydroxylated silica surfaces as well as on carbon-silica adsorbents (carbosils)[J]. Adsorption Science & Technology,2000,18(2):83-95.
    [143]Meyer H W, Treadwell W D. Uber die redoxpotentiale von einigen polyoxyanthrachinonen und kupenfarbstoffen[J]. Helvetica Chimica Acta,1952, 35(5):1444-1460.
    [144]Sidiras D, Bataias F, Schoeder E, et al. Dye adsorption on autohydrolyzed pine sawdust in batch and fixed-bed systems[J]. Chemical Engineering Journal,2011, 171(3):883-896.
    [145]Gobi K, Mashitah M D, Vadivelu V M. Adsorptive removal of methylene blue using novel adsorbent from palm oil mill effluent waste activated sludge: Equilibrium, thermodynamics and kinetic studies[J]. Chemical Engineering Journal,2011,171 (3):1246-1252.
    [146]Sahoo M K, Sinha B, Marbaniang M, Naik D B. Degradation and mineralization of Calcon using UV365/H2O2 technique:Influence of pH[J]. Desalination, 2011,280:266-272.
    [147]Chakma S. Moholkar V S. Physiclal mechanism of sono-Fenton process[J]. AIChE Journal.2013,59(11):4303-4313.
    [148]Ogugbue C J, Sawidis T, Oranusi N A. Bioremoval of chemical different synthetic dyes by aeromonas hydrophila in simulated wastewater containing dyeing auxilizries[J]. Annals of Microbiology,2012,62(3):1141-1153.
    [149]Auta M, Hameed B H. Modified mesoporous clay adsorbent for adsorption isotherm and kinetics of methylene blue[J]. Chemical Engineering Journal,2012, 198-199:219-227.
    [150]Auta M, Hameed B H. Acid modified local clay beads as effective low-cost adsorbent for dynamic adsorption of methylene blue[J] Journal of Industrial and Engineering Chemistry.2013,19(4):1153-1161.
    [151]Ai L H, Li M, Li L. Adsorption of Methylene Blue from aqueous solution with activated Carbon/Cobalt Ferrite/Alginate composite beads:Kinetics, Isotherms, and Thermodynamics[J]. Journal of Chemical & Engineering Data,2011.56(8): 3475-3483.
    [152]Lagergren. S. About the theory of so-called adsorption of soluble substances[M]. Kungl. Svenska vetenskapsakademiens handlingar,1898.24(4):1-39.
    [153]Ho Y S. Adsorption of heavy metals from waste streams by peat[M]. Ph. D. Thesis. University of Birmingham, Birmingham, U. K.,1995.
    [154]Nollet H, Roels M. Lutgen P, et al. Removal of PCBs from wastewater using fly ash[J]. Chemosphere,2003,53(6):655-665.
    [155]Denizli A, Say R, Arica Y. Removal of heavy metal ions from aquatic solutions by membrane chromatography[J]. Separation and Purification Technology,2000, 21(1-2):181-190.
    [156]Gupta V K, Carrott P J M, Ribeiro M M L, et al. Low cost adsorbents:growing approach to wastewater treatment-a review[J]. Critical Reviews in Environ-mental Science and Technology,2009.39(10):783-842.
    [157]Ho Y S, Mckay G. Sorption of dye from aqueous solution by peat[J]. Chemical Engineering Journal,1998,70(2):115-124.
    [158]Gupta V K, Kumar P. Cadmium (Ⅱ)-selective sensors based on dibenzo-24-crown-8 in PVC matrix[J]. Analytica Chimica Acta.1999,389 (1-3):205-212.
    [159]Manju G N, Raji C, Anirudhan T S. Evaluation of Coconut husk carbon for the removal of arsenic from water[J]. Water Research,1998,32(10):3062-3070.
    [160]Rehman M S U, Munir M, Ashfaq M, et al. Adsorption of Brilliant Green dye from aqueous solution onto red clay[J]. Chemical Engineering Journal,2013,228: 54-62.
    [161]DiazG6mez-Trevino A P, Martinez-Miranda V, Solache-Rios M. Removal of remazol yellow from aqueous solutions by unmodified and stabilized iron modified clay[J]. Applied Clay Science,2013.80-81:219-225.
    [162]Safa Y, Bhatti H N. Kinetic and thermodynamic modeling for the removal of direct Red-31 and direct Orange-26 dyes from aqueous solutions by rice husk[J]. Desalination,2011,272(1-3):313-322.
    [163]Javaid M, Saleemi A R, Naveed S, et al. Anaerobic treatment of desizing effluent in aqueous mesophilic anaerobic packed bed reactor[J]. JPICHE,2011, 39:61-67.
    [164]Karaer H, Uzun I. Adsorption of basic dyestuffs from aqueous solution by modified chitosan[J]. Desalination and Water Treatment,2013,51 (10-12): 2294-2305.
    [165]Wang Q, Tian S L, Cun J, Ning P. Degradation of methylene blue using a heterogeneous Fenton process catalyzed by ferrocene[J]. Desalination and Water Treatment,2013,51 (28-30):5821-5830.
    [166]Zepp R G, Faust B C, Hoigne J. Hydroxyl radical formation in aqueous reactions (pH 3-8) of iron(II) with hydrogen peroxide:the photo-Fenton reaction[J]. Environmental Science & Technology,1992,26(2):313-319.
    [167]Herney-Ramire J, Lampinen M, Vicente M A, et al. Experimental Design to Optimize the Oxidation of Orange II Dye Solution Using a Clay-based Fenton-like Catalyst[J]. Industrial & Engineering Chemistry Research,2008, 47(2):284-294.
    [168]Herney-Ramirez J, Vicente M A, Madeira L M. Heterogeneous photo-Fenton oxidation with pillared clay-based catalysts for wastewater treatment:A review[J]. Applied Catalysis B:Environmental,2010,98(1-2):10-26.
    [169]Banic N, Abramovic B, Krstic J, et al. Photodegradation of thiacloprid using Fe/TiO2 as a heterogeneous photo-Fenton catalyst[J]. Applied Catalysis B: Environmental,2011,107(3-4):363-371.
    [170]Feng J Y, Hu X J, Yue P L. Novel bentonite clay-based Fe-nanocomposite as a heterogeneous catalyst for photo-Fenton discoloration and mineralization of Orange Ⅱ[J]. Environmental Science & Technology.2004,38(1):269-275.
    [171]Feng J Y, Hu X J, Yue P L. Discoloration and Mineralization of Orange Ⅱ Using Different Heterogeneous Catalysts Containing Fe:A Comparative Study[J]. Environmental Science & Technology,2004,38(21):5773-5778.
    [172]Zepp R G, Faust B C, Hoigne J. Hydroxyl radical formation in aqueous reactions (pH3-8) of iron(Ⅱ) with hydrogen peroxide:the photo-Fenton reaction[J]. Environmental Science & Technology,1992,26(2):313-319.