组织工程化脊髓修复成年鼠脊髓损伤的初步研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景:成年哺乳动物脊髓损伤(Spinal cord injury, SCI)后的修复十分困难,我们曾应用多种神经组织移植修复成鼠脊髓损伤,效果均不理想。
     神经干细胞(Neural stem cells, NSCs)因其分布的广泛性及多分化潜能,被视为中枢神经系统替代治疗的理想材料。但单纯NSCs移植后很快弥散流失或形成细胞团,出现营养缺乏和代谢障碍,不能形成功能性的修复。利用组织工程技术构建神经干细胞/支架复合物可以克服这些缺点,为细胞附着提供锚靠点,以利于其生长、分化和代谢。但急性SCI的微环境会抑制NSCs向神经元分化,甚至对其存活都会有负面影响,NSCs主要分化成星形胶质细胞而非神经元,神经干细胞/支架复合物作为修复材料的潜能受到巨大挑战。如何改善局部环境,如何诱导神经干细胞更多地向神经元表型分化,是脊髓组织工程研究中亟待解决的问题。
     处在发育期的胚胎脊髓(Fetal spinal cord, FSC)允许自身神经干细胞大量增殖及向神经元表型分化。同时,FSC中存在高浓度的NT-3和BDNF等神经营养因子,具有诱导神经干细胞向神经元方向分化的能力,并可提供其他有益的蛋白质成分、神经化学因子或细胞外基质,起到调控和协同作用,使脊髓固有的各种细胞成份最终达到合适的比例。
     鉴于上述,本实验将NSCs接种在PGA支架上,再提供胚胎脊髓提取液(Fetal spinal cord extracts, FE)模拟NSCs发育的胚胎性微环境,提供生长分化所需的神经化学因子或细胞外基质,促进向神经元表型分化,体外构建了一种包含神经元和胶质细胞等成份、具有一定组织形态和功能的复合神经组织,我们暂将其命名为组织工程化脊髓(Tissue-engineered spinal cord, TSC)。如此,修复急性SCI时通过移植这种在体外己完成分化形成神经元、星形胶质细胞和少突胶质细胞的组织,就有可能避免体内的复杂环境对干细胞分化的不确定性影响,提高修复成年鼠脊髓损伤的效果。
     目的:利用组织工程技术,研究和开发能修复成年鼠损伤脊髓的组织工程材料,为脊髓损伤的治疗提供新思路、新方法。
     方法:1.胚胎脊髓神经干细胞的分离培养与鉴定。分离和克隆扩增孕14天SD大
Background: The repairing of spinal cord injury (SCI) has always been a hot spot in medical research. We have used multiple nervous tissuse to repair SCI, but less success has been achieved in functional repair of the injured adult spinal cord.
     Recently, much has been learned about the biology of neural stem cells (NSCs). NSCs isolated from the brain and spinal cord of both neonatal and adult rats reportedly retain the potential self-renewing and to differentiate into neurons, astrocytes, and oligodendrocytes. It is a kind of ideal materials to substitute lost central neural tissues. Interestingly, cell implantation alone failed to generate functional tissue, this may be due to cells lacking a three-dimensional substrate disperse rapidly and are not uniformly distributed across the surgically created gap. The use of a threedimensional scaffold may provide anchorage sites for cell attachment and cues for differentiation. However, the microenvironment of acute spinal cord injury may inhibit the appearance of neurons, mainly the NSCs differentiated into glial cells, few into neurons. The potency of NSCs-scaffold complex as a reparing materials to be challenged. In the study of spinal cord tissue engineering, there are lots of urgently problem, such as how to improve local environment, and how to induce NSCs differentiate into neurons.
     In the developing fetal spinal cord (FSC), endogenous NSCs multiply rapidly and differentiated into neurons phaenotype. Meanwhile, FSC could excreting high-concentration neurotrophic factor, such as BDNF, NT-3, and so on, can facilitate NSCs to differentiate into more neurons. FSC also can provid helpful proten composition, neurochemistry factors or extracellular matrix, to regulate propriospinal cellour reconstituent to a suitable proportion.
     Based on the reasons above, we implanted NSCs into polyglycolic acid (PGA) scaffold, subsequently provid fetal spinal cord extracts (FE) to induce cell differentiation, constructed a kind of nervous tissue complex, contain neurons, astrocytes, and
引文
1. 郭庆山,王爱民,蒋祖言,等.多种神经组织修复成鼠脊髓损伤的实验研究.创伤外科杂志,2002,4(1):20-23.
    2. Cao QL, Zhang YP, Howard RM, et al. Pluripotent stem cells engrafted into the normal or lesioned adult rat spinal cord are restricted to a glial lineage. Exp Neurol, 2001, 167(1): 48-58.
    3. Vacanti MP, Leonard JL, Dore B, et al. Tissue-Engineered Spinal Cord. Transplantation Proceedings, 2001, 33(2), 592-598.
    4. Teng YD, Lavik EB, Xianlu Q, et al. Functional recovery following traumatic spinal cord injury mediated by a unique polymer scaffold seeded with neural stem cells. Proc Natl Acad Sci USA, 2002, 99 (5): 3024-3029.
    5. Nakamura M, Bregman BS. Differences in neurotrophic factor gene exp ression p rofiles between neonate and adult rat sp inal cord after injury. Exp Neurol, 2001, 169: 407-415.
    6. 郭庆山 , 王爱民 , 蒋祖言 , 等 . 胚胎脊髓对损伤脊髓的修复作用研究 . 现代康复,2001,5(4):50-51.
    7. 梁喆,农艺,杨浩,等.胎鼠脊髓内源性 NT-3 及 BDNF 对脊髓神经元的营养作用.第四军医大学学报,1997,18(5):586-589.
    1. Reynolds BA, Weiss S. Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system. Science, 1992, 255(5052): 1707-1710.
    2. Richards LJ, Kilpatrick TJ, Bartlett PF. Denovogeneration of neuronal cells from the adult mouse brain. Proc Natl Acad Sci U S A, 1992, 89(18): 8591-8595.
    3. Weiss S, Dunne C, Hewson J, et al. Multipotent CNS stem cells are present in the adult mammalian spinal cord and ventricular neuroaxis. J Neurosci, 1996, 16(23): 7599-7609.
    4. Tropepe V, Coles BLK, Chiasson BJ, et al. Retinal stem cells in the adult mammalian eye. Science, 2000, 287(5460): 2032-2036.
    5. Temple S. The development of neural stem cell. Nature, 2001, 414(6859): 112-117
    6. 司徒镇强,吴军正著.细胞培养.西安:世界图书出版公司,1996.175-186.
    7. Sladowski D. An improved MTT assay. J Immunol Meth, 1993, 157: 203.
    8. Price J, William BP. Neural stem cells. Current Opinion in Neurobiology, 2001, 11: 564-567.
    9. 唐少锋,汤逊,蔡景霞,等.人胚神经干细胞的分离培养及鉴定研究.中国脊柱脊髓杂志,2003,13(9): 523-525.
    10. Lendahl U, Zimmerman LB, Mckay RDG. CNS Stem cells express a new class of intermediate filament protein. Cell, 1990, 60: 585-595.
    11. 冬向军,陈建国,翟中和.神经丝的结构与功能.细胞生物学,1998,20(2):63-68.
    12. Kallos MS, Behie LA, Vescovi AL. Extended serial passaging of mammalian neural stem cells in suspension bioreactors. Biotech Bioeng, 1999; 65(5): 589-599.
    13. Kuhn HG, Winkler J, Kempermann G, et al. Epidermal growth factor and fibroblast growth factor 2 have different effects on neural progenitors in the adult rat brain. J Neurosci, 1997, 17(15): 5820-5829.
    14. Kitchens DL, Snyder EY, Gottlieb DI. FGF and EGF are mitogens for immortalized neural progenitors. J Neurobio 1994; 25(7): 797-807.
    15. Suhonen JO, Peerson JR, Gage FH. Differentiation of adult hippocampus progenitorsinto olfactory neurons in vivo. Nature, 1996, 383(6601): 624-627.
    16. Ana Villa, Evan Y, Snyder, Angelo I, Vescovi, et al. Establishment and properties of a growth factor-dependent, perpetual neural stem cell line from the human CNS. Exp Neurol, 2000, 161(1): 67-84.
    17. Plap, Moore R, Morali OG, et al. Cadherinsin neural crest cell development and transformation. Cell Physiol, 2001, 189(2): 121-132.
    18. Zhou J, Shen Y, Tang Z, et al. Striatal extracts promote the survival and phenotypic expression of rat fetal dopaminergic neurons in vitro. Neurosci Lett, 2000, 292(1): 528.
    19. Ling ZD, Collier TJ, Sortwell CE, et al. Striatal trophic activity is reduced in the aged rat brain. Brain Res, 2000, 856(122): 301-309.
    20. 鲍岳桥.背根神经节-脊髓共培养中的神经元类型和突触形成.复旦神经生物学讲座,1992,7:165-172.
    21. Akerud P, Canals JM, Snyder EY, et al.Neuroprotection through delivery of glial cell line-derived neurotrophic factor by neural stem cells in a mouse model of Parkinson's disease. J Neurosci, 2001, 21: 8108–8118.
    22. 蔡文琴,王伯云.实用免疫细胞化学与核酸分子杂交.成都:四川科学技术出版社.1994:61-63.
    23. Bicario AC, Collin C, Tsoulfas P, et al. Hippocampal stem cells differentiate into excitatory and inhibitory neurons. Eur J Neurosci, 2000, 12: 677-688
    24. Shetty AS, Tumer DA. In vitro survival and differentiation of neurons derived from epidermal growth factor responsive postnatal hippocampal stem cells: inducing effects of brain derived neurotrophic factor. J Neurobio, 1998, 35: 395-425.
    25. Mckay R. Stem cells in the central nervous system. Science, 1997, 276: 66-71.
    26. Shihabuddin LS, Horner PJ, Ray J, et al. Adult spinal and stem cells generate neurons after transplantation in the adult dentate gyrus. J Neurosci, 2000, 20(23):85-87.
    27. 丁英,曾园山,吴立志,等.施万细胞对植入大鼠脊髓损伤区内的神经干细胞存活和分化的影响.解剖学报,2003,34(6):589-593.
    28. Nishino H, Hida H, Takei N, et al. Mesencephalic neural stem(progenitor) cells develop to dopaminergic neurons more strongly in dopamine-depleted striatum than inintactstriatum. Exp Neurol, 2000, 164: 209-214.
    29. Vescovi AL, Snyder EY. Establishment and properties of neural stem cell clones: plasticity in vitro and in vivo. Brain Pathyology, 1999, 9: 569-598.
    30. 杨振钢,杨琳,高英茂,等.脊髓神经管神经上皮干细胞的分离培养和诱导分化.解剖学报,2003,34(1):57-62.
    31. 余小强,阮怀珍,蔡文琴,等.PD 大鼠纹状体提取液诱导中脑神经干细胞分化为多巴胺能神经元的研究,第三军医大学学报,2004,26(1):18-21.
    32. Barami K. Comparison of neural precursor cell fate in second trimester human and spinal cord. Neyral Res, 2001, 23(2): 260.
    33. 刘暌,王红云,何乐,等.胚胎大鼠神经干细胞电生理特性检测.中华神经外科杂志, 2001,17(5):271-274.
    34. Takahashi J, Palmer TD, Gage FH, et al. Retinoic acid and neurotrophin scollaborate to regulate neurogenesis in adult derived neural stem cell cultures. J Neurobiol, 1999, 38(1): 6581.
    35. 林美兰,郭婉华.正常损伤坐骨神经及其提取液对 PC12 细胞和颈上神经节促神经突起生长的作用.解剖学报,1990,21(4):418-423.
    36. 周明华,吴玺印,任 峰,等.大鼠骨骼肌提取液 22, 35 kD 蛋白分子对培养脊髓腰段前角运动神经元的影响.科学通报,1992,9:841-844.
    37. 王爱民, 孙红振, 杜全印, 等. 不同浓度的肌肉源神经生长因子对游离神经移植修复脊髓损伤的作用. 中国临床康复杂志, 2002, 6(12): 1770-1771.
    38. Nakajima K, Hida H, Shimano Y, et al. GDNF is a major component of trophic activity in DA2depleted striatumfor survival and neurite extension of DAergic neurons. Brain Res, 2001, 916(12): 76-84.
    39. 吕捷,姚振宇,吕永利,等.大鼠胚胎小脑提取液神经营养活性成分的分析.神经解剖学杂志,1999,15(2):185-191.
    40. 杨浩,梁喆,农艺,等.脊髓提取液对体外培养的神经细胞在缺气损伤环境中的作用.神经解剖学杂志,1999,15(2):127-131.
    41. 汪华侨,席刚明,洪衍波.人胚脊髓提取液对胚鼠脊髓运动神经元存活与生长的影响.中国体视学与图像分析,1999,4(3):157-161.
    42. 梁喆,农艺,杨浩,等.胎鼠脊髓内源性 NT-3 及 BDNF 对脊髓神经元的营养作用.第四军医大学学报,1997,18(5):586-589.
    43. Maisonpierre PC, Bellusic L, Fridmen B, et al. NT-3, BDNF and NGF in the developing rat nervous system: parallel as well as reciprocal patterns of expression. Neuron, 1990, 5(3): 501-509.
    44. Kalyani A, Hobson K, Rao MS. Neuroepithelial stem cells from the embryonic spinal cord: isolation, characterization, and clon alanalysis. Dev Biol, 1997, 186(2): 202-223.
    45. 胡俊勇,李佛保,刘先明,等.大鼠损伤脊髓提取液对骨髓基质细胞培养特性的影响.中国脊柱脊髓杂志,2003,13(9):530-532.
    1. Kim BS, Mooney DJ. Development of biocompatible synthetic extra cellula rmatrices for tissue engineering. Trends Biotechnol, 1998; 16(5): 224-230.
    2. Thomson RC, Wake MC, Yaszemski MJ, et al. Biodegradable polymer scaffolds to regenerate organs. Adv Polym Sci, 1995; 122: 245-274.
    3. Nerem RM, Sambanis A. Tissue engineering: from biology to biological substi-tutes. Tissue Eng, 1995, 1: 3-13.
    4. Chu CC. The in vitro degradation of poly(glycolic acid) sutures: effect of pH. J Biomed Mater Res, 1981;15: 795-804.
    5. Shum AW, Arthur M. Morphological and biomechanical characterization of poly (glycolic acid) scaffolds after in vitro degradation. Polymer Degradation and Stability, 2003,81: 141-149.
    6. Kim BS, Mooney DJ. Development of biocompatible synthetic extracellular matrices for tissue engineering. Trends Biotechnol, 1998, 16: 224-230.
    7. Putnam AJ, Mooney DJ. Tissue engineering using synthetic extracellular matrices. Nat Med, 1996, 2: 824-826.
    8. Mooney DJ. Stabilized polyglycolic acid fiber-based tubes for tissue engineering. Biomaterials, 1996,17: 115-124.
    9. Kim WS. Cartilage configuration in predetermined shapes employing cell transplantation on prosthetic biodegradable synthetic polymers. Plas Reconstr Surg, 1994, 94, 233-237.
    10. 张勇杰, 金岩. 组织工程神经导管在外周神经再生过程中的应用. 国外医学口腔医学分册, 2002; 29(2): 96-98.
    11. 张沛云, 王晓冬, 顾晓松, 等. 背根神经节与医用可降解材料聚乙醇酸纤维联合培养的实验研究. 中华显微外科杂志, 2000, 23: 49.
    12. Gautier SE, Oudega M, Fragoso M, et al. Poly (alpha -hydroxy acids) for application in the spinal cord: resorbability and biocompatibility with adult rat schwann cells and spinal cord. J Biomed Mater Res, 1998, 42 (4): 642.
    13. 蔡文琴, 王伯云. 实用免疫细胞化学与核酸分子杂交. 成都: 四川科学技术出版社. 1994: 61-63.
    14. Cao QL, Zhang YP, Howard RM, et al. Pluripotent stem cells engrafted into the normal or lesioned adult rat spinal cord are restricted to a glial lineage. Exp Neurol, 2001, 167(1): 48-58.
    15. Langer R, Vacanti JP. Tissue engineering. Science, 1993, 260: 920-926.
    16. Colton CK. Implantable biohybrid artificial organs. Cell Transplant, 1995, 4: 415-436.
    17. Vacanti MP, Leonard JL, Dore B, et al. Tissue-Engineered Spinal Cord. Transplantation Proceedings, 2001, 33(2): 592-598.
    18. Nakamura M, Bregman BS. Differences in neurotrophic factor gene expression profiles between neonate and adult rat spinal cord after injury. Exp Neurol, 2001, 169: 407-415.
    1. Basso DM, Beattie MS, Bresnahan JC. A sensitive and reliable locomotor rating scale for open field testing in rats. J Neurotrauma, 1995;12:1-21.
    2. 陈向荣, 游思维, 金大地. BBB 评分评估脊髓损伤大鼠后肢运动功能的探讨. 中国脊柱脊髓杂志, 2004, 14(9): 547-549.
    3. Akerud P, Canals JM, Snyder EY, et al. Neuroprotection through delivery of glial cell line-derived neurotrophic factor by neural stem cells in a mouse model of Parkinson’s disease. J Neurosci, 2001, 21: 8108–8118.
    4. 蔡文琴,王伯云.实用免疫细胞化学与核酸分子杂交. 成都: 四川科学技术出版社. 1994: 61-63.
    5. Vacanti MP, Leonard JL, Dore B, et al. Tissue-Engineered Spinal Cord. Transplantation Proceedings, 2001, 33(2): 592-598.
    6. Teng YD, Lavik EB, Xianlu Q, et al. Functional recovery following traumatic spinal cord injury mediated by a unique polymer scaffold seeded with neural stem cells. Proc Natl Acad Sci USA, 2002, 99 (5): 3024-3029.
    7. Nakamura M, Bregman BS. Differences in neurotrophic factor gene exp ression p rofiles between neonate and adult rat sp inal cord after injury. Exp Neurol, 2001, 169: 407-415.
    8. Cao QL, Zhang YP, Howard RM, et al. Pluripotent stem cells engrafted into the normal or lesioned adult rat spinal cord are restricted to a glial lineage. Exp Neurol, 2001, 167(1): 48-58.
    9. Gautier SE, Oudega M, Fragoso M, et al. Poly(alpha-hydroxy acids) for application in the spinal cord: resorbability and biocompatibility with adult rat schwann cells and spinal cord. J Biomed Mater Res, 1998, 42(4): 642.
    10. 张沛云,王晓冬,顾晓松,等.背根神经节与医用可降解材料聚乙醇酸纤维联合培养的实验研究.中华显微外科杂志, 2000, 23: 49.
    11. Powers SK, Bolger CA, Edwards MSB: Spinal cord pathways mediating somatosensory evoked potentials. J Neurosurg 1982, 57: 472-482.
    12. Ginshurg HH, Shetter AG, Radzens PA. Postoperative paraplegia with preserved intraoperative somatosensory evoked potentials: case report. J Neurosury. 1985, 63:293-300.
    13. Dehaan P, Kalkman CJ. Spinal cord monitoring: somatosensory and motor evoked potentials. Anesthesiol Clin North America, 2001, 19(4): 923-945.
    14. Arunkumar MJ, Srinivasa BK, Chandy MJ. Motor and somatosensory eviked potentials in a primate model of experimental spinal cord injury. Neurol India, 2001, 49(3): 219-224.
    15. 郭庆山, 王爱民, 蒋祖言, 等. 多种神经组织修复成鼠脊髓损伤的实验研究. 创伤外科杂志, 2002, 4(1): 20-23.
    16. Qing-Shan Guo, Ai-Min Wang, Xiao-Jun Wang. An experimental study on the multiple nervous tissues repairing spinal cord injury in adult rats. Zhongguo Linchuang Kangfu, 2004, 8(11): 2127-2129.
    17. GUO Qing-shan, WANG Ai-min, WANG Xiao-jun, et al. Survival and migration of Schwann cells after the vascularized peripheral nerver grafted into spinal cord in rats. Journal of Medical Colleges of PLA, 2005, 20(4): 232-235.
    18. Okano H, Ogawa Y, Nakamura M, et al. Transp lantation of neural stem cells into the spinal cord after injury. Semin Cell Dev Biol, 2003, 14: 191-198.
    1. 郭庆山, 王爱民, 蒋祖言, 等. 多种神经组织修复成鼠脊髓损伤的实验研究. 创伤外科杂志, 2002, 4(1): 20-23.
    2. Schmidt CE, Leach JB. Neural tissue engineering: strategies for repair and regeneration. Annu Rev Biomed Eng, 2003, 5: 293-347.
    3. Strauch B. Use of nerve conduits in peripheral nerve repair. Hand Clin, 2000, 16(l): 123-130.
    4. Woodhall E, West AK, Chuah MI, et al. Cultured olfactoryen-sheathing cells express nerve growth factor, brain-derived neurotrophic factor, gliacell line-derived neurotrophic factor and their receptors. Brain Res, 2001, 88(2): 203-213.
    5. Kato T, Honmou O, Uede T, et al. Transplantation of human olfactoryen sheathing cells elicits remyelination of demyelinated rat spinal cord. Glia, 2000, 30(3): 209-218.
    6. Nash HH, Borke RC, Anders JJ. Ensheathing cells and methyl-prednisolone promot eaxonal regeneration and functional recovery in the lesioned adult rat spinal cord. J Neurosci, 2002, 22(16): 7111-7120.
    7. Ramer LM, Au E, Richter MW, et al. Peripheral olfactory ensheathing cells reduce scar and cavity formation and promote regeneration after spinal cord injury. J Comp Neurol, 2004, 473(1): 1-15.
    8. Santos-Benito FF, Ramon-Cueto A. Olfactory ensheathing glia transplantation: a therapy to promote repair in the mammalian central nervous system. Anat Rec, 2003, 271B(1): 77-85.
    9. Dityatev A, Schachner M. Extracellular matrix molecules and synaptic plasticity. Nat Rev Neurosci, 2003, 4(6): 456-468.
    10. Sun Y, Jin K, Xie L, et al. VEGF-induced neuroprotection, neurogenesis, and angiogenesis after focal cerebral ischemia. J Clin Invest, 2003, 111(12): 1843-1851.
    11. Ullian EM, Harris BT, Wu A, et al. Schwann cells and astrocytes induce synapse formation by spinal motor neurons in culture. Mol Cell Neurosci, 2004; 25(2): 241-51.
    12. 丁英, 曾园山, 吴立志, 等. 施万细胞对植入大鼠脊髓损伤区内的神经干细胞存活和分化的影响. 解剖学报, 2003, 34(6): 589-593.
    13. Cao QL, Zhang YP, Howard RM, et al. Pluripotent stem cells engrafted into the normalor lesioned adult rat spinal cord are restricted to a glial lineage. Exp Neurol, 2001, 167(1): 48-58.
    14. Bambakidis NC, Miller RH. Transvlantation of oligodendrocyte precursors and sonic hedgehog results in improved function and white matter sparing in the spinal cords of adult rats after contusion. Spine, 2004; 4(1): 16-26.
    15. Blakemore WF, Gilson JM, Crang AJ. Transplanted glial cells migrate over a greater distance and remyelinate demyelinated lesions more rapidly than endogenous remyelinating cells. J Neurosci Res, 2000, 61(3): 288-294.
    16. Jones LL, Yamaguchi Y, Stallcup WB, et al. NG is a major chondroitin sulfate proteogly can produced after spinal cord injury and is expressed by macrophages and oligodendrocyte progenitors. J Neurosci, 2002, 22(7): 2792-2803.
    17. Lakatos A, Franklin RJ, Barnett SC. Olfactory ensheathing cells and Schwann cells differ in their in vitro interactions with astrocytes. Glia, 2000, 32(3): 214-225.
    18. 李晓光, 杨朝阳, 张皑峰, 等. 应用壳聚糖导管-生物活性载体系统修复大鼠脊髓损伤. 中国康复理论与实践, 2003, 9(3): 176-178.
    19. 程映华, 梁晶, 王晓冬, 等. 壳聚糖神经干细胞复合物修复大鼠完全性脊髓损伤的组织学观察. 中华实验外科杂志, 2004, 21(1): 26-27.
    20. Patist CM, MulderMB, Gautier SE, et al. Freeze-dried poly (D, L-lactic Acid) macroporous guidance scaffolds impregnated with brainderived neurotrophic factor transected adult rat thoracic sp inal cord. Biomaterials, 2004, 25(9): 1569-1582.
    21. Kim BS, Mooney DJ. Development of biocompatible synthetic extra cellula rmatrices for tissue engineering. Trends Biotechnol, 1998; 16(5): 224-230.
    22. Nerem RM, Sambanis A. Tissue engineering: from biology to biological substi-tutes. Tissue Eng, 1995, 1: 3-13.
    23. Mooney DJ. Stabilized polyglycolic acid fiber-based tubes for tissue engineering. Biomaterials, 1996, 17: 115-124.
    24. Kim BS, Mooney DJ. Development of biocompatible synthetic extracellular matrices for tissue engineering. Trends Biotechnol, 1998, 16: 224-230.
    25. Putnam AJ, Mooney DJ. Tissue engineering using synthetic extracellular matrices. Nat Med, 1996, 2: 824-826.
    26. 张沛云, 王晓冬, 顾晓松, 等. 背根神经节与医用可降解材料聚乙醇酸纤维联合培养的实验研究. 中华显微外科杂志, 2000, 23: 49.
    27. Gautier SE, Oudega M, Fragoso M, et al. Poly(alpha-hydroxy acids)for application in the spinal cord: resorbability and biocompatibility with adult rat schwann cells and spinal cord. J Biomed Mater Res, 1998, 42(4): 642.
    28. Woerly S, Plant GW, Harvey AR. Neural tissue engineering: from polymer to biohybrid organs. Biomaterials, 1996, 17: 301-310.
    29. Lesny P, De Croos, Priladny M, et al. Polymer hydrogels usable for nervous tissue repair. J Chem Neuroanatomy, 2002, 23: 243-247.
    30. Woerly S, Pinet E, Robertis L, et al. Sp inal cord repairwith PHPMA hydrogel containing RGD peptides (NeuroGel). Biomaterials, 2001, 22: 1095-1111.
    31. Xu XM, Zhang SX, Li H, et al. Regrowth of axons into the distal spinal cord through a Schwann cell-seeded mini channel implanted into hemisected adult rat sp inal cord. Eur J Neurosci, 1999, 11(5): 1723-1740.
    32. Novikov LN, Novikova LN, MosahebiA, et al. A novel biodegradable implant for neuronal rescue and regeneration after spinal cord injury. Biomaterials, 2002, 23(16): 3369-3376.
    33. Okano H, Ogawa Y, Nakamura M, et al. Transp lantation of neural stem cells into the spinal cord after injury. Semin Cell Dev Biol, 2003, 14: 191-198.
    34. Vacanti MP, Leonard JL, Dore B, et al. Tissue-Engineered Spinal Cord. Transplantation Proceedings, 2001, 33(2): 592-598.
    35. Teng YD, Lavik EB, Xianlu Q, et al. Functional recovery following traumatic spinal cord injury mediated by a unique polymer scaffold seeded with neural stem cells. Proc Natl Acad Sci USA, 2002, 99(5): 3024-3029.
    36. Ramon-Cueto A, Cordero MI, Santos-Benito FF, et al. Functional recovery of paraplegic rats and motor axon regeneration in their spinal cords by olfactory ensheathing g1ia. Neuron, 2000, 25: 425-35.
    37. Takami T, Oudega M, Bates ML, et al. Schwann cell but not olfactory ensheathing glia transplants improve hind limb locomotor performance in the moderately contused adult rat thoracic spinal cord. J Neurosci, 2002, 22: 6670-6681.
    38. Ramer LM, Au E, Richter M, et al. Peripheral olfactory ensheathing cells reduce scar and cavity formation and promote regeneration after spinal cord injury. J Comp Neurol, 2004, 473: 1-15.
    1. Reynolds BA, Weiss S. Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system. Science, 1992, 255(5052): 1707-1710.
    2. Richards LJ, Kilpatrick TJ, Bartlett PF. Denovogeneration of neuronal cells from the adult mouse brain. Proc Natl Acad Sci USA, 1992, 89(18): 8591-8595.
    3. Weiss S, Dunne C, Hewson J, et al. Multipotent CNS stem cells are present in the adult mammalian spinal cord and ventricular neuroaxis. J Neurosci, 1996, 16(23): 7599-7609.
    4. Tropepe V, Coles BLK, Chiasson BJ, et al. Retinal stem cells in the adult mammalian eye. Science, 2000, 287(5460): 2032-2036.
    5. Spradling A, Drummond-Barbosa D, Kai T. Stem cells find their niche. Nature, 2001, 414(6859): 98-104.
    6. Mckay R. Stem cells in central nervous system. Science, 1997, 276(5309): 66-71.
    7. Reynold BA, Tetzlaff W, Weiss S. et al. A multipotent EGF-responsive striatal embryonic progenitor cell produce neurons and astrocytes. J Neurosci, 1992, 12(11): 4565-4574.
    8. Kamb A, Gruis NA, Weaver-Feldkaus J, et al. A cell cycle regulator potentially involved in genesis of many tumor types. Science, 1994, 264(5157): 344-345.
    9. Counter CM, Botelho FM, Wang P, et al. Stabilization of short telomeres and telomerase activity accompany immortalization of Epstein-Bar virus-transformed human B lymphocytes. J Virol, 1994, 68(5): 3410-3414.
    10. Bain G, et al. Dev bio, 1995, 168: 342-357.
    11. Struebing C, et al. Mech Dev, 1995, 53: 275-287.
    12. Inoue M, Honmou O, Oka S, et al. Comparative analysis of remyelinating potential Of focal and intravenous administration Of autologous bone marrow cells into the rat demyelinated spinal cord. Glia, 2003, 44(2): 111-118.
    13. Sanchez-Ramos J, Song S, Cardozo-Pelaez F, et al. Adult bone marrow stromal cells differentiate into neural stem cells in vitro. Exp Neurol, 2000, 164(2): 247.
    14. 代广辉, 徐如祥, 王峰, 等. 自体神经干细胞在兔损伤脊髓内存活并分化的实验效果. 中国临床康复, 2004, 8(14): 2648-2650.
    15. Lendahl U, Zimmerman LB, McKay RDG. CNS stem cells express a new class of intermediate filament protein. Cell, 1990, 60: 585-595.
    16. 冬向军, 陈建国, 翟中和. 神经丝的结构与功能. 细胞生物学, 1998, 20(2): 63-68.
    17. Namiki J, Tator CH. Cell proliferation and nestin expression in the ependyma of the adult rat spinal cord after injury. J Neuropath Exp Neurol, 1999, 58(5): 489-498
    18. Sakakibara S, Okano H. Mouse-Musshi-1: a neural RNA-binding protein highly enriched in the mammalian CNS stem cells. Dev Bio, 1996, 176: 239-242.
    19. Temple S. The development of neural stem cell. Nature, 2001, 414(6859): 112-117
    20. Gage FH, Coates PW, Palme TD. Survival and differentiation of adult neuronal progenitor cells transplanted to the adult brain. Proc Natl Acad Sci USA, 1995, 92: 11879-11883.
    21. Kaplan MS, McNelly NA, Hinds JW. Population dynamics of adult-formed franule neurons of the rat olfactory bulb. J Com Neurol, 1985, 239: 117-125.
    22. Johansson CB, Momma S, Clarke DL, et al. Identification of a neural stem cell in the adult mammalian central nervous system. Cell, 1999, 96: 25-34.
    23. Doetsch F, Scharff C. Challenges for brain repair: insights from adultneurogenesis in birds and mammals. Brain Behav Evol, 2001, 58(5): 306-322
    24. Price J, William BP. Neural stem cells. Current Opinion in Neurobiology, 2001, 11: 564-567.
    25. 唐少锋, 汤逊, 蔡景霞, 等. 人胚神经干细胞的分离培养及鉴定研究. 中国脊柱脊髓杂志, 2003, 13(9): 523-525.
    26. Brannen CL, Sugaya So. In vitro differentiation of multipotent human neural progenitors in serum-free medium. Neuroreport, 2000, 11(5): 1123-1128.
    27. Gradwohl G, Fode C, Guillemot F. Restricted expression of a novel murine atonal related bHLH protein in undifferentiated neural precursors. Dev Biol, 1996, 180(1): 227-241.
    28. Sun Y, Nadal-Vicens M, Misono S, et al. Neurogenin promotes neurogenesis and inhibits glial differentiation by independent mechanisms. Cell, 2001, 104(3): 365-376.
    29. Nieto M, Schurmans C, Britz O, et al. Neural bHLH genes control the neuronal versus glial fate decision in cortical progenitors. Neuron, 2001, 29(2): 401-413.
    30. Artavanis TS, Rand MD, Lake RJ. Notch signaling: Cell fate control and signal integration in development. Science, 1999, 284(5415): 770-776.
    31. Tanigaki K, Nogaki F, Takahashi J, et al. Notch1 and Notch3 instructively restrict bFGF-responsive multipotent neural progenitor cells to an astroglial fate. Neuron, 2001, 29: 45-55.
    32. Hermanson O, Jepsen K, Rosenfeld MG. Co-R controls differention of neural Stem Cells into astrocyte. Nature, 2002, 419(31): 934-939.
    33. Parmentier ML, Woods D, Geig S, et al. Rapsynoid parter Of inscuteable control asymmetric division Of larval neuroblasts in Drosophila. J Neurosci, 2000, 20(14): 1-5.
    34. Tropepe V, Craig CG, Morshead CM, et al. Distinct neural stem cellsproliferate in response to EGF and FGF in the developingmouse telencephalon. Dev Biol, 1999, 208: l66-188.
    35. Kuhn HG, W inkler J, Kempermann G, et al. Epidermal growth factor and fibroblast growth factor22 have differenteffects on neural p rogenitors in the adult rat brain. J Neurosci, 1997, 17: 5820-5829.
    36. Kilpatrick TJ, Bartlett PF. Cloning and growth of multipotential neural precursors: requirements for proliferation and differentiation. Neuron, 1993, 10: 255-265.
    37. Craig CG, Tropepe V, Morshead CM, et al. In Vivo growth factor expansion of endogenous subependymal neural precursor cell populations in the adultmouse brain. J Neurosci, 1996, 16: 2649-2658.
    38. Tanapat P, Gould E. EGF stimulates p roliferation of granule cell precursors in the dentategyrus of adult rats. Soc Neurosci Abstr, 1997, 23: 317-327.
    39. Satoh M, Sugino H, Yoshida T. Activin promotes astrocytic differentiation of a multipotent neural stem cell line and an astrocyte progenitor cell line from murine central nervous system. Neurosci Lett, 2000, 284(3): 143-146.
    40. Gomes WA, Mehler MF, Kessler JA. Transgenic overexpression of BMP4 increases astroglial and decreases oligodendroglial lineage commitment. Dev Biol, 2003, 255(1): 164-177.
    41. Chenn A, Walsh CA. Regulation of cerebral cortical size by control of cell cycle exist in neural precursors. Science, 2002, 297(5580): 365-369.
    42. Galli R, Pagano SF, Gritti A, et al. Regulation of neuronal differentiation in human CNS stem cell progeny by leukemia inhibitory factor. Dev Neurosci, 2000, 22(122): 86-95.
    43. Takahashi J, Palmer TD, Gage FH. Retinoic acid and neurotrophins collaborate to regulate neurogenes is in adult2derived neural stem cell cultures. J Neurobol, 1999, 38(1): 65-81.
    44. 王景周, 高唱. 神经递质与神经干细胞的增殖和分化. 国外医学脑血管疾病分册, 2003, 11(2): 121-123.
    45. Plap, Moore R, Morali OG, et al. Cadherinsin neural crest cell development and transformation. Cell Physiol, 2001, 189(2): 121-132.
    46. Fricker RA, Capenter MK, Winkler C, et al. Site-specific migration and neuronal differentiation of human neural progenitor cells after transplantation in the adult rat brain. J Neurosci, 1999, 19(14): 5990-6005.
    47. Shihabuddin LS, Horner PJ, Ray J, et al. Adult spinal and stem cells generate neurons after transplantation in the adult dentate gyrus. J Neurosci, 2000, 20(23): 8725.
    48. Cao QL, Zhang YP, Howard RM, et al. Pluripotent stem cells engrafted into the normal or lesioned adult rat spinal cord are restricted to a glial lineage. Exp Neurol, 2001, 167(1): 48-58.
    49. Ogawa Y, Sawamoto K, Miyata T, et al. Transplantation of in vitro expanded fetal neural progenitor cells results in neurogenesis and functional recovery after spinal cord injury in adult rats. J Neurosci Res, 2002, 69: 925-933.
    50. Hill CE, Beattie MS, Bresnahan JC. Degeneration and sprouting of identified descending supraspinal axons after contusive spinal cord injury in the rat. Exp Neurol, 2001, 171(1): 153-169.
    51. Geller, HM, Fawcett, JW. Building a bridge: engineering spinal cord repair. Exp Neurol, 2002, 174: 125-136.
    52. Clarke DL, Johansson CB, Wilbertz J, et al. generalized potential of adult neural stem cells. Science, 2000, 288(5471): 1660-1663.