格序代数的共轭空间与商空间的性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在交通信息工程与控制中,交通信息安全是一个重要的研究领域,其中保密性与认证性是交通信息安全的两个基本属性。基于格论的公钥密码体制和数字签名方案由于具有安全性好、带宽占有少等突出性能,近年来已受到学术界的极大关注。本文主要研究格论中既有序结构也有代数结构的空间—格序代数。具有特殊结构的格序代数可用于设计密码算法或数字签名方案。研究成果具有重要的理论意义与潜在的应用价值。
     本文属于格论的理论研究部分,主要讨论了格序代数的序共轭的各类乘积空间的格序性质,f-代数的一次序共轭上的特殊算子,格序代数上f-模与d-模,以及格序代数的商空间与代数性质。主要研究成果分为以下四个部分。
     第一部分研究了格序代数,主要是.f-代数、几乎f-代数和d-代数的序共轭的乘积空间的格序性质。得到了在一定的条件下这三类代数的二次序共轭与一次序共轭,一次序共轭与原代数在Arens乘积下的乘积空间为一次序共轭的序理想的结论。并利用这些结果推导了f-代数的二次序连续共轭为半素的一个新的充分必要条件,即:二次序共轭与一次序共轭的乘积空间是一次序共轭的一个序稠密理想。
     第二部分主要讨论了f-代数的一次序共轭上的三类特殊算子:正交射,f-正交射和f-线性算子。引入并定义了新的算子:f-正交射和f-线性算子,讨论了这两类算子空间的格序性质。重点研究了这三类算子之间的互推关系,证明了正交射一定是f-线性算子,而f-线性算子也是f-正交射的结论。特别的,当f-代数为平方根闭时,得到了这三类算子为同一类算子的结论。从而对已知的f-代数的一次序共轭上的正交射给出了新的刻画方法。
     第三部分研究了格序代数上的两类特殊的模结构—f-模与d-模。考察了保不交算子和f-模上的线性算子之间的关系。证明了在一定条件下,保不交算子和f-模上的线性算子等价的结论,并得到了保不交算子的逆算子的线性性质。其次,引入了一类新的模结构—格序代数上的d-模,研究了d-模的序共轭,证明了d-模的二次序共轭仍为d-模的结论。同时研究了由格同态或保区间算子所生成的主理想上的特殊d-模,得到了d-模的实例。
     最后一部分主要讨论了格序代数的商空间及其主要的代数性质。首先给出了格序代数的商的概念。特别的,引入了商f-代数、商几乎f-代数和商d-代数的概念,并给出其等价的刻画方法。其次,讨论了这三类格序代数的商的主要代数性质,包括:半素性、交换性和逆元存在性。举例比较了格序代数与其商在这些性质方面的异同。更深入的,给出了格序代数的商的半素性的等价刻画,得到了交换性成立的若干条件,并证明了商f-代数单位元和逆元存在的条件。
In the traffic information engineering and control, traffic information security is an important research field in which confidentiality and authentication are two basic attributes. The lattice-based public key cryptosystem and digital signature scheme with good safety and low bandwidth have received great attention in recent years. In this paper our main research object is lattice algebra which is a vector space with ordered and algebraic structure. The special lattice algebra can be used to design cryptographic algorithms or digital signature scheme. The research has important theoretical significance and potential applications.
     This paper is devoted to the theoretical study on order dual of a lattice algebra, the f-module and d-module on a lattice algebra and the quotient of lattice algebra. Actually, the present work consists of four main parts.
     In the first part, we investigate the ordered properties of multiplicative spaces of order dual of the lattice algebra, especially the f-algebra, the almost f-algebra and the d-algebra. It's proved that under some conditions these multiplicative spaces equipped with Arens multiplications are order ideals in the order dual of lattice algebra. And as an application, a necessary and sufficient condition is derived under which the continuous order bidual of an f-algebra to be semiprime.
     In the second part, the orthomorphisms, the f-orthomorphisms and the f-linear operators on the order dual of an f-algebra are considered. We introduce the new concepts of f-orthomorphisms and the f-linear operators. Then we discuss the ordered properties of these operators'spaces, and study the relationships between these operators. It is proved that the orthomorphisms must be f-linear operators, and f-linear operators must be f-orthomorphisms. Especially, when the f-algebra is square root closed, they are the same class of operators. As a result, we give a new characterization for the orthomorphisms.
     In the third part, the f-module and d-module on a lattice algebra have been studied. Firstly, the relationship between the disjointness preserving operators and linear operators on an f-module is discussed. It is obtained that these operators are equvalent under some conditions. Then the linear proerty of the inverse of a disjointness preserving operator is given. Moreover we introduce the concept of the d-module, and obtain that the order bidual of a d-module is likewise a d-module. We study the d-modules over the ideals generated by a lattice homomorphism or an interval preserving operator with some examples.
     Finally, the quotient space of a lattice algebra and their algebraic properties have been fully studied. The concepts of the quotient lattice algebra, especially the quotient f-algebra, quotient almost f-algebra and quotient d-algebra are given, as well as the equivalent characterizations. We also investigate the algebraic properties of a quotient lattice algebra. The examples are given to compare these properties. The equivalent condition under which a quotient lattice algebra is semiprime is obtained. At last we discuss the commutative property and show the conditions under which the unit and the inverse in a quotient f-algebra exist.
引文
[1]Abromovich Y. A. and Kitover A. K. A characterization of operators preserving disjoint-ness in terms of their inverse. Positivity.2000,4:205-212.
    [2]Abromovich Y. A. and Kitover A. K. Inverses of disjointness preserving opoperators. Memoris Amer. Math. Soc.2000,143:679-685.
    [3]Abromovich Y. A. and Kitover A. K. d-Independence and d-bases. Positivity.2003,7:95-97.
    [4]Ajtai M. and Dwork C. A public-key cryptosystem with worst-case/average-case equiva-lence. In Proc.29th ACM symposium on theory of computing,1997:284-293.
    [5]Aliprantis C. D. and Burkinshaw O. Positive operators. Academic Press New York & London,1985.
    [6]Alpay S. and Altin B. A note on b-weakly compact operators. Positivity.2007,11 (4): 575-582.
    [7]Alpay S. and Uyar A. On ideals generated by positive operators. Positivity.2003,7:125-133.
    [8]Alpay S., Altin B., and Tonyali C. A note on Riesz spaces with property(b). Czech. Math. J.2006,131:765-772.
    [9]Alpay S. and Turan B. On f-modules. Rev Roumaine Math Pures Appl.1995,40:233-241.
    [10]Aqzzouz B. and Nouira R. Compactness properties of operators dominated by AM-compact operators. Proc. Amer. Math. Soc.2007,135(4):1151-1157.
    [11]Aqzzouz B., Nouria R., and Zraoula L. The duality problem for the class of AM-comp-act operators on Banach lattices. Canad. Math. Bull.2008,51(1):15-20.
    [12]Aqzzouz B. The duality problem for the class of order weakly compact operators. Glas-gow Math. J.2009,51:101-108.
    [13]Aqzzouz B. and Elbour A. Characterization of the order weak compactness of semico-mpact operators. Math. Anal. Appl.2009,355(2):541-547.
    [14]Aqzzouz B. and Nouria R., and Zraoula L. Semi-compactness of positive Dunford-Pettis operators on Banach lattices. Proc. Amer. Math. Soc.2008,136 (6):1997-2006.
    [15]Ayse U. Solutions of two problems in the theory of disjointness preserving operators. Positivity.2007,11(1):119-121.
    [16]B de Pagter and Schep A. R. Band decompositions for disjointness preseving operator. Positivity.2000,4:259-288.
    [17]Basly M. and Triki A. f-algebras in which order ideals are ring ideals. Indag. Math. 1988,50:231-234.
    [18]Basly M. and Triki A. On uniformly closed ideals in f-algebras.2nd Conference Functio ons spaces. Marcel Dekker,1995:29-33.
    [19]Benamor F. and Boulabiar K. Maximal ideals of disjointness preserving operators. J. Math. Anal. Appl.2006,283:13-22.
    [20]Bernau S. J. Orthomorphisms of Archimedean vector lattices. Math. Proc. Cambrige Phil. Soc.1981,89:119-128.
    [21]Bernau S. J. and Huijsmans C. B. Almost f-algebra and d-algebra. Math. Proc. Cambrige Phil. Soc.1990,107:287-308.
    [22]Bernau S. J. and Huijsmans C. B. The order bidual of almost f-algebra and d-algebra. Trans. Amer. Math. Soc.1995,347:4259-4275.
    [23]Bernau S. J. and Huijsmans C. B. The Schwarz inequality in Archimedean f-algebra. Indag. Math.1996,7:137-148.
    [24]Bernau S. J. Sums and extensions of vector lattice homomorphsims. Acta. Appl. Math. 1992,27:33-45.
    [25]Beukers F., Huijsmans C. B. and B de Pagter. Unital embedding and complexification of f-algebra. Math. Z.1983,183:131-144.
    [26]Beukers F. and Huijsmans C. B. Calculus in f-algebra. J. Austr. Math. Soc.1984,37: 110-116.
    [27]Birkhoff G. Lattice Theory,3rd Edition. Amer. Math. Soc. Colloq. Publ. no.25, Ame. Mathe. Soc.1967.
    [28]Birol Altin. On b-weakly compact operators on Banach lattices, Taiwanese Journal of Mathematics.2007,11(1):143-150.
    [29]Boulabiar K. A relationship between two almost f-algebra. Algebra Univ.2000,43:347-367.
    [30]Boulabiar K. and Toumi M. A. Lattice homomorphism on f-algebra. Algebra Univ.2002, 48:103-116.
    [31]Boulabiar K. Product in almost f-algebra. Comment Math. Univ. Carolinae.1997,38: 749-761.
    [32]Boulabiar K. A Holder-type inequlity for positive functional on unital f-algebra. J. Inequlities Pure and Appl. Math.2002,3:2-9.
    [33]Boulabiar K. and Chil E. On the structure of almost r-algebra. Demonstratio Math.2001. 34:749-760.
    [34]Boulabiar K., Buskes G and Toumi M. A. Recent results in Lattice ordered algebras. Contemporary Math.2003,328:99-133.
    [35]Boulabiar K. and Hadded F. A class of Archimedean lattice ordered algebras. Algebra Univ.2003,50:305-323.
    [36]Boulabiar K. Positive derivations on Archimedean almost f-rings. Order 2002,19: 385-395.
    [37]Boulabiar K., Buskes G and Sirothin G. Algebraic order bounded disjointness preserve-ing operators and strongly diagonal operators. Integral Equation and Operator Theory 2006,54:9-31.
    [38]Boulabiar K., Buskes G and Henriksen M. A generalization of a theorem on Biseparating maps. J. Math. Anal. Appl.2003,280:334-339.
    [39]Buskes G. and Rooij A. Van. Almost f-algebra:commutativity and the Cauchy-Schwarz inequlity. Positivity.2000,4:233-243.
    [40]Buskes G. and Rooij A. Van. Almost f-algebra:structure and the Dedekind completion. Positivity.2000,4:227-231.
    [41]Buskes G. and Rooij A. Van. Small Riesz spaces. Math. Proc. Cambridge Phil. Soc. 1989,105:523-536.
    [42]Buskes G. and Rooij A. Van. Aquares of vector lattices. Rocky Mountain J. Math.2001, 31:45-56.
    [43]Buskes G and Kusraev G. Representation and extension of orthoregular bilinear opera-tors. Vladikavkaz Math. Zh.2007,9:16-29.
    [44]Cash D. and Hofheinz D. Bonsai trees, or how to delegate a lattice basis. Advances in Cryptology Eurocrypt. Beilin:Springer Verlag,2010:523-552.
    [45]Chen Z. L. and Wickstead A. W. L-weakly and M-weakly compact operators. Indag. Math.1999,10(3):321-336.
    [46]Chen Z. L. Domination properties of lattice homomorphisms. Positivity.2009,13(1): 51-60.
    [47]Chen Z. L and Wickstead A. W. The order properties of r-compact operators on Banach lattices. Acta Math. Sinica.2007,23(3):457-466.
    [48]Chen Z. L. and Weber M. R. On finite elements in vector lattices and Banach lattices. Math. Nachrichten.2006,279(5-6):495-501.
    [49]Chen Z. L. Domination properties of lattice homomorphisms. Positivity.2009,13(1): 51-60.
    [50]Chil E. A note on weak orthomorphisms. Arch. Math.2009,92:266-269.
    [51]Ercan Z. and Onal S. Some Observations on Riesz Algebras. Positivity.2006.10:731-736.
    [52]Fethi B. and Boulabiar K. Maximal ideals of disjointness preserving operators. J. Math, analysis and applications.2006,322:599-609.
    [53]Fethi B. and Boulabiar K. On the modulus of disjointness preserving operators on com-plex vector lattices. Algebra Universalis.2005,54(2):185-193.
    [54]Gama N. and Nguyen P. Q. Finding short lattice vectors within mordell's inequality. In the 40th Annual ACM Symposium on Theory of Computing Proceedings.2008: 207-216.
    [55]Goldreich O., Goldwasser S. and Halevy S. Public-key Cryptography from lattice reduction problems. In Proc. CRYPTO'97, LNCS,1997,1294:112-131.
    [56]Grobler J. J. Commutativity of the Arens product in lattice ordered algebras. Positivity 1999,3:357-364.
    [57]Hadded F. Contractive projections and Seever's identity in complex f-algebra. Comment Math. Univ. Carolinae.2003,44:203-215.
    [58]Hart D. R. Some properties of disjointness preserving operators. Math. Proc. A.1985, 88:183-197.
    [59]Hanrot G. and Stehle D. Improved analysis of kannan's shortest lattice vector algorithm. In Advances in Cryptology-Crypto 2007 Proceedings.2007:170-186.
    [60]Henriksen M. When every order ideal is a ring ideal? Comment. Math. Univ. Carolinae. 1991,32:411-416.
    [61]Henriksen M. and Smith F. A. A look at biseparating maps from an algebraic point of view. Real Algebraic Geometry and Ordered Structures. Contemp. Math.2000,253: 125-144.
    [62]Hoffstein J., Pipher J. and Silverman J. H. NSS:An NTRU Lattice-Based Signature Scheme. Advanced in Cryptology Eurocrypt'01. I.NCS. VOl.2045, Springer-Verlag, 2001:123-137
    [63]Huijsmans C. B. An inequality in complex Riesz algebra. Studia. Sc. Math. Hung.1985, 20:29-32.
    [64]Huijsmans C. B. The order bidual of lattice ordered algebra Ⅱ. J. Operator Theory.1989, 22:227-290.
    [65]Huijsmans C. B. and B de Pagter. Ideal theory in f-algebra. Trans. Amer. Math. Soc. 1982,269:225-245.
    [66]Huijsmans C. B. and B de Pagter. Subalgebra and Riesz subspaces of an f-algebra. Proc. London Math. Soc.1984,48:61-74.
    [67]Huijsmans C. B. and B de Pagter. The order bidual of lattice ordered algebra. J. Funct. Anal.1984,59:41-64.
    [68]Huijsmans C. B. and B de Pagter. Averaging operators and positive contractive pro-jections. J. Math. Anal. Appl.1986,113:163-184.
    [69]Huijsmans C. B. Disjointness in complex Riesz spaces. Proc. Neth. Acad. Sc.1984,87: 319-323.
    [70]Huijsmans C. B. and B de Pagter. On z-ideal and d-ideal in Riesz spaces II. Proc. Neth. Acad. Soc.1980,83:391-408.
    [71]Huijsmans C. B. Lattice ordered algebras and f-algebras:A survey, in:Studies in Economic Theory 2, Positive Operators, Springer-Verlag, Berlin,1991.
    [72]Huijsmans C. B. and B de Pagter. Invertible disjointness preserving operators. Proc. Edinburgh Math. Soc.1993,37:125-132.
    [73]Huijsmans C. B. and Wickstead A. W. The inverse of band preserving and disjointness preserving operators. Indag. Math.1992,3(2):179-183
    [74]Huijsmans C. B. and Luxemburg W. A. J. An alternative proof of a Radon-Nikodym theorem for lattice homomorphism. Acta Appl. Math.1992,27:67-71.
    [75]Huijsmans C. B. Lattice ordered division algebras. Proc. Roy. Irish Acad. Sect. A.1992, 92 (2):239-241.
    [76]Huijsmans C. B. and B de Pagter. On Von Neumann regular f-algebras. Order.1986,2: 403-408.
    [77]Jarosz K. Automatic continuity of separating linear isomorphisms. Bull. Canadian Math. Soc.1999,33:139-144.
    [78]Klein P. Finding the closest lattice vector when it's unusually close. The 11th Annual ACM-SLAM Symposium on Discrete Algorithms.2000:937-941.
    [79]Luxemburg W. A. J. and Zaanen A. C. Riesz spaces Ⅰ. North-Holland, Amsterdam, 1971.
    [80]Luxemburg W. A. J. and Schep A. R. A Radon-Nikodym theorem for positive operators and a dual. Indag. Math.1978,40:357-375.
    [81]Luxemburg W. A. J. and B de Pagter. Maharam extensions of operators and f-modules. Positivity.2002,6(6):147-190.
    [82]Martinez J. The maximal ring of quotient f-ring. Algebra Univ.1995,33:355-369.
    [83]Nakano H. Modern spectral theory. Tokyo Math. Book series, Maruzen, Tokyo,1950.
    [84]Meyer-Nieberg P. Banach lattice. Berlin Heidelberg New York, Springer-Verlag,1991.
    [85]Regev 0. On lattice, learning with errors, random linear codes, and Cryptography. Journal of the ACM.2009,56(6):1-40.
    [86]Schaefer H. H. Banach lattices and positive operators. New York Berlin Heidelberg: Springer-Verlag,1974.
    [87]Scheffold E. FF-Banachverbandsalgebren. Math. Z.1981,177:183-205.
    [88]Sommer N., Feder M. and Shalvi O. Finding the closest lattice point by iterative slicing. SIAM Journal on Discrete Mathematics.2009,23:715-731.
    [89]Toumi M. A. Commutativity of almost f-algebras. Positivity.2007,11:357-368.
    [90]Toumi M. A. The Wickstead problem on Dedekind σ-complete vector lattice. Positivity 2010,14:135-144.
    [91]Triki A. Stable f-algebras. Algebra Univ.2000,44:65-86.
    [92]Triki A. On algebra homomorphisms in complex almost f-algebras. Comment. Math. Univ. Carolinae.2002,43:23-31.
    [93]Triki A. A note on averaging operators. Contemporay Math.1999,232:345-348.
    [94]Triki A. Extensions of positive projections and averaging operators. J. Math. Anal. Appl. 1990,153:486-496.
    [95]Triki A. Order bounded local derivations on Archimedean almost r-algebras. Rendicont-del circolo matematico di Palermo.2009,58:337-344.
    [96]Turan B. On Ideal Operators. Positivity.2003,7 (1-2):141-148.
    [97]Turan B. On f-linearity and f-orthomorphisms. Positivity.2000,4(4):293-301.
    [98]Uyar A. Quotient f-module. Turkish J. Math.2005,29:121-127.
    [99]Uyar A. Solutions of two problems in the theory of disjointness preserving operators. Positivity.2007,11:55-69.
    [100]Uyar A. On Banach lattice algebras. Turkish J. Math.2005,29(3):287-290.
    [101]Wickstead A. W. Characterisation of semi-prime Archimedean f-algebra. Math. Z. 1989,200:353-354.
    [102]Wickstead A. W. The injective hull of an Archimedean f-algebra. Compositio Math. 1987,62:329-342.
    [103]Yilmaz R. On orthomorphisms, quasi-orthomorphisms and quasi-multipliers. J. Math. Anal. Appl.2006,313:120-131.
    [104]Zaanen A. C. Riesz spaces Ⅱ. North-Holland, Amsterdam,1983.
    [105]Zaanen A. C. Introduction to operator throry in Riesz spaces. New York Berlin Heidelberg Spinger-Verlag.1997.
    [106]陈滋利.Banach格上的正则算子格.数学学报.2000,43(2):205-212.
    [107]陈滋利.On closeness of principal bands in lattices of operators.四川师范大学学报(自然科学版).2007,30(1):14-17.
    [108]陈滋利.Huij smans-Wickstead有关算子格上带投影的一个问题.数学年刊.2000,21A(1):128-134.
    [109]李筱熠.一种基于NTRU格的数字签名.上海工程技术大学学报.2009,25(1):56-59.
    [110]田苗苗,黄刘生,杨威.高效的基于格的环签名方案.计算机学报.2012,35(4):712-718
    [111]张秋余,张启坤,袁占亭等.基于格的跨域认证联盟协议.计算机应用.2007,27(4):835-837.
    [112]张文芳,余位驰,何大可.一种基于格理论的数字签名方案.计算机科学.2006,33(3):93-96.
    [113]王凤和,胡予濮,王春晓.基于格的盲签名方案.武汉大学学报(信息科学版),2010,35(5):550-553.
    [114]王凤和,胡予濮,王春晓.格上基于盆景树模型的环签名.电子与信息学报,2010,32(10):2400-2403.
    [115]宋世军,郭进,樊敏.密码技术在铁路信号控制系统中的应用.铁路计算机应用.2005,14(11):46-48.
    [116]黄琼,赵一鸣.基于格的公钥密码系统及其安全性分析.计算机工程.2005,31(10):60-63.
    [117]夏峰,杨波,马莎等.基于格的代理签名方案.湖南大学学报(自然科学版).2011,38(6):84-89.